动物营养学报    2021, Vol. 33 Issue (12): 7148-7159    PDF    
膨化苜蓿草粉-亚麻籽对母猪养分表观消化率以及母猪、仔猪免疫功能和血清激素含量的影响
苏莹莹1 , 刘旭乐1 , 赵淑敏1 , 焦喜兰2 , 王成章1,3,4 , 李振田1,3,4 , 孙骁1     
1. 河南农业大学动物科技学院, 郑州 450002;
2. 河南农业大学动物医学院, 郑州 450002;
3. 河南省草地资源创新与利用重点实验室, 郑州 450002;
4. 河南省牧草工程技术研究中心, 郑州 450002
摘要: 本试验旨在研究膨化苜蓿草粉-亚麻籽对母猪养分表观消化率以及母猪、仔猪免疫功能和血清激素含量的影响。试验选用80头胎次、体况和预产期接近的长×大妊娠母猪,随机分为4组(对照组、试验Ⅰ组、试验Ⅱ组和试验Ⅲ组),分别饲喂添加不同比例(0、5%、10%和15%)膨化苜蓿草粉-亚麻籽的试验饲粮,每组4个重复,每个重复5头。试验从母猪妊娠83 d开始,至哺乳21 d结束。结果表明:1)与对照组相比,试验Ⅲ组的酸性洗涤纤维(ADF)表观消化率显著升高(P < 0.05),试验Ⅱ组和试验Ⅲ组的中性洗涤纤维(NDF)表观消化率显著升高(P < 0.05),试验Ⅰ组和试验Ⅲ组的粗脂肪(EE)表观消化率显著升高(P < 0.05)。2)与对照组相比,试验Ⅱ组母猪血清中免疫球蛋白M(IgM)和胰岛素(INS)含量显著升高(P < 0.05),试验Ⅲ组母猪血清中催乳素(PRL)和INS含量显著升高(P < 0.05)。3)与对照组相比,试验Ⅲ组仔猪血清中免疫球蛋白A(IgA)含量显著升高(P < 0.05),试验Ⅱ组仔猪血清中免疫球蛋白G(IgG)和IgM含量显著升高(P < 0.05),试验Ⅰ组、试验Ⅱ组和试验Ⅲ组仔猪血清中INS含量显著升高(P < 0.05)。4)与对照组相比,试验Ⅰ组、试验Ⅱ组和试验Ⅲ组的哺乳期耗料量、总耗料量和总饲料成本显著升高(P < 0.05),试验Ⅱ组的断奶仔猪头数、仔猪总收益和窝毛利润显著升高(P < 0.05)。综上所述,饲粮中添加膨化苜蓿草粉-亚麻籽可以提高母猪养分表观消化率,改善母猪和仔猪的免疫功能和激素分泌,增加母猪泌乳期采食量和断奶仔猪头数,提高经济效益。
关键词: 膨化    苜蓿草粉    亚麻籽    养分表观消化率    免疫功能    激素含量    
Effects of Extruded Alfalfa Meal-Flaxseed on Apparent Nutrient Digestibility of Sows and Immune Function and Serum Hormone Contents of Sows and Piglets
SU Yingying1 , LIU Xule1 , ZHAO Shumin1 , JIAO Xilan2 , WANG Chengzhang1,3,4 , LI Zhentian1,3,4 , SUN Xiao1     
1. College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China;
2. College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China;
3. Key Laboratory of Innovation and Utilization of Grassland Resources in Henan Province, Zhengzhou 450002, China;
4. Henan Engineering Research Center for Forage, Zhengzhou 450002, China
Abstract: This experiment was conducted to study the effects of extruded alfalfa meal-flaxseed on apparent nutrient digestibility of sows and immune function and serum hormone content of sows and piglets. Eighty Landrace×Large White pregnant sows with similar parity, body condition and expected delivery date were randomly divided into 4 groups (control group, trial group Ⅰ, trial group Ⅱ and trial group Ⅲ) with 4 replicates in each group and 5 pigs in each replicate. Sows in the 4 groups were fed experimental diets supplemented with different proportions (0, 5%, 10% and 15%) of extruded alfalfa meal-flaxseed. The experiment period was from 83 days of pregnancy to 21 days of lactation in sows. The results showed as follows: 1) compared with the control group, the acid detergent fiber (ADF) apparent digestibility of trial group Ⅲ was significantly increased (P < 0.05), the neutral detergent fiber (NDF) apparent digestibility of trial group Ⅱ and trial group Ⅲ was significantly increased (P < 0.05), and the ether extract (EE) apparent digestibility of trial group Ⅰ and trial group Ⅲ was significantly increased (P < 0.05). 2) Compared with the control group, the contents of immunoglobulin M (IgM) and insulin (INS) in serum of sows of trial group II were significantly increased (P < 0.05), and the contents of prolactin (PRL) and INS in serum of sows of trial group Ⅲ were significantly increased (P < 0.05). 3) Compared with the control group, the serum immunoglobulin A (IgA) content of piglets of trial group Ⅲ was significantly increased (P < 0.05), the contents of immunoglobulin G (IgG) and IgM in serum of piglets of trial group Ⅱ were significantly increased (P < 0.05), and the serum INS content of piglets of trial group Ⅰ, trial group Ⅱ and trial group Ⅲ was significantly increased (P < 0.05). 4) Compared with the control group, the feed consumption in lactation, total feed consumption and total feed cost of trial group Ⅰ, trial group Ⅱ and trial group Ⅲ were significantly increased (P < 0.05), and the number of weaned piglets, total income of piglet and gross profit a litter of trial group Ⅱ were increased significantly (P < 0.05). To sum up, the extruded alfalfa meal-flaxseed supplementation in diets can increase apparent nutrient digestibility of sows, improve immune function and hormone secretion of sows and piglets, increase the feed intake of sows during lactation and the number of weaned piglets, and improve economic benefits.
Key words: extruded    alfalfa meal    flaxseed    nutrient apparent digestibility    immune function    hormone content    

母猪在妊娠、分娩和泌乳时的免疫和代谢状态直接影响着生猪养殖的整体生产水平[1],其特点表现为产后子宫收缩及疼痛,血浆皮质醇和雌激素含量升高,催乳素(PRL)分泌失调和免疫力下降[2-4],进而也会对哺乳仔猪的生长发育产生不利影响。母体的营养水平与其子代的生长发育和机体健康密切相关,许多研究表明,通过营养调控手段不仅可以改善母猪的机体健康和繁殖性能,而且对子代的生长发育具有积极影响[5-6]。苜蓿草粉作为一种优质的饲料原料,不仅蛋白质和维生素含量丰富,氨基酸组成和比例适宜,而且含有皂苷以及黄酮等多种生物活性成分[7]。近年来,苜蓿草粉在养猪生产中已被广泛应用。研究表明,饲粮中添加苜蓿草粉可以改善妊娠母猪流产和宫内生长受限,提高血清中免疫球蛋白G(IgG)、免疫球蛋白M(IgM)和胰岛素(INS)含量,最终改善母猪的机体健康和繁殖性能[8-9]。亚麻籽是一种重要的的油料作物,其含有丰富的α-亚麻酸,是n-3多不饱和脂肪酸(PUFA)的重要来源[10],同时其蛋白质中的氨基酸种类齐全,必需氨基酸含量高达5.16%。石宝明等[11]报道,在母猪饲粮中添加亚麻籽油可以显著提高仔猪的生长性能和成活率,增加组织中n-3 PUFA含量。林霖雨等[12]研究发现,饲粮中添加膨化亚麻籽可以提高血液中免疫球蛋白A(IgA)、IgG和IgM含量,改善育肥猪的免疫功能。然而,由于亚麻籽中含有部分抗营养因子,如生氰糖苷(水解后生成毒性高的氢氰酸),制约了亚麻籽在动物饲粮中的应用[13]。采用膨化的方式可以促进生氰糖苷的水解,钝化饲料中的抗营养因子,达到脱毒的目的,还可以增加氨基酸和可溶性纤维含量,提高亚麻籽的饲喂价值[14]。目前,膨化饲粮在仔猪和育肥猪中的应用较多,在母猪上的相关研究较少,对母猪机体代谢和繁殖性能影响的研究也非常有限。因此,本试验旨在通过在饲粮中添加膨化苜蓿草粉-亚麻籽,评价其对母猪养分表观消化率的影响,并测定母猪及所产仔猪血清免疫相关指标及血清激素含量来探讨其代谢调节机制,旨在为膨化苜蓿草粉-亚麻籽在母猪生产中“母子一体化”营养调控的应用提供参考。

1 材料与方法 1.1 试验材料

苜蓿草粉是用同一批次初花期刈割所得的紫花苜蓿经自然干燥加工而成,与亚麻籽按照1 ∶ 1的比例进行膨化加工(粉碎粒度1 mm,调质温度60 ℃,蒸汽压力0.5 MPa,喂料区温度110 ℃,混合区温度130 ℃,泄压区温度140 ℃,喂料速度18 Hz,螺杆转速90 r/min),苜蓿草粉-亚麻籽膨化前后营养水平变化见表 1

表 1 苜蓿草粉-亚麻籽膨化前后营养水平变化(风干基础) Table 1 Changes of nutrient levels of alfalfa meal-flaxseed before and after extruding (air-dry basis)  
1.2 试验动物与试验设计

采用单因素试验设计,选取80头胎次、体况和预产期接近的健康长×大妊娠母猪,随机分为4组(对照组、试验Ⅰ组、试验Ⅱ组和试验Ⅲ组),分别饲喂添加不同比例(0、5%、10%和15%)膨化苜蓿草粉-亚麻籽的饲粮,每组4个重复,每个重复5头。试验期从母猪妊娠83 d开始,至哺乳21 d结束。各试验母猪妊娠后期采取限饲,哺乳期自由采食,均自由饮水。试验饲粮参照NRC(2012)的母猪营养需要,按等能等氮的原则配制,其组成及营养水平见表 2

表 2 试验饲粮组成及营养水平(风干基础) Table 2 Composition and nutrient levels of experimental diets (air-dry basis)  
1.3 样品采集

哺乳期第18~20天,每天06:30、11:00、16:30和20:30以重复为单位采集新鲜粪便于自封袋内,粪样按每100 g加入10%的稀硫酸10 mL进行固氮处理,混匀粪样,于-20 ℃冰箱保存备用。在哺乳期第20天,每个重复随机选取1头母猪(每组4头母猪),空腹状态下前腔静脉采血10 mL于促凝管内,室温静置1 h后,4 ℃、3 000 r/min离心10 min,分离血清,于-20 ℃保存。仔猪出生后,于其哺乳第20天,每个重复随机选取1窝仔猪(每组4窝仔猪),每窝选取1头与窝平均体重相近的仔猪(每组4头仔猪),空腹状态下前腔静脉采血5 mL于促凝管内,室温静置1 h后,4 ℃、3 000 r/min离心10 min,分离血清,于-20 ℃保存。

1.4 养分表观消化率

消化试验采用内源指示剂法,以酸不溶灰分(AIA)为内源指示剂。粪便样品在65 ℃烘干后,粉碎过40目筛,制成风干样品,-20 ℃保存待测。参照张丽英[15]的方法测定饲粮和粪样中的干物质(DM)、中性洗涤纤维(NDF)、酸性洗涤纤维(ADF)、粗蛋白质(CP)和粗脂肪(EE)含量。采用AIA内源指示剂法计算饲粮中DM、NDF、ADF、CP和EE的表观消化率。养分表观消化率计算公式如下:

式中:A1为饲粮中内源指示剂含量(%);A2为粪中内源指示剂含量(%);B1为粪中该养分含量(%);B2为饲粮中该养分含量(%)。

1.5 血清免疫相关指标和激素含量

采用酶联免疫吸附测定(ELISA)法测定血清中IgG、IgA、IgM含量以及生长激素(GH)、INS和PRL含量,采用考马斯亮蓝法测定血清中总蛋白(TP)含量,试剂盒均购自南京建成生物工程研究所。测定方法严格按照试剂盒说明书进行。

1.6 经济效益

记录并计算妊娠后期耗料量、哺乳期耗料量和总耗料量,经济效益计算公式:

1.7 数据统计与分析

使用Excel 2019整理试验数据,采用SPSS 26.0软件的ANOVA进行方差分析,最小显著差异(LSD)法进行显著性比较,试验数据用平均值±标准差表示,以P < 0.05表示差异显著,以0.05 < P < 0.10表示差异具有显著趋势。使用GraphPad Prism 8.3.0软件,对母猪养分表观消化率以及母猪、仔猪血清免疫相关指标和激素含量进行Pearson相关性分析。

2 结果 2.1 饲粮中添加膨化苜蓿草粉-亚麻籽对母猪养分表观消化率的影响

表 3可知,试验Ⅲ组的ADF表观消化率显著高于其余各组(P < 0.05)。与对照组相比,试验Ⅱ组和试验Ⅲ组的NDF表观消化率显著升高(P < 0.05),试验Ⅰ组的NDF表观消化率有升高的趋势(P=0.067)。试验Ⅰ组和试验Ⅲ组的EE表观消化率显著高于对照组(P < 0.05)。各组之间DM和CP表观消化率无显著差异(P>0.05)。

表 3 饲粮中添加膨化苜蓿草粉-亚麻籽对母猪养分表观消化率的影响 Table 3 Effects of extruded alfalfa meal-flaxseed supplementation in diets on apparent nutrient digestibility of sows  
2.2 饲粮中添加膨化苜蓿草粉-亚麻籽对母猪血清免疫相关指标及激素含量的影响

表 4可知,与对照组相比,试验Ⅱ组和试验Ⅲ组血清中IgG含量有升高的趋势(P=0.092,P=0.084);试验Ⅱ组血清中IgM含量显著升高(P < 0.05);试验Ⅱ组和试验Ⅲ组血清中INS含量显著升高(P < 0.05),试验Ⅰ组血清中INS含量有升高的趋势(P=0.068);试验Ⅲ组血清中PRL含量显著升高(P < 0.05)。各组之间血清中TP、IgA和GH含量无显著差异(P>0.05)。

表 4 饲粮中添加膨化苜蓿草粉-亚麻籽对母猪血清免疫相关指标及激素含量的影响 Table 4 Effects of extruded alfalfa meal-flaxseed supplementation in diets on serum immune related indexes and hormone contents of sows
2.3 饲粮中添加膨化苜蓿草粉-亚麻籽对仔猪血清免疫相关指标及激素含量的影响

表 5可知,与对照组相比,试验Ⅲ组血清中IgA含量显著升高(P < 0.05),试验Ⅰ组和试验Ⅱ组血清中IgA含量有升高的趋势(P=0.068,P= 0.061);试验Ⅱ组血清中IgG和IgM含量显著升高(P < 0.05);试验Ⅰ组、试验Ⅱ组和试验Ⅲ组血清中INS含量显著升高(P < 0.05)。各组之间血清中TP和GH含量无显著差异(P>0.05)。

表 5 饲粮中添加膨化苜蓿草粉-亚麻籽对仔猪血清免疫相关指标及激素含量的影响 Table 5 Effects of extruded alfalfa meal-flaxseed supplementation in diets on serum immune related indexes and hormone contents of piglets
2.4 饲粮中添加膨化苜蓿草粉-亚麻籽对母猪经济效益的影响

表 6可知,与对照组相比,试验Ⅰ组、试验Ⅱ组和试验Ⅲ组的哺乳期耗料量、总耗料量和总饲料成本显著升高(P < 0.05);试验Ⅱ组的断奶仔猪头数、仔猪总收益和窝毛利润显著升高(P < 0.05)。

表 6 饲粮中添加膨化苜蓿草粉-亚麻籽对母猪经济效益的影响 Table 6 Effects of extruded alfalfa meal-flaxseed supplementation in diets on economic benefit of sows
2.5 母猪养分表观消化率以及母猪和仔猪血清免疫相关指标和激素含量的相关性分析

表 7可知,母猪DM表观消化率与母猪血清中IgG、IgM、GH和INS含量呈显著正相关(P < 0.05),母猪ADF表观消化率与母猪血清中IgG和GH含量呈显著正相关(P < 0.05),母猪NDF表观消化率与母猪血清中IgG、GH和INS含量呈显著正相关(P < 0.05),母猪CP表观消化率与母猪血清中TP含量有正相关趋势(P=0.060),母猪EE表观消化率与母猪血清中GH含量有正相关趋势(P=0.080)。

表 7 母猪养分表观消化率以及母猪和仔猪血清免疫相关指标和激素含量的相关性分析 Table 7 Correlation analysis of apparent nutrient digestibility of sows and serum immune related indexes and hormone contents of sows and piglets

母猪血清中TP含量与仔猪血清中IgA和IgG含量有正相关趋势(P=0.057,P=0.059);母猪血清中IgA含量与仔猪血清中IgM和GH含量呈显著正相关(P < 0.05);母猪血清中IgG含量与仔猪血清中IgG和IgM含量呈显著正相关(P < 0.05);母猪血清中IgM含量与仔猪血清中IgM含量呈显著正相关(P < 0.05);母猪血清中GH含量与母猪血清中INS含量呈显著正相关(P < 0.05);母猪血清中INS含量与仔猪血清中IgA、IgG、IgM和INS含量呈显著正相关(P < 0.05),与母猪血清中PRL含量和仔猪血清中GH含量有正相关趋势(P=0.088,P=0.090);母猪血清中PRL含量与仔猪血清中IgA含量呈显著正相关(P < 0.05)。

3 讨论

养分表观消化率是衡量动物对饲粮消化能力和评价饲料营养价值的重要指标,饲粮养分表观消化率越高,表明动物对饲粮的消化能力越强。Adams等[16]研究发现,饲粮中添加苜蓿纤维提高了仔猪CP和DM表观消化率,促进了肠道发育,改善了消化能力。Obeidat等[17]研究表明,饲粮中添加苜蓿干草可以提高羔羊的DM、CP、ADF和NDF表观消化率,进而改善生长性能。王成章等[18]和孙健[19]研究也表明,在育肥猪饲粮中添加苜蓿草粉可以提高DM、CP、EE和ADF表观消化率。Martins等[20]研究发现,仔兔饲粮中添加膨化亚麻籽极显著增加了DM和EE的全肠道表观消化率。Kholif等[21]研究报道,在努比亚山羊饲粮中添加亚麻籽极显著提高了DM和CP表观消化率。本研究发现,饲粮中添加膨化苜蓿草粉-亚麻籽可以提高DM、ADF和EE表观消化率,这可能是因为高温膨化分解了亚麻籽中的抗营养因子[22],降低了亚麻籽中蛋白质的二级结构α-螺旋和β-折叠的比例,提高蛋白质等养分的溶解度和消化率[23-24],进而有利于肠道的消化吸收;也可能是因为苜蓿草粉中富含的多种生物活性物质可以刺激胃肠道消化酶分泌,从而促进养分的消化与吸收[25]

增强机体免疫能力是抵御病原体入侵并降低疾病易感性的有效策略。血清中TP含量反映了肝脏对蛋白质的合成、分解和吸收的代谢状况,血清中TP含量越高,代表体内蛋白质的代谢越旺盛[26]。免疫球蛋白是动物体内的一类非特异性免疫因子,其中IgA是黏膜免疫中的主要抗体,其功能是阻止致病菌黏附至黏膜来阻挡病原菌;IgM是机体发育过程中最早产生的抗体,对于机体的早期免疫防御具有重要作用[27];IgG是血液中含量最多的免疫球蛋白,主要介导体液免疫[28-29]。Adams等[16]研究发现,仔猪饲粮中添加苜蓿纤维可以提高血清中TP含量。李晓等[30]报道,饲粮中添加苜蓿草粉显著提高了仔猪血清中IgG和IgM含量。Abdulwahid等[31]研究发现,饲粮中添加亚麻籽可以提高肉鸡血清中IgM和IgG含量,提高血清TP含量,改善机体的免疫功能。Upadhaya等[32]研究表明,育肥猪饲粮中添加亚麻籽和维生素E(抗氧化剂)提高了血清中IgG含量。本研究结果表明,饲粮中添加膨化苜蓿草粉-亚麻籽可以提高母猪和仔猪血清中TP、IgA、IgG和IgM含量,其中以10%添加水平效果较好。我们推测膨化苜蓿草粉-亚麻籽对动物机体免疫功能具有积极影响可能有以下原因,首先,苜蓿草粉中含有的皂苷、黄酮和维生素E等生物活性物质具有抗氧化、抗炎和调节免疫等作用,可以促进免疫细胞的增殖和免疫球蛋白的产生[33];其次,亚麻籽富含n-3 PUFA,可以增强机体的抗炎能力,提高血清中IgG含量,进而改善机体的免疫功能[34-35]

新生仔猪的免疫系统发育尚不成熟,必须从初乳中摄取免疫球蛋白以获得被动免疫[36],而母猪乳腺的发育和泌乳能力受多种激素的影响,如INS、GH和PRL等[37]。INS可以调节蛋白质的合成,加速蛋白质的沉积[38],也能促进脂肪细胞膜上葡萄糖的转运和脂肪酸的合成,抑制脂肪酶的活性,进而减少脂肪的分解与动员,最终满足母猪乳腺的发育和泌乳的需要,为新生仔猪提供更多的营养底物[39]。PRL和GH可以提高胰岛素样生长因子的含量,加速组织细胞对养分的摄取和利用,促进乳腺生长发育,改善母猪的泌乳能力和繁殖性能[40-42]。苜蓿草粉和亚麻籽中富含黄酮类物质,是雌激素的天然植物来源[43-44],在动物机体内具有雌激素样作用,与雌激素受体结合后可以促进垂体分泌PRL和GH[45-46]。王芳芳等[47]研究报道,饲粮中添加葛根异黄酮提高了哺乳母猪血清中雌激素、PRL和GH含量,有利于提高泌乳性能。王凯等[46]研究表明,饲粮中添加苜蓿黄酮可以提高绵羊血清中GH和胰岛素样生长因子含量。Vl c ˇ ková等[48]研究发现,饲粮中添加亚麻籽提高了母猪血清中胰岛素样生长因子-1含量。Weldon等[49]研究发现,泌乳期母猪的血清INS含量降低会导致饲粮摄入量的减少。本研究结果表明,饲粮中添加膨化苜蓿草粉-亚麻籽提高了母猪和仔猪血清中GH和INS含量以及母猪血清中PRL含量,有利于保证泌乳期充足的葡萄糖和蛋白质供给,促进仔猪对养分的摄取利用,进而改善仔猪生长发育和机体健康。

在实际养殖中,设计的饲粮配方应该既能促进动物机体生长,充分发挥其繁殖潜力,又能够兼顾成本,保证经济效益。在本研究中,与对照组相比,饲粮中添加膨化苜蓿草粉-亚麻籽后,试验Ⅱ组总耗料量和总饲料成本显著增加,同时断奶仔猪头数、仔猪总收益也显著提高,最终使毛利润增加了358.53元/窝,表明在饲粮中添加10%的膨化苜蓿草粉-亚麻籽可以促进养分的消化吸收,提高母仔猪的健康度,最终提高养殖过程的整体经济效益。

通过对养分表观消化率、血清免疫指标和激素含量的相关性分析,我们认为在饲粮中添加膨化苜蓿草粉-亚麻籽提高了母猪的养分表观消化率,促进了肠道的消化吸收,增加了血清中TP和免疫球蛋白含量,增强了机体免疫功能,同时血清中GH、INS和PRL含量增加,促进了养分的合成并改善了泌乳性能,提高了泌乳期母猪的采食量。相应地,新生仔猪从母乳中获得被动免疫保护,血清中TP、INS和免疫球蛋白含量增加,断奶仔猪头数增加。由此可见,饲粮中添加膨化苜蓿草粉-亚麻籽可以通过改善母猪的消化吸收、免疫应答和激素分泌来改善仔猪的生长发育和机体健康。

4 结论

① 饲粮中添加膨化苜蓿草粉-亚麻籽可以提高母猪ADF、NDF和EE表观消化率,促进胃肠道的消化吸收,增加泌乳期采食量和断奶仔猪头数,提高经济效益。

② 饲粮中添加膨化苜蓿草粉-亚麻籽可以提高母猪血清中IgG、IgM、INS和PRL含量,提高仔猪血清中IgA、IgG、IgM和INS含量,改善母猪的泌乳能力,增强母猪和仔猪的免疫力。

③ 从母猪养分表观消化率和母猪、仔猪的免疫功能与激素分泌状况及经济效益等进行综合分析,建议在母猪饲粮中添加10%的膨化苜蓿草粉-亚麻籽。

参考文献
[1]
NAIR R R, VERMA P, SINGH K. Immune-endocrine crosstalk during pregnancy[J]. General and Comparative Endocrinology, 2017, 242: 18-23. DOI:10.1016/j.ygcen.2016.03.003
[2]
SHAO Y R, ZHOU J, XIONG X, et al. Differences in gut microbial and serum biochemical indices between sows with different productive capacities during perinatal period[J]. Frontiers in Microbiology, 2019, 10: 3047.
[3]
CHENG C S, WEI H K, YU H C, et al. Metabolic syndrome during perinatal period in sows and the link with gut microbiota and metabolites[J]. Frontiers in Microbiology, 2018, 9: 1989. DOI:10.3389/fmicb.2018.01989
[4]
BARBOUR L A, MCCURDY C E, HERNANDEZ T L, et al. Cellular mechanisms for insulin resistance in normal pregnancy and gestational diabetes[J]. Diabetes Care, 2007, 30(Suppl 2): S112-S119.
[5]
HOLYOAKE P K, DIAL G D, TRIGG T, et al. Reducing pig mortality through supervision during the perinatal period[J]. Journal of Animal Science, 1995, 73(12): 3543-3551. DOI:10.2527/1995.73123543x
[6]
KIM S W, MATEO R D, YIN Y L, et al. Functional amino acids and fatty acids for enhancing production performance of sows and piglets[J]. Asian-Australasian Journal of Animal Sciences, 2007, 20(2): 295-306.
[7]
ZHENG M L, MAO P C, TIAN X X, et al. Effects of dietary supplementation of alfalfa meal on growth performance, carcass characteristics, meat and egg quality, and intestinal microbiota in Beijing-you chicken[J]. Poultry Science, 2019, 98(5): 2250-2259. DOI:10.3382/ps/pey550
[8]
LIU B S, ZHU X Y, CUI Y L, et al. Consumption of dietary fiber from different sources during pregnancy alters sow gut microbiota and improves performance and reduces inflammation in sows and piglets[J]. mSystems, 2021, 6(1): e00591.
[9]
李润林, 王占彬, 王成章, 等. 不同质量苜蓿草粉对后备母猪生长性能、抗氧化及发情率的影响[J]. 动物营养学报, 2019, 31(5): 2405-2415.
LI R L, WANG Z B, WANG C Z, et al. Effects of alfalfa meal with different qualities on growth performance, antioxidant and estrus rate of prepubertal gilts[J]. Chinese Journal of Animal Nutrition, 2019, 31(5): 2405-2415 (in Chinese). DOI:10.3969/j.issn.1006-267x.2019.05.048
[10]
REALINI C E, BIANCHI G, BENTANCUR O, et al. Effect of supplementation with linseed or a blend of aromatic spices and time on feed on fatty acid composition, meat quality and consumer liking of meat from lambs fed dehydrated alfalfa or corn[J]. Meat Science, 2017, 127: 21-29. DOI:10.1016/j.meatsci.2016.12.013
[11]
石宝明, 田美丽, 陈孝龙, 等. 母猪饲粮中添加维生素E和不同脂肪类型对仔猪生长性能和脂肪酸组成的影响[J]. 饲料工业, 2016, 37(9): 24-28.
SHI B M, TIAN M L, CHEN X L, et al. Vitamin E and fat type supplementation in the maternal diet affects the growth performance and fatty acid composition in piglets[J]. Feed Industry, 2016, 37(9): 24-28 (in Chinese).
[12]
林霖雨, 田川尧, 蔡锋隆, 等. 膨化亚麻籽对育肥猪生长性能和血液生化指标的影响[J]. 饲料研究, 2020, 43(7): 24-26.
LIN L Y, TIAN C Y, CAI F L, et al. Effects of expanded flaxseed on growth performance and blood biochemical indexes of finishing pigs[J]. Feed Research, 2020, 43(7): 24-26 (in Chinese).
[13]
BEKHIT A E D A, SHAVANDI A, JODJAJA T, et al. Flaxseed: composition, detoxification, utilization, and opportunities[J]. Biocatalysis and Agricultural Biotechnology, 2018, 13: 129-152. DOI:10.1016/j.bcab.2017.11.017
[14]
秦毅, 王金荣, 乔汉桢, 等. 挤压膨化对玉米、大豆和亚麻籽营养品质的影响[J]. 饲料工业, 2020, 41(16): 13-17.
QIN Y, WANG J R, QIAO H Z, et al. Effects of extrusion on the nutritional quality of corn, soybean and flaxseed[J]. Feed Industry, 2020, 41(16): 13-17 (in Chinese).
[15]
张丽英. 饲料分析及饲料质量检测技术[M]. 3版. 北京: 中国农业大学出版社, 2007.
ZHANG L Y. Feed analysis and feed quality testing technology[M]. 3rd ed. Beijing: China Agricultural University Press, 2007 (in Chinese).
[16]
ADAMS S, KONG X, CHE D, et al. Effects of dietary supplementation of alfalfa (Medicago sativa) fibre on the blood biochemistry, nitrogen metabolism, and intestinal morphometry in weaning piglets[J]. Applied Ecology and Environmental Research, 2019, 17(2): 2275-2295. DOI:10.15666/aeer/1702_22752295
[17]
OBEIDAT B S, SUBIH H S, TAYLOR J B, et al. Alfalfa hay improves nursing performance of Awassi ewes and performance of growing lambs when used as a source of forage compared with wheat straw[J]. Tropical Animal Health and Production, 2019, 51(3): 581-588. DOI:10.1007/s11250-018-1735-z
[18]
王成章, 李德锋, 严学兵, 等. 肥育猪饲粮中添加苜蓿草粉对其生产性能、消化率及血清指标的影响[J]. 草业学报, 2008, 17(6): 71-77.
WANG C Z, LI D F, YAN X B, et al. Effects of alfalfa meal on production performance and serum of fattening pigs[J]. Acta Prataculturae Sinica, 2008, 17(6): 71-77 (in Chinese). DOI:10.3321/j.issn:1004-5759.2008.06.011
[19]
孙健. 不同添加水平的紫花苜蓿草粉对育肥猪生长性能、养分表观消化率的影响[J]. 中国饲料, 2019(13): 75-77.
SUN J. Effects of different levels of alfalfa meal on growth performance and nutrient digestibility of finishing pigs[J]. China Feed, 2019(13): 75-77 (in Chinese).
[20]
MARTINS C, CULLERE M, ZOTTE A D, et al. Incorporation of two levels of black soldier fly (Hermetia illucens L.) larvae fat or extruded linseed in diets of growing rabbits: effects on growth performance and diet digestibility[J]. Czech Journal of Animal Science, 2018, 63(9): 356-362. DOI:10.17221/22/2018-CJAS
[21]
KHOLIF A E, MORSY T A, ABDO M M. Crushed flaxseed versus flaxseed oil in the diets of Nubian goats: effect on feed intake, digestion, ruminal fermentation, blood chemistry, milk production, milk composition and milk fatty acid profile[J]. Animal Feed Science and Technology, 2018, 244: 66-75. DOI:10.1016/j.anifeedsci.2018.08.003
[22]
NIKMARAM N, LEONG S Y, KOUBAA M, et al. Effect of extrusion on the anti-nutritional factors of food products: an overview[J]. Food Control, 2017, 79: 62-73. DOI:10.1016/j.foodcont.2017.03.027
[23]
ALONSO R, ORÚE E, ZABALZA M J, et al. Effect of extrusion cooking on structure and functional properties of pea and kidney bean proteins[J]. Journal of the Science of Food and Agriculture, 2000, 80(3): 397-403. DOI:10.1002/1097-0010(200002)80:3<397::AID-JSFA542>3.0.CO;2-3
[24]
DOIRON K J, YU P, CHRISTENSEN C R, et al. Detecting molecular changes in vimy flaxseed protein structure using synchrotron FTIRM and DRIFT spectroscopic techniques: structural and biochemical characterization[J]. Spectroscopy, 2009, 23(5/6): 307-322.
[25]
缴丽莉, 朱迎新. 紫花苜蓿提取物对长毛兔生长性能、养分表观消化率及毛皮质量的影响[J]. 中国饲料, 2021(1): 69-71, 75.
JIAO L L, ZHU Y X. Effects of alfalfa extract on growth performance, nutrient apparent digestibility and hair cortex quality of long hair rabbits[J]. China Feed, 2021(1): 69-71, 75 (in Chinese).
[26]
崔家军, 张鹤亮, 张维金, 等. 酶解蛋白肽对生长育肥猪生长性能、血液生化指标及养分表观消化率的影响[J]. 中国畜牧兽医, 2017, 44(8): 2342-2347.
CUI J J, ZHANG H L, ZHANG W J, et al. Effect of protein hydrolysate on growth performance, blood biochemical indexes and nutrient apparent digestibility in growing-finishing pigs[J]. China Animal Husbandry & Veterinary Medicine, 2017, 44(8): 2342-2347 (in Chinese).
[27]
DONG X L, ZHANG N F, ZHOU M, et al. Effects of dietary probiotics on growth performance, faecal microbiota and serum profiles in weaned piglets[J]. Animal Production Science, 2014, 54(5): 616-621. DOI:10.1071/AN12372
[28]
LONG S F, HU J X, MAHFUZ S, et al. Effects of dietary supplementation of compound enzymes on performance, nutrient digestibility, serum antioxidant status, immunoglobulins, intestinal morphology and microbiota community in weaned pigs[J]. Archives of Animal Nutrition, 2021, 75(1): 31-47. DOI:10.1080/1745039X.2020.1852008
[29]
PENG X, YAN C, HU L, et al. Live yeast supplementation during late gestation and lactation affects reproductive performance, colostrum and milk composition, blood biochemical and immunological parameters of sows[J]. Animal Nutrition, 2020, 6(3): 288-292. DOI:10.1016/j.aninu.2020.03.001
[30]
李晓, 王婷婷, 廖智慧, 等. 紫花苜蓿粉对仔猪生长性能和血清免疫指标的影响[J]. 黑龙江畜牧兽医, 2018(16): 81-83.
LI X, WANG T T, LIAO Z H, et al. Effects of alfalfa meal on growth performance and serum immune indices of piglets[J]. Heilongjiang Animal Science and Veterinary Medicine, 2018(16): 81-83 (in Chinese).
[31]
ABDULWAHID M T, MUDHEHER S J. Influence of probiotic and flaxseed oil supplementation on some physiological parameters and immune response of broilers[J]. Journal of Entomology and Zoology Studies, 2017, 5(6): 1836-1842.
[32]
UPADHAYA S D, LI T S, KIM I H. Effects of protected omega-3 fatty acid derived from linseed oil and vitamin E on growth performance, apparent digestibility, blood characteristics and meat quality of finishing pigs[J]. Animal Production Science, 2017, 57(6): 1085-1090. DOI:10.1071/AN15641
[33]
XIE Y H, WANG L X, SUN H, et al. Immunomodulatory, antioxidant and intestinal morphology-regulating activities of alfalfa polysaccharides in mice[J]. International Journal of Biological Macromolecules, 2019, 133: 1107-1114. DOI:10.1016/j.ijbiomac.2019.04.144
[34]
PI Y, MA L, WANG H R, et al. Rubber seed oil and flaxseed oil supplementation on serum fatty acid profile, oxidation stability of serum and milk, and immune function of dairy cows[J]. Asian-Australasian Journal of Animal Sciences, 2019, 32(9): 1363-1372. DOI:10.5713/ajas.18.0573
[35]
FETTER M E. Effects of an extruded flaxseed supplement on transition cow immune function and effects of a methane inhibitor on transition cow ovarian activity[D]. Master's Thesis. State College: The Pennsylvania State University, 2017.
[36]
LE DIVIDICH J, ROOKE J A, HERPIN P. Nutritional and immunological importance of colostrum for the new-born pig[J]. The Journal of Agricultural Science, 2005, 143(6): 469-485. DOI:10.1017/S0021859605005642
[37]
严佳豪, 胡睿智, 王楹, 等. 微生物、氧化应激与母乳在猪母子一体化营养调控中的作用[J]. 动物营养学报, 2020, 32(7): 2981-2988.
YAN J H, HU R Z, WANG Y, et al. Roles of microbe, oxidative stress and breast milk in regulation of maternal-child integrated nutrition in swine[J]. Chinese Journal of Animal Nutrition, 2020, 32(7): 2981-2988 (in Chinese).
[38]
ORMAZABAL V, NAIR S, ELFEKY O, et al. Association between insulin resistance and the development of cardiovascular disease[J]. Cardiovascular Diabetology, 2018, 17(1): 122. DOI:10.1186/s12933-018-0762-4
[39]
LINDSAY K L, BUSS C, WADHWA P D, et al. The effect of a maternal mediterranean diet in pregnancy on insulin resistance is moderated by maternal negative affect[J]. Nutrients, 2020, 12(2): 420. DOI:10.3390/nu12020420
[40]
COLLIER R J, MCNAMARA J P, WALLACE C R, et al. A review of endocrine regulation of metabolism during lactation[J]. Journal of Animal Science, 1984, 59(2): 498-510. DOI:10.2527/jas1984.592498x
[41]
KLEINBERG D L, RUAN W F. IGF-Ⅰ, GH, and sex steroid effects in normal mammary gland development[J]. Journal of Mammary Gland Biology and Neoplasia, 2008, 13(4): 353-360. DOI:10.1007/s10911-008-9103-7
[42]
王梦竹, 刘艳丰, 张文举. 紫花苜蓿黄酮类化合物对动物机体生理活性影响的研究进展[J]. 中国畜牧兽医, 2015, 42(10): 2688-2694.
WANG M Z, LIU Y F, ZHANG W J. Research progress of flavonoids of Medicago sativa on animal physiological activity[J]. China Animal Husbandry & Veterinary Medicine, 2015, 42(10): 2688-2694 (in Chinese).
[43]
占今舜, 胡利珍, 钟小军, 等. 苜蓿黄酮对奶牛泌乳性能、血清激素和免疫指标的影响[J]. 中国农业大学学报, 2018, 23(12): 84-90.
ZHAN J S, HU L Z, ZHONG X J, et al. Effects of flavonoids from alfalfa on the milk production, serum hormone and immune indexes of dairy cows[J]. Journal of China Agricultural University, 2018, 23(12): 84-90 (in Chinese). DOI:10.11841/j.issn.1007-4333.2018.12.10
[44]
WANG H, WANG J H, QIU C S, et al. Comparison of phytochemical profiles and health benefits in fiber and oil flaxseeds (Linum usitatissimum L.)[J]. Food Chemistry, 2017, 214: 227-233. DOI:10.1016/j.foodchem.2016.07.075
[45]
占今舜. 苜蓿黄酮对奶牛生产性能、瘤胃代谢和免疫性能影响的研究[D]. 博士学位论文. 扬州: 扬州大学, 2016.
ZHAN J S. Effect of alfalfa flavonoids on production performance, ruminal metabolism and immunity[D]. Ph. D. Thesis. Yangzhou: Yangzhou University, 2016. (in Chinese)
[46]
王凯, 王洋, 孙娟娟, 等. 苜蓿和红车轴草黄酮提取物对绵羊生长性能和血液相关指标的影响[J]. 中国兽医学报, 2017, 37(4): 704-709.
WANG K, WANG Y, SUN J J, et al. Effect of flavonoids of Medicago sativa L. and Trifolium pratense L. extraction on growth performance, blood biochemical indexes of sheep[J]. Chinese Journal of Veterinary Science, 2017, 37(4): 704-709 (in Chinese).
[47]
王芳芳, 金三俊, 邓晓敏, 等. 葛根异黄酮对哺乳母猪血清生化指标和泌乳相关激素的影响[J]. 中国饲料, 2017(1): 10-12.
WANG F F, JIN S J, DENG X M, et al. Effects of puerain on the blood biochemical parameters and the hormones correlated with lactation in sow[J]. China Feed, 2017(1): 10-12 (in Chinese).
[48]
VLČKOVÁ R, ANDREJČÁKOVÁ Z, SOPKOVÁ D, et al. Supplemental flaxseed modulates ovarian functions of weanling gilts via the action of selected fatty acids[J]. Animal Reproduction Science, 2018, 193: 171-181. DOI:10.1016/j.anireprosci.2018.04.066
[49]
WELDON W C, LEWIS A J, LOUIS G F, et al. Postpartum hypophagia in primiparous sows: Ⅱ.Effects of feeding level during gestation and exogenous insulin on lactation feed intake, glucose tolerance, and epinephrine-stimulated release of nonesterified fatty acids and glucose[J]. Journal of Animal Science, 1994, 72(2): 395-403. DOI:10.2527/1994.722395x