动物营养学报    2021, Vol. 33 Issue (12): 6964-6972    PDF    
饲料中添加黑水虻幼虫粉对加州鲈血清代谢物、抗氧化与免疫指标及肠道组织结构的影响
彭凯1,2 , 萧鸿发1,2 , 莫文艳1,2 , 王国霞1,2 , 黄燕华2,3     
1. 广东省农业科学院动物科学研究所, 广东省畜禽育种与营养研究重点实验室, 农业农村部华南动物营养与饲料重点实验室, 广州 510640;
2. 广州飞禧特生物科技有限公司, 广州 510640;
3. 仲恺农业工程学院健康养殖创新研究院, 广州 510225
摘要: 本试验旨在研究饲料中添加黑水虻幼虫粉替代鱼粉对加州鲈血清代谢物、抗氧化与免疫指标和肠道组织结构的影响。选择初始体重为(4.9±0.1)g的加州鲈鱼苗525尾,随机分为5组,每组3个重复,每个重复35尾。以黑水虻幼虫粉替代鱼粉,分别投喂G0(基础饲料,鱼粉添加比例为45.0%)、G7.5(替代鱼粉比例为7.5%)、G15.0(替代鱼粉比例为15.0%)、G22.5(替代鱼粉比例为22.5%)和G30.0(替代鱼粉比例为30.0%)5种等氮等脂饲料,养殖周期为62 d。结果表明:与G0组相比,G15.0~G30.0组血清白蛋白含量显著升高(P < 0.05);G22.5和G30.0组血清球蛋白含量显著升高(P < 0.05),胆固醇含量和谷草转氨酶活性显著降低(P < 0.05);G30.0组血清高密度脂蛋白胆固醇含量显著增加(P < 0.05);G7.5~G30.0组血清谷胱甘肽过氧化物酶活性和补体3含量显著增加(P < 0.05);G15.0~G30.0组血清酸性磷酸酶活性显著升高(P < 0.05);G7.5~G30.0组肠道组织有不同程度损伤,且随着黑水虻幼虫粉替代鱼粉比例越高,肠道组织损伤越严重。综上所述,饲料中添加黑水虻幼虫粉替代鱼粉提高了加州血清抗氧化和免疫指标,但不同程度地损伤了加州鲈肝脏功能和肠道组织结构,建议饲料中应当谨慎添加。
关键词: 黑水虻幼虫粉    加州鲈    抗氧化与免疫    肠道健康    
Effects of Dietary Black Soldier Fly Larvae Meal on Serum Metabolites, Antioxidant and Immune Indexes and Intestinal Histological Appearance of Micropterus salmoides
PENG Kai1,2 , XIAO Hongfa1,2 , MO Wenyan1,2 , WANG Guoxia1,2 , HUANG Yanhua2,3     
1. Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture in Rural Affairs, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China;
2. Guangzhou Fishtech Biotechnology Co., Ltd., Guangzhou 510640, China;
3. Innovative Institute of Animal Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
Abstract: This experiment was aimed to study the effects of dietary black soldier fly larvae meal replacing fish meal on serum metabolites, antioxidant and immune indexes and intestinal histological appearance of Micropterus salmoides. A total of 525 juvenile Micropterus salmoides with an initial body weight of (4.9±0.1) g were divided into 5 groups with 3 replicates in each group and 35 fish in each replicate. Five isoproteic and isolipidic diets were formulated by adding black soldier fly larvae meal to replace 0 (G0), 7.5% (G7.5), 15.0% (G15.0), 22.5% (G22.5) and 30.0% (G30.0) of fish meal in diets. The feeding period was 62 days. Results showed as follows: compared with G0 group, serum albumin content in G15.0 to G30.0 groups was significantly increased (P < 0.05), and serum globulin content in G22.5 and G30.0 groups was significantly increased (P < 0.05), but cholesterol content and aspartate aminotransferase activity were significantly decreased (P < 0.05); serum high density lipoprotein cholesterol content in G30.0 group were significantly increased (P < 0.05);serum glutathion peroxidase activity and complement C3 content in G7.5 to G30.0 groups was significantly increased (P < 0.05), and serum acid phosphatase activity in G15.0 to G30.0 groups was significantly increased (P < 0.05). The intestine tissue in G7.5 to G30.0 groups had varying degrees of injury, and the higher replacement ratio of larvae meal to fish meal, the more serious damage of intestine tissue was. In conclusion, black soldier fly larvae meal replacing fish meal in diets significantly improves serum antioxidant and immunity, but damages liver function and intestinal histological appearance of Micropterus salmoides. Therefore, it is suggested that dietary supplementation of black soldier fly larvae meal should be cautious.
Key words: black soldier fly larvae meal    Micropterus salmoides    antioxidant and immune    intestinal health    

鱼粉资源匮乏及价格居高不下是制约水产养殖可持续发展的限制因素,当前亟待寻求新的饲料原料以替代鱼粉。在过去十几年时间里,人们逐渐将目光转移到昆虫资源,其中黑水虻(Hermetia illucens)倍受世界关注。黑水虻属于双翅目水虻科昆虫,其幼虫(干物质基础)含有35%~40%蛋白质和35%~40%脂肪,且富含月桂酸、抗菌肽、几丁质等活性物质,是理想的动物饲料原料。黑水虻与鱼粉有较为相似的必需氨基酸模式[1],因此,黑水虻是替代鱼粉的良好选择。大量研究表明,当基础饲料中鱼粉含量为10%~30%,黑水虻幼虫粉部分或完全替代鱼粉不影响水产动物的生长性能[2-12]。尽管多数研究已经评价了黑水虻幼虫粉替代鱼粉对水产动物生长性能的影响,但对动物新陈代谢和机体健康的影响研究仍相当缺乏。

黑水虻幼虫粉替代鱼粉对水产动物机体健康既有积极影响又有消极影响。胡俊茹等[6]报道,黑水虻幼虫粉替代50%鱼粉可增加花鲈鱼体脂肪沉积,损伤肝脏和肠道组织结构。Hu等[5]研究表明,黑水虻幼虫粉替代20%鱼粉显著增加了黄颡鱼血浆球蛋白和一氧化氮含量,损害动物肝功能。Li等[13]报道,脱脂黑水虻幼虫粉替代75%鱼粉可显著提高建鲤抗氧化能力,但损害了肠道组织结构,增加了鱼体氧化应激。Xiao等[10]研究表明,黑水虻幼虫粉100%替代鱼粉不但不影响黄颡鱼生长性能,还能提高血清超氧化物歧化酶和溶菌酶活性,增强动物机体免疫力。胡俊茹等[14]报道,黑水虻幼虫粉替代15%~20%鱼粉可显著增强凡纳滨对虾幼虾血清抗氧化酶活性,提高对虾抗氧化状态。然而,Wang等[11]报道,脱脂黑水虻幼虫粉替代64%鱼粉不影响花鲈肝脏和肠道组织结构,对血清免疫指标也无显著影响。相似地,Wang等[12]研究表明,脱脂黑水虻幼虫粉替代60%鱼粉不影响凡纳滨对虾血清抗氧化能力和免疫力。以上研究结果之间的差异可能归因于试验动物、黑水虻来源、添加剂量、试验条件的不同。黑水虻幼虫粉替代鱼粉对动物健康的影响及作用机理有待进一步研究。

加州鲈(Micropterus salmoides)是近年来兴起的优质淡水鱼品种,其生长速度快、发病率低、养殖密度大、经济价值高,因为肉质鲜美,深受消费者青睐。本试验旨在研究饲料中添加黑水虻幼虫粉替代鱼粉对加州鲈血清代谢物、抗氧化与免疫指标及肠道组织结构的影响,旨在为黑水虻幼虫粉替代鱼粉及其在加州鲈养殖中的应用提供参考。

1 材料与方法 1.1 试验饲料

试验饲料组成及营养水平如表 1所示,其中黑水虻幼虫粉来源于广州某生物科技有限公司,营养成分含量如下:粗蛋白质36%、粗脂肪38%、粗灰分13%、几丁质6%。基础饲料G0中鱼粉含量为45%,在G0基础上添加黑水虻幼虫粉,按重量比例分别替代7.5%(G7.5)、15.0%(G15.0)、22.5%(G22.5)和30.0%(G30.0)鱼粉,共配制5种等氮等脂饲料。所有饲料原料经粉碎并全部通过60目标准筛,混合均匀后通过双螺杆挤压机型制成2.0 mm颗粒料,经55 ℃烘干,于-20 ℃冰箱中保存备用。

表 1 试验饲料组成及营养水平(干物质基础) Table 1 Composition and nutrient levels of experimental diets (DM basis)  
1.2 试验设计与饲养管理

本试验在广东省农业科学院水产研究中心养殖基地进行。鱼苗购于佛山市三水白金水产种苗有限公司,于水泥池中暂养7 d。选择初始体重为(4.9±0.1) g的健康加州鲈鱼苗525尾,随机分为5组,每组3个重复,每个重复35尾,以重复为单位随机分配到15个养殖缸(容积为350 L),每组投喂1种试验饲料,养殖周期为62 d。采取饱食投喂方式,每天于08:00和18:00各投喂1次,记录饲料投喂量、鱼苗死亡情况及水质情况。试验期间保持自然光照,水温27~30 ℃,溶解氧浓度>6.0 mg/L,氨氮浓度 < 0.10 mg/L,亚硝酸盐浓度 < 0.01 mg/L,pH 7.6~7.9。

1.3 样品采集与分析

养殖试验结束时,先禁食24 h,随后采集样品。每缸随机取10尾鱼,采用40 mg/L的MS-222麻醉剂以浸浴的方式麻醉,然后使用1 mL注射器于尾静脉取血,每缸血液样品混合,于室温下静置2 h,3 500 r/min转速下离心10 min,分离的血清置于-80 ℃中保存,用于血清代谢物、抗氧化与免疫指标的分析。每缸随机取4尾鱼,解剖后分离出肠道,取1 cm中肠置于4%福尔马林固定液中保存48 h,然后制备石蜡组织切片,经苏木精-伊红(HE)染色法染色,显微镜下观察肠绒毛形态和结构。

采用日立7600生化分析仪测定血清代谢物含量。血清抗氧化及免疫指标包括:总抗氧化能力(T-AOC,比色法)、超氧化物歧化酶(SOD,羟胺法)、过氧化氢酶(CAT,钼酸铵法)、谷胱甘肽过氧化物酶(GPx,比色法)、酸性磷酸酶(ACP,分光光度法)、碱性磷酸酶(AKP,比色法)、溶菌酶(LZM,比浊法)活性及丙二醛(MDA,硫代巴比妥酸法)、补体3(C3,免疫比浊法)含量,选用南京建成生物工程研究所的商业试剂盒并参照说明书步骤分析。

1.4 数据处理与分析

首先对试验数据进行方差齐性检验,若满足方差齐性,则采用SPSS 17.0统计软件中单因素方差分析(one-way ANOVA)和Duncan氏多重比较法分析差异显著性。若不满足方差齐性,则采用Dunnett-T3检验法进行多重比较。试验数据以平均值±标准误的形式表示,显著性水平为P < 0.05。

2 结果 2.1 黑水虻幼虫粉替代鱼粉对加州鲈血清代谢物含量的影响

表 2可知,与G0组相比,G22.5和G30.0组血清总蛋白和球蛋白含量显著升高(P < 0.05),胆固醇含量和谷草转氨酶活性显著降低(P < 0.05),G15.0、G22.5和G30.0组血清白蛋白含量显著升高(P < 0.05),G30.0组血清高密度脂蛋白胆固醇含量显著升高(P < 0.05)。各组间血清白蛋白/球蛋白以及低密度脂蛋白胆固醇、尿素氮、葡萄糖含量与谷丙转氨酶活性无显著差异(P>0.05)。

表 2 黑水虻幼虫粉替代鱼粉对加州鲈血清代谢物含量的影响 Table 2 Effects of fishmeal replaced by black soldier fly larvae meal on serum metabolites contents of Microptenus salmoides
2.2 黑水虻幼虫粉替代鱼粉对加州鲈血清抗氧化指标的影响

表 3可知,与G0组相比,G7.5、G15.0、G22.5和G30.0组血清谷胱甘肽过氧化物酶活性显著升高(P < 0.05)。各组间血清总抗氧化能力、超氧化物歧化酶和过氧化氢酶活性及丙二醛含量无显著差异(P>0.05)。

表 3 黑水虻幼虫粉替代鱼粉对加州鲈血清抗氧化指标的影响 Table 3 Effects of fishmeal replaced by black soldier fly larvae meal on serum antioxidant indexes of Microptenus salmoides
2.3 黑水虻幼虫粉替代鱼粉对加州鲈血清免疫指标的影响

表 4可知,与G0组相比,G15.0、G22.5和G30.0组血清酸性磷酸酶活性显著升高(P<0.05),G7.5、G15.0、G22.5和G30.0组血清补体3含量显著升高(P < 0.05)。各组间血清碱性磷酸酶和溶菌酶活性无显著差异(P>0.05)。

表 4 黑水虻幼虫粉替代鱼粉对加州鲈血清免疫指标的影响 Table 4 Effects of fishmeal replaced by black soldier fly larvae meal on serum immune indexes of Microptenus salmoides
2.4 黑水虻幼虫粉替代鱼粉对加州鲈肠道组织结构的影响

图 1可知,与G0组相比,G7.5~G30.0组肠道组织有不同程度的损伤,表现为肠绒毛长度缩短,形态萎缩,结构发生异常,且随着黑水虻幼虫粉替代鱼粉比例升高,肠道组织损伤越严重。

图 1 黑水虻幼虫粉替代鱼粉对加州鲈肠道组织结构的影响(HE染色) Fig. 1 Effects of fishmeal replaced by black soldier fly larvae meal on intestinal histological appearance of Microptenus salmoides (HE stain, 200×)
3 讨论 3.1 黑水虻幼虫粉替代鱼粉对加州鲈血清代谢物含量的影响

本研究前期报道了黑水虻幼虫粉替代鱼粉对加州鲈生长性能的影响,结果表明,黑水虻幼虫粉替代30%鱼粉可显著增加加州鲈的饲料系数和肠体比,降低蛋白质效率和肝体比,并抑制全鱼中粗灰分和钙的沉积[15],导致加州鲈的生长性能下降。然而,黑水虻幼虫粉替代鱼粉对加州鲈血清代谢物含量的影响仍未见报道。血清代谢物水平通常反映鱼体健康程度及对营养与环境因素的适应状况[16]。本试验研究了黑水虻幼虫粉替代鱼粉对加州鲈血清代谢物含量的影响,结果表明饲料中适量添加黑水虻幼虫粉可显著增加加州鲈血清白蛋白、球蛋白及高密度脂蛋白胆固醇含量,说明黑水虻幼虫粉替代鱼粉损伤了加州鲈的肝功能,并干扰了脂肪代谢,这些变化可能是导致加州鲈生长性能下降的原因之一。血清白蛋白在肝脏内合成,主要用于修补组织和提供能量,反映肝脏功能的损伤程度;血清球蛋白是由B细胞转化成浆细胞后分泌的,反映机体的抵抗力。白蛋白与球蛋白含量升高通常与机体代谢紊乱或者肝功能和肾功能损伤有关[17]。研究表明,黑水虻幼虫粉替代20%鱼粉显著增加了花鲈[6]和黄颡鱼[5]血浆中球蛋白的含量,本研究结果与之相似。然而,另有研究报道,黑水虻幼虫粉部分或完全替代鱼粉并不影响鱼类血液中白蛋白和球蛋白的含量[11, 13, 18]。张放等[19]研究表明,饲料中添加25%黑水虻幼虫粉显著降低了生长猪血清白蛋白含量。而即使是同一物种,如黄颡鱼,Hu等[5]和陈晓瑛等[18]的研究结果也不一致。以上不同研究结果之间的差异可能归因于动物品种、黑水虻来源、添加剂量、不同试验条件等影响因素。

血清胆固醇主要由肝脏合成和供给,因此其含量变化反映肝脏脂肪代谢的功能。研究表明,饲料中添加黑水虻幼虫粉能够明显降低不同水产动物的血清胆固醇含量,如黄颡鱼[20]、花鲈[11]、欧洲鲈[8]、建鲤[13]和南美白对虾[12]。本试验结果表明,黑水虻幼虫粉替代鱼粉显著降低加州鲈血清胆固醇含量,这与前人研究结果一致。黑水虻幼虫粉对胆固醇含量的降低效应至今原因不明,一方面可能归因于饲料中n-3不饱和脂肪酸含量的下降,因为饲料中添加黑水虻幼虫粉可降低n-3不饱和脂肪酸含量[12],而n-3不饱和脂肪酸被发现能够抑制胆固醇生成及体内脂肪沉积[21];另一方面可能归因于黑水虻虫粉中含有的几丁质,因为几丁质已被发现能够降低鱼类胆固醇含量[22],主要归因于几丁质与脂质微粒结合从而干扰胆固醇的吸收[23]

谷丙转氨酶和谷草转氨酶是与细胞损伤或应激反应相关的指标,正常情况下存在于细胞内,不易穿过细胞膜屏障;而当细胞损伤或存在应激反应时,细胞膜通透性升高使其得到快速释放,导致血液中酶的活性升高[23]。Li等[13]报道,黑水虻幼虫粉100%替代鱼粉并不影响建鲤血清中谷丙转氨酶和谷草转氨酶活性。Xu等[24]在黑水虻虫浆饲喂镜鲤的试验中得到相似结果。本试验结果表明,黑水虻幼虫粉替代鱼粉显著降低加州鲈血清谷草转氨酶活性,但不影响谷丙转氨酶活性,具体原因有待进一步研究。

3.2 黑水虻幼虫粉替代鱼粉对加州鲈血清抗氧化和免疫指标的影响

血清抗氧化指标是衡量机体抗氧化状态的主要参考依据。本试验结果表明,黑水虻幼虫粉替代鱼粉显著增加了血清谷胱甘肽过氧化物酶活性,证明饲料中添加黑水虻幼虫粉可增加加州鲈抗氧化能力。相似的结论也在花鲈[11]、建鲤[7, 13]、黄颡鱼[10]、凡纳滨对虾[12, 14]和镜鲤[25]上进行了报道。Ural等[25]报道,谷胱甘肽过氧化物酶催化过氧化氢转化为水,在过氧化氢和脂质过氧化物的还原中起重要作用,被认为是一种有效的脂质过氧化保护酶。饲料中添加黑水虻幼虫粉提高加州鲈血清谷胱甘肽过氧化物酶活性的原因可能是由于几丁质的作用。黑水虻幼虫外壳中含有几丁质[26],其含量在黑水虻幼虫粉中高达5.42%[27]。几丁质被发现具有显著的抗氧化作用效果[28-29]

酸性磷酸酶是一种参与磷酸基转移和代谢的水解酶,反映机体的免疫功能状态[30]。有文献报道,酸性磷酸酶活性受膳食营养水平的影响[31]。补体3是血清中含量最高的补体成分,主要由巨噬细胞和肝脏合成,血清中补体3含量升高表示机体组织损伤或炎症反应增强。本试验结果表明,黑水虻幼虫粉替代鱼粉显著增加了血清酸性磷酸酶活性及补体3含量,证明饲料中添加黑水虻幼虫粉可提高加州鲈免疫力,这可能与黑水虻本身含有的免疫活性物质有关,如几丁质、抗菌肽等。Xiao等[10]研究表明,黑水虻幼虫粉替代鱼粉显著提高了黄颡鱼免疫力,主要归因于几丁质和抗菌肽的作用。饲料中添加几丁质可提高金头鲷、虹鳟等鱼类的非特异性免疫力,激活巨噬细胞活性[32]。Dong等[33]报道,鲤鱼饲料中添加抗菌肽可显著增强机体免疫力。

本试验结果表明,饲料中添加黑水虻幼虫粉替代鱼粉导致加州鲈血清中谷胱甘肽过氧化物酶和酸性磷酸酶活性升高以及补体3含量升高的原因也可能归因于加州鲈对肠道氧化损伤的一种生理反应或生理应对策略。从肠道切片观察,饲料中添加黑水虻幼虫粉对加州鲈肠道造成一定程度的氧化损伤,从而诱导血清谷胱甘肽过氧化物酶和酸性磷酸酶活性升高以及补体3含量升高,具体作用机理有待进一步深入研究。此外,加州鲈血清抗氧化和免疫指标的增加也说明机体氧化应激反应增强,这可能是黑水虻幼虫粉替代鱼粉导致加州鲈生长性能下降的另一个原因。

3.3 黑水虻幼虫粉替代鱼粉对加州鲈肠道组织结构的影响

肠道组织结构通常用来评价饲料对动物肠道健康的影响。黑水虻幼虫粉替代鱼粉对动物肠道组织结构的影响已在花鲈[6, 11]、建鲤[13]、镜鲤[25]、斑马鱼[34]和虹鳟[9, 35]等水产动物上进行了报道,但仍未见其对加州鲈的影响效果如何。本试验结果表明,黑水虻幼虫粉替代鱼粉不同程度地损伤了加州鲈肠道组织结构,且随着黑水虻幼虫粉替代鱼粉比例的增加,肠道组织损伤程度越严重,这与Wang等[11]在花鲈和Li等[13]在建鲤上的研究结论一致。胡俊茹等[6]研究表明,黑水虻幼虫粉替代鱼粉显著降低了花鲈肠道绒毛长度、绒毛宽度和固有层厚度,破坏了肠道组织结构。黑水虻幼虫粉替代鱼粉损伤加州鲈肠道组织结构的原因可能归因于黑水虻含有的几丁质,因为过量的几丁质可诱导肠道炎症反应,从而破坏肠道组织结构的完整性[6, 36]。相反,另有研究表明,饲料中添加黑水虻幼虫粉部分或完全替代鱼粉,并不影响虹鳟的肠道组织结构[9, 35],这可能是由于试验动物对象和黑水虻幼虫粉添加量不同的原因导致的。总而言之,饲料中添加黑水虻幼虫粉应当控制好剂量,避免过量添加对鱼类肠道组织结构的损伤,从而影响动物的生长和健康。

4 结论

饲料中添加黑水虻幼虫粉替代鱼粉(基础饲料中鱼粉含量为45%)增加了加州鲈血清总蛋白、白蛋白、球蛋白、高密度脂蛋白胆固醇和补体3的含量,提高了血清谷胱甘肽过氧化物酶和酸性磷酸酶活性,降低了血清胆固醇含量和谷草转氨酶活性,且不同程度地损伤了加州鲈肠道组织结构,建议饲料中应当谨慎添加。

参考文献
[1]
HENRY M, GASCO L, PICCOLO G, et al. Review on the use of insects in the diet of farmed fish: past and future[J]. Animal Feed Science and Technology, 2015, 203: 1-22. DOI:10.1016/j.anifeedsci.2015.03.001
[2]
SEALEY W M, GAYLORD T G, BARROWS F T, et al. Sensory analysis of rainbow trout, Oncorhynchus mykiss, fed enriched black soldier fly prepupae, Hermetia illucens[J]. Journal of the World Aquaculture Society, 2011, 42(1): 34-45. DOI:10.1111/j.1749-7345.2010.00441.x
[3]
LOCK E R, ARSIWALLA T, WAAGBØR. Insect larvae meal as an alternative source of nutrients in the diet of Atlantic salmon (Salmo salar) postsmolt[J]. Aquaculture Nutrition, 2016, 22(6): 1202-1213. DOI:10.1111/anu.12343
[4]
CUMMINS V C, RAWLES S D, THOMPSON K R, et al. Evaluation of black soldier fly (Hermetia illucens) larvae meal as partial or total replacement of marine fish meal in practical diets for Pacific white shrimp (Litopenaeus vannamei)[J]. Aquaculture, 2017, 473: 337-344. DOI:10.1016/j.aquaculture.2017.02.022
[5]
HU J R, WANG G X, HUANG Y H, et al. Effects of substitution of fish meal with black soldier fly (Hermetia illucens) larvae meal, in yellow catfish (Pelteobagrus fulvidraco) diets[J]. Israeli Journal of Aquaculture-Bamidgeh, 2017, 69: 1-9.
[6]
胡俊茹, 王国霞, 莫文艳, 等. 黑水虻幼虫粉替代鱼粉对鲈鱼幼鱼生长性能、体组成、血浆生化指标和组织结构的影响[J]. 动物营养学报, 2018, 30(2): 613-623.
HU J R, WANG G X, MO W Y, et al. Effects of fish meal replacement by black soldier fly (Hermetia illucens l.) larvae meal on growth performance, body composition, plasma biochemical indexes and tissue structure of juvenile Lateolabrax japonicas[J]. Chinese Journal of Animal Nutrition, 2018, 30(2): 613-623 (in Chinese). DOI:10.3969/j.issn.1006-267x.2018.02.026
[7]
ZHOU J S, LIU S S, JI H, et al. Effect of replacing dietary fish meal with black soldier fly larvae meal on growth and fatty acid composition of Jian carp (Cyprinus carpio var.Jian)[J]. Aquaculture Nutrition, 2018, 24(1): 424-433. DOI:10.1111/anu.12574
[8]
MAGALHAES R, SÁNCHEZ-LÓPEZBC A, LEAL R S, et al. Black soldier fly (Hermetia illucens) pre-pupae meal as a fish meal replacement in diets for European seabass (Dicentrarchus labrax)[J]. Aquaculture, 2017, 476: 79-85. DOI:10.1016/j.aquaculture.2017.04.021
[9]
RENNA M, SCHIAVONE A, GAI F, et al. Evaluation of the suitability of a partially defatted black soldier fly (Hermetia illucens L.) larvae meal as ingredient for rainbow trout (Oncorhynchus mykiss Walbaum) diets[J]. Journal of Animal Science and Biotechnology, 2017, 8(4): 57. DOI:10.1186/s40104-017-0191-3
[10]
XIAO X P, JIN P, ZHENG LY, et al. Effects of black soldier fly (Hermetia illucens) larvae meal protein as a fishmeal replacement on the growth and immune index of yellow catfish (Pelteobagrus fulvidraco)[J]. Aquaculture Research, 2018, 49(4): 1569-1577. DOI:10.1111/are.13611
[11]
WANG G X, PENG K, HU J R, et al. Evaluation of defatted black soldier fly (Hermetia illucens L.) larvae meal as an alternative protein ingredient for juvenile Japanese seabass (Lateolabrax japonicus) diets[J]. Aquaculture, 2019, 507: 144-154. DOI:10.1016/j.aquaculture.2019.04.023
[12]
WANG G X, PENG K, HU JR, et al. Evaluation of defatted Hermetia illucens larvae meal for Litopenaeus vannamei: effects on growth performance, nutrition retention, antioxidant and immune response, digestive enzyme activity and hepatic morphology[J]. Aquaculture Nutrition, 2021, 27(4): 986-997. DOI:10.1111/anu.13240
[13]
LI S L, JI H, ZHANG B X, et al. Defatted black soldier fly (Hermetia illucens) larvae meal in diets for juvenile Jian carp (Cyprinus carpio var.Jian): growth performance, antioxidant enzyme activities, digestive enzyme activities, intestine and hepatopancreas histological structure[J]. Aquaculture, 2017, 477: 62-70. DOI:10.1016/j.aquaculture.2017.04.015
[14]
胡俊茹, 王国霞, 黄文庆, 等. 黑水虻幼虫粉替代鱼粉对凡纳滨对虾幼虾生长性能、体组成、血清生化指标和抗氧化能力的影响[J]. 动物营养学报, 2019, 31(11): 5293-5301.
HU J R, WANG G X, HUANG W Q, et al. Effects of fish meal replacement by black soldier fly (Hermetia illucens) larvae meal on growth performance, body composition, serum biochemical indexes and antioxidant ability of juvenile Litopenaeus vannamei[J]. Chinese Journal of Animal Nutrition, 2019, 31(11): 5292-5300 (in Chinese).
[15]
彭凯, 萧鸿发, 莫文艳, 等. 黑水虻幼虫粉替代鱼粉对加州鲈生长性能、形体指标、体成分及营养物质沉积率的影响[J/OL]. 动物营养学报, (2021-06-23)[2021-08-15]: 1-9. http://kns.cnki.net/kcms/detail/11.5461.S.20210623.0907.012.html.
PENG K, XIAO H F, MO W Y, et al. Effects of replacing fish meal with black soldier fly larvae meal on growth performance, physical indexes, body composition and nutrient retention rates of Micropterus salmoides[J/OL]. Chinese Journal of Animal Nutrition, (2021-06-23)[2021-08-15]: 1-9. http://kns.cnki.net/kcms/detail/11.5461.S.20210623.0907.012.html. (in Chinese) http://www.chinajan.com/CN/abstract/abstract15981.shtml
[16]
王爱民, 韩光明, 封功能, 等. 饲料脂肪水平对吉富罗非鱼生产性能、营养物质消化及血液生化指标的影响[J]. 水生生物学报, 2011, 35(1): 80-87.
WANG A M, HAN G M, FENG G N, et al. Effects of dietary lipid levels on growth performance, nutrient digestibility and blood biochemical indices of gift tilapia (Oreochromis niloticus)[J]. Acta Hydrobiologica Sinica, 2011, 35(1): 80-87 (in Chinese).
[17]
JOHN P J. Alteration of certain blood parameters of freshwater teleost Mystus vittatus after chronic exposure to metasystox and Sevin[J]. Fish Physiology and Biochemistry, 2007, 33(1): 15-20. DOI:10.1007/s10695-006-9112-7
[18]
陈晓瑛, 胡俊茹, 王国霞, 等. 黑水虻幼虫粉替代鱼粉对黄颡鱼幼鱼生长性能、肌肉品质及血清生化指标的影响[J]. 动物营养学报, 2019, 31(6): 2788-2799.
CHEN X Y, HU J R, WANG G X, et al. Effects of fish meal replacement by black soldier fly (Hermetia illucens) larvae meal on growth performance, serum biochemical indices and meat quality of juvenile yellow catfish (Pelteobagrus fulvidraco)[J]. Chinese Journal of Animal Nutrition, 2019, 31(6): 2788-2799 (in Chinese).
[19]
张放, 杨伟丽, 杨树义, 等. 黑水虻虫粉对生长猪生长性能和血清生化指标的影响[J]. 猪业观察, 2018(3): 34-38.
ZHANG F, YANG W L, YANG S Y, et al. Effects of black soldier fly meal on growth performance and serum biochemical parameters of growing pigs[J]. Swine Industry Outlook, 2018(3): 34-38 (in Chinese).
[20]
王国霞, 陈冰, 孙育平, 等. 脱脂亮斑扁角水虻幼虫粉替代鱼粉对黄颡鱼幼鱼生长性能、营养素沉积率、血清生化指标和消化酶活性的影响[J]. 水产学报, 2020, 44(6): 987-998.
WANG G X, CHEN B, SUN Y P, et al. Effects of replacing fish meal with defatted black soldier fly (Hermetia illucens) larvae meal on growth performance, nutrient retention, serum biochemical parameters and digestive enzymes activity of juvenile Pelteobagrus fulvidraco[J]. Journal of Fisheries of China, 2020, 44(6): 987-998 (in Chinese).
[21]
JIN M, LU Y, YUAN Y, et al. Regulation of growth, antioxidant capacity, fatty acid profiles, hematological characteristics and expression of lipid relatedgenes by different dietary n-3 highly unsaturated fatty acidsin juvenile black seabream (Acanthopagrus schlegelii)[J]. Aquaculture, 2017, 471: 55-65. DOI:10.1016/j.aquaculture.2017.01.004
[22]
CHEN Y, ZHU X, YANG Y, et al. Effect of dietary chitosan on growth performance, haematology, immune response, intestine morphology, intestine microbiota and disease resistancein gibel carp (Carassius auratus gibelio)[J]. Aquaculture Nutrition, 2014, 20(5): 532-546. DOI:10.1111/anu.12106
[23]
赵聘, 赵云焕. 复合抗热应激添加剂对蛋鸡血液生化指标的影响[J]. 河南农业科学, 2005, 2(2): 70-73.
ZHAO P, ZHAO Y H. Effect of complicated anti-heat stress additives on blood biochemical indexes of layers[J]. Journal of Henan Agricultural Sciences, 2005, 2(2): 70-73 (in Chinese). DOI:10.3969/j.issn.1004-3268.2005.02.022
[24]
XU X X, JI H, YU H B, et al. Influence of dietary black soldier fly (Hermetia illucens Linnaeus) pulp on growth performance, antioxidant capacity and intestinal health of juvenile mirror carp(Cyprinus carpio var.specularis)[J]. Aquaculture Nutrition, 2020, 26(2): 432-443. DOI:10.1111/anu.13005
[25]
URAL M Ş, YONAR M E, MIŞE Y S. Protective effect of ellagic acid on oxidative stress and antioxidant status in Cyprinus carpio during malathion exposure[J]. Cellular and Molecular Biology(Noisy-le-Grand, France), 2015, 61(5): 58-63.
[26]
KROECKEL S, HARJES A G E, ROTH I, et al. When a turbot catches a fly: evaluation of a pre-pupae meal of the black soldier fly (Hermetia illucens) as fish meal substitute-growth performance and chitin degradation in juvenile turbot (Psetta maxima)[J]. Aquaculture, 2012, 364/365: 345-352. DOI:10.1016/j.aquaculture.2012.08.041
[27]
胡俊茹, 何飞, 莫文艳. 采食不同有机废弃物黑水虻幼虫饲料价值分析[J]. 中国饲料, 2017(15): 24-27.
HU J R, HE F, MO W Y. The feeding value of black soldier fly (Hermetia illucens) larvae for feeding different organic wastes[J]. China Feed, 2017(15): 24-27 (in Chinese).
[28]
NGO D N, LEE S H, KIM M M, et al. Production of chitin oligosaccharides with different molecular weights and their antioxidant effect in RAW 264.7 cells[J]. Journal of Functional Foods, 2009, 1(2): 188-198. DOI:10.1016/j.jff.2009.01.008
[29]
NGO D H, KIM S K. Antioxidant effects of chitin, chitosan, and their derivatives[J]. Advances in Food and Nutrition Research, 2014, 73: 15-31.
[30]
PENG K, CHEN X Y, WEI D, et al. Inclusion of Chlorella water extract in Oreochromis niloticus fingerling diets: effects on growth performance, body composition, digestive enzyme activity, antioxidant and immune capacity, intestine and hepatic histomorphology and sodium nitrite stress resistance[J]. Aquaculture Reports, 2020, 18: 100547. DOI:10.1016/j.aqrep.2020.100547
[31]
WEI J T, WANG S X, LIU G, et al. Polysaccharides from Enteromorpha prolifera enhance the immunity of normal mice[J]. International Journal of Biological Macromolecules, 2014, 64: 1-5. DOI:10.1016/j.ijbiomac.2013.11.013
[32]
SANCHEZ-MUROS M J, BARROSO F G, MANZANO-AGUGLIARO F. Insect meal as renewable source of food for animal feeding: a review[J]. Journal of Cleaner Production, 2014, 65: 16-27. DOI:10.1016/j.jclepro.2013.11.068
[33]
DONG X Q, ZHANG D M, CHEN Y K, et al. Effects of antimicrobial peptides (AMPs) on blood biochemical parameters, antioxidase activity, and immune function in the common carp (Cyprinus carpio)[J]. Fish & Shellfish Immunology, 2015, 47(1): 429-434.
[34]
ZARANTONIELLO M, BRUNI L, RANDAZZO B, et al. Partial dietary inclusion of Hermetia illucens (black soldier fly) full-fat prepupae in zebrafish feed: biometric, histological, biochemical, and molecular implications[J]. Zebrafish, 2018, 15(5): 519-532. DOI:10.1089/zeb.2018.1596
[35]
DUMAS A, RAGGI T, BARKHOUSE J, et al. The oil fraction and partially defatted meal of black soldier fly larvae (Hermetia illucens) affect differently growth performance, feed efficiency, nutrient deposition, blood glucose and lipid digestibility of rainbow trout (Oncorhynchus mykiss)[J]. Aquaculture, 2018, 492: 24-34. DOI:10.1016/j.aquaculture.2018.03.038
[36]
POMA G, CUYKX M, AMATO E, et al. Evaluation of hazardous chemicals in edible insects and insect-based food intended for humanconsumption[J]. Food and Chemical Toxicology, 2017, 100: 70-79. DOI:10.1016/j.fct.2016.12.006