动物营养学报    2022, Vol. 34 Issue (3): 1623-1631    PDF    
低聚半乳糖对荷斯坦犊牛生长性能、血清生化指标及矿物质元素含量的影响
王飞飞1 , 常美楠1 , 马峰涛1 , 金宇航1 , 郝力壮2 , 孙鹏1     
1. 中国农业科学院北京畜牧兽医研究所, 动物营养学国家重点实验室, 北京 100193;
2. 青海大学畜牧兽医科学院, 青海省高原放牧家畜动物营养与饲料科学重点实验室, 西宁 810016
摘要: 本试验旨在研究不同剂量低聚半乳糖(GOS)对荷斯坦犊牛生长性能、血清生化指标及矿物质元素含量的影响,探究适宜犊牛生长的GOS添加剂量。选取32头出生重[(37.7±0.8)kg]相近、健康的新生荷斯坦母犊牛,随机分为4组,每组8头牛。对照组和试验组均饲喂开食料和牛奶,试验组分别在牛奶中添加10(GOS1组)、20(GOS2组)和40 g/(d·头)(GOS3组)的GOS。试验期4周。结果表明:1)与对照组相比,GOS1组和GOS2组犊牛1~2周龄平均日增重显著提高(P < 0.05),1~2周龄腹泻率和料重比显著降低(P < 0.05)。添加GOS对3~4周龄犊牛生长性能和腹泻率无显著影响(P>0.05)。与对照组相比,GOS1组和GOS2组犊牛1~4周龄腹泻率显著降低(P < 0.05)。2)添加GOS有提高血清高密度脂蛋白含量的趋势(P=0.07)。3)与对照组相比,GOS1组和GOS3组血清钙含量显著升高(P < 0.05),GOS3组血清镁含量显著升高(P < 0.05)。添加GOS有提高血清铁含量的趋势(P=0.09),但对血清铜和锌含量无显著影响(P>0.05)。综上所述,添加GOS可降低犊牛的腹泻率,提高犊牛的生长性能,对脂质代谢和矿物质元素吸收有积极影响。在本试验条件下,GOS的添加剂量以10 g/(d·头)为宜。
关键词: 低聚半乳糖    犊牛    腹泻    血清生化指标    矿物质元素    
Effects of Galactooligosaccharides on Growth Performance, Serum Biochemical Parameters and Mineral Element Contents of Holstein Calves
WANG Feifei1 , CHANG Meinan1 , MA Fengtao1 , JIN Yuhang1 , HAO Lizhuang2 , SUN Peng1     
1. State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
2. Academic of Animal Husbandry and Veterinary Sciences, Qinghai University, Qinghai Provincial Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science, Xining 810016, China
Abstract: This experiment was conducted to investigate the effects of different doses of galactooligosaccharides (GOS) on growth performance, serum biochemical parameters and mineral element contents of Holstein calves, to explore the optimal supplemental dose for the growth of calves. Thirty-two healthy newborn Holstein calves with similar birth weight[(37.7±0.8) kg] were randomly divided into 4 groups with 8 calves in each group. Calves in the control group and experimental groups were fed starter diet and milk, and calves in experimental groups were fed milk supplemented with 10 (GOS1 group), 20 (GOS2 group) and 40 g/(d·head) (GOS3 group), respectively. The experiment lasted for 4 weeks. The results showed as follows: 1) compared with the control group, the average daily gain of calves during 1 to 2 weeks of age of GOS1 and GOS2 groups was significantly increased (P < 0.05), and the diarrhea rate and feed to gain ratio of calves during 1 to 2 weeks of age were significantly decreased from 1 to 2 weeks (P < 0.05). GOS supplementation had no significant effects on the growth performance and diarrhea rate of calves during 3 to 4 weeks of age (P>0.05). Compared with the control group, the diarrhea rate of calves during 1 to 4 weeks of age of GOS1 and GOS2 groups was significantly decreased (P < 0.05). 2) GOS supplementation tended to increase the serum high density lipoprotein content (P=0.07). 3) Compared with the control group, the serum calcium content of GOS1 and GOS3 groups was significantly increased (P < 0.05), and the serum magnesium content of GOS3 group was significantly increased (P < 0.05). GOS supplementation tended to increase the serum iron content (P=0.09), but did not affect the serum copper and zinc content (P>0.05). In conclusion, GOS supplementation can reduce the diarrhea rate of calves, improve the growth performance of calves, and have positive effects on lipid metabolism and mineral element absorption. Under the conditions of this experiment, the optimal supplemental dose is 10 g/(d·head) GOS.
Key words: galactooligosaccharides    calves    diarrhea    serum biochemical parameters    mineral element    

犊牛由于自身免疫力低、器官组织等未发育完全、肠道稳态尚未建立完善,极易受到外界不利因素的影响而感染各种疾病,其中腹泻是犊牛最常见的一种疾病,具有高发病率、高死亡率、高治疗费用、低增长率等特点,严重制约了牧场的经济效益,影响了我国奶业振兴计划的推动和实施。犊牛腹泻等疾病的防治措施主要包括加强母牛和犊牛的饲养管理、改善饲养环境、添加抗生素等。然而,近年来国家禁止在饲料中使用抗生素,大力提倡使用无污染无残留的绿色饲料添加剂。

益生元可以作为新型饲料添加剂,具有绿色无污染且不易产生耐药性等特点。研究表明,益生元可促进有益菌在宿主肠道内定植,减少有害菌繁殖,改善宿主肠道微生态环境和胃肠道消化功能,提高机体免疫力和抗病能力[1]。饲粮中添加益生元不但可以促进动物生长发育,还可促进机体对矿物元素的吸收,尤其是钙的吸收,优化骨骼健康[2]。作为益生元之一的低聚半乳糖(galactooligosaccharides,GOS)由β(1,4)和β(1,6)糖苷键连接,具有2~9个半乳糖单位和终端葡萄糖[3]。GOS可被机体的乳酸杆菌和双歧杆菌等益生菌利用,产生短链脂肪酸(short chain fatty acids,SCFAs)[4],而SCFAs可参与机体脂质代谢、矿物质吸收等生理过程,因此GOS有作为饲料添加剂的潜能。Richards等[5]研究发现,GOS可以通过调节仔鸡肠道菌群和先天免疫来提高其生长速度和饲料转化效率。GOS可以改善小鼠的脂质代谢,降低轮状病毒感染大鼠的腹泻率,还可以促进大鼠钙和镁的吸收[6-8]。然而,国内外对于GOS的研究与应用主要集中于单胃动物、家禽、鱼类和啮齿类动物,而对于GOS在反刍动物体内的作用机制认识不够全面,导致GOS在反刍动物方面的应用和推广受到限制。因此,本试验旨在研究不同剂量GOS对荷斯坦犊牛生长性能、腹泻率、血清生化指标及矿物质元素含量的影响,为GOS在犊牛生产中的应用提供理论依据。

1 材料与方法 1.1 试验材料

试验用GOS纯度≥90%,购于某生物股份有限公司。

1.2 试验动物与试验设计

试验于2020年10月至2021年2月在河北省新乐市君源牧业有限公司开展。选取32头出生重[(37.7±0.8) kg]相近、健康的荷斯坦母犊牛,随机分为4组,每组8头牛。对照组和试验组均饲喂牛奶和开食料,试验组分别在牛奶中添加10(GOS1组)、20(GOS2组)和40 g/(d·头)(GOS3组)的GOS。试验从犊牛出生至4周龄结束。

1.3 试验饲粮与饲养管理

犊牛出生后即转入犊牛岛,在出生后2 h内灌服4 L初乳,第2~3天每天饲喂3次初乳(06:00、12:00和18:00),每次2 L,第4天开始饲喂常乳,每天8 L。犊牛出生3 d后开始饲喂开食料,自由采食,每天记录采食量。将相应剂量的GOS溶解于少许牛奶中饲喂给对应的试验组犊牛,确保其被完全食用后,再饲喂剩余牛奶。犊牛采食的牛奶为君源牧业有限公司自产牛奶,开食料为天津九州大地饲料有限公司生产的适用于3日龄~3月龄犊牛的福维康1102。牛奶及开食料的营养水平见表 1

表 1 牛奶及开食料的营养水平(干物质基础) Table 1 Nutrient levels of milk and starter (DM basis)  
1.4 样品采集与指标测定 1.4.1 牛奶与开食料

试验期间采集犊牛的牛奶和开食料样品,并于-20 ℃冰箱保存待测。采用乳成分分析仪(MilkoScanTM FT6000)测定牛奶的常规营养成分。采用对应的国标方法测定开食料干物质(GB/T 6435—2014)、粗蛋白质(GB/T 6432—2018)、粗脂肪(GB/T 6433—2006)、粗灰分(GB/T 6438—2007)、中性洗涤纤维(GB/T 20806—2006)和酸性洗涤纤维(NY/T 1459—2007)的含量。

1.4.2 犊牛体重

分别于犊牛1、14和28日龄晨饲前测定犊牛体重,计算平均日增重(average daily gain,ADG)。

1.4.3 牛奶采食量与开食料采食量

试验期内,每天记录犊牛牛奶采食量和开食料采食量,计算平均日采食量(average daily feed intake,ADFI)和料重比(feed to gain ratio,F/G)。

1.4.4 犊牛腹泻率

试验期间,每天早、晚观察犊牛的粪便情况并进行记录,根据Teixeira等[9]的方法对粪便进行评分,粪便评分标准如表 2所示,犊牛连续2 d出现3分或4分的粪便时记为腹泻。根据如下公式计算腹泻率:

表 2 粪便评分标准 Table 2 Fecal score standard
1.4.5 血液样品的采集与指标检测

所有犊牛4周龄晨饲前对其进行颈静脉采血,用非抗凝管采集犊牛血液10 mL,室温静置30 min后,3 000×g、4 ℃离心15 min,所得血清于-80 ℃保存备用。采用日立全自动生化仪(HITACHI-7080)测定血清样品中尿素氮(urea nitrogen,UREA)、葡萄糖(glucose,GLU)、总胆固醇(total cholesterol,TC)、低密度脂蛋白(low density lipoprotein,LDL)、高密度脂蛋白(high density lipoprotein,HDL)、甘油三酯(triglyceride,TG)含量和谷草转氨酶(aspartate aminotransferase,AST)、谷丙转氨酶(alanine aminotransferase,ALT)活性;采用电感耦合等离子发射光谱仪(ICP-OES PQ9000),参照GB 5009.268—2016测定血清中钙、铜、铁、镁、磷和锌含量。

1.5 数据统计分析

数据经Excel 2010软件初步处理后,腹泻率用SAS 9.4软件中的卡方检验统计分析,其他数据用SAS 9.4软件中的MIXED模块进行统计分析。试验牛为随机因素,试验处理为固定因素。采用Turkey’s法进行多重比较;采用线性和二次多重比较评价GOS添加剂量的影响。数据用平均值和均值标准误(SEM)表示,P < 0.05表示差异显著,0.05≤P < 0.10表示有差异显著趋势。

2 结果 2.1 GOS对荷斯坦犊牛生长性能及腹泻率的影响

表 3可知,随着GOS添加剂量的增加,犊牛1~2周龄ADG呈现先上升后下降的二次曲线变化(P < 0.05),1~2周龄F/G呈现先下降后上升的二次曲线变化(P < 0.05)。与对照组相比,GOS1组和GOS2组犊牛1~2周龄ADG显著升高(P < 0.05),1~2周龄腹泻率和F/G显著降低(P < 0.05)。添加GOS对犊牛3~4周龄生长性能及腹泻率无显著影响(P>0.05)。与对照组相比,GOS1组和GOS2组犊牛1~4周龄腹泻率显著降低(P < 0.05)。随着GOS添加剂量的增加,1~4周龄F/G呈现先下降后上升的二次曲线变化(P < 0.05)。添加GOS对犊牛1~4周龄ADG和ADFI无显著影响(P>0.05)。

表 3 GOS对荷斯坦犊牛生长性能和腹泻率的影响 Table 3 Effects of GOS on growth performance and diarrhea rate of Holstein calves
2.2 GOS对荷斯坦犊牛血清生化指标的影响

表 4可知,添加GOS有提高血清HDL含量的趋势(P=0.07),但对血清TG、TC、LDL、UREA、GLU含量及AST、ALT活性无显著影响(P>0.05)。

表 4 GOS对荷斯坦犊牛血清生化指标的影响 Table 4 Effects of GOS on serum biochemical parameters of Holstein calves
2.3 GOS对荷斯坦犊牛血清矿物质元素含量的影响

表 5可知,与对照组相比,GOS1组和GOS3组血清钙含量显著升高(P < 0.05),GOS3组血清镁含量显著升高(P < 0.05)。添加GOS有提高血清铁含量的趋势(P=0.09),但对血清铜和锌含量无显著影响(P>0.05)。

表 5 GOS对荷斯坦犊牛血清矿物质元素含量的影响 Table 5 Effects of GOS on serum mineral element contents of Holstein calves  
3 讨论 3.1 GOS对荷斯坦犊牛生长性能和腹泻率的影响

一般认为ADFI、ADG以及F/G等因素可以反映出动物的生长性能,犊牛时期的生长性能对成年后的生产性能具有重要影响。然而犊牛出生后生活环境发生巨大改变,其自身消化系统、免疫系统和神经系统等却尚未发育完善,很容易被外界的病原体感染,发生腹泻[10-11]。犊牛腹泻通常发生在出生后前4周,尤其是前2周的发病率最高[12-13],影响成年后第1次产犊日龄以及产奶量[14-15]。研究表明,许多功能性低聚糖可以提高动物的生长性能及饲料转化效率,降低腹泻率。麦麸阿魏酸低聚糖及低聚果糖分别可以提高羔羊的饲料转化效率和ADG[16-17]。低聚木糖可以提高断奶仔猪的生长性能,降低腹泻率[18]。甘露寡糖可以提高犊牛的ADG、ADFI以及饲料转化效率,降低腹泻率[19]。GOS和芽孢杆菌合生元可以提高里海鲑鱼增重率、存活率以及饲料转化效率[20]。另外还有研究表明,GOS可以提高哺乳仔猪和断奶仔猪的生长性能[21-22],提高鸭的生长性能[23],以及提高肉鸡的生长速度和饲料转化效率,减少促生长类抗生素的使用[5, 24]。与前人试验结果相似,本试验中,与对照组相比,添加10和20 g/(d·头)GOS不仅显著提高了犊牛1~2周龄ADG,显著降低1~2周龄腹泻率和F/G;同时,添加10和20 g/(d·头)GOS还显著降低了犊牛1~4周龄腹泻率,有利于提高其饲料转化效率。

3.2 GOS对荷斯坦犊牛血清生化指标的影响

血清生化指标可以反映出机体代谢及组织器官的健康状况。研究表明,添加GOS和低聚果糖对宿主脂质代谢和葡萄糖代谢有积极影响[25]。高含量的TG、TC和LDL以及低含量的HDL会加大心血管疾病的发病率,不利于机体健康[26]。然而,目前降血脂的药物普遍存在一些如胆结石、心律失常、加重肝脏负担等副作用。研究表明,给大鼠饲喂GOS后,其附睾脂肪垫重量显著降低,说明GOS对脂质代谢具有直接影响[27]。同时,GOS可显著降低肥胖大鼠血清TG、TC和LDL含量,提高血清HDL含量,有效改善脂质代谢[28]。与前人结果相似,本试验结果表明,与对照组相比,添加GOS有提高血清HDL含量的趋势。HDL将其他部位的胆固醇运输到肝脏进行代谢,添加GOS后相对高含量的HDL可以起到抗动脉粥样硬化的作用。哺乳期犊牛主要依靠肝脏糖异生作用作为其能量来源,另外糖异生途径消耗的乳酸可以降低犊牛瘤胃酸中毒的风险,因此犊牛的肝脏健康极为重要[29]。AST和ALT是反映机体肝功能是否健康的重要指标,本试验中,添加GOS对犊牛血清AST和ALT活性无显著影响,表明GOS对犊牛肝功能稳态可能具有一定的维护作用。

3.3 GOS对荷斯坦犊牛血清矿物质元素含量的影响

必需矿物质元素在生命活动中不可或缺,它们作为酶的组成成分和激活剂参与体内物质代谢[30]。然而,若某种矿物质元素添加过量不仅会对环境造成污染,还会与其他矿物质元素产生拮抗,抑制其他矿物质元素的吸收[31],有效提高矿物质元素的吸收率,可以解决由此引起的一系列问题。越来越多的证据表明,益生元可以促进钙和镁等矿物质元素的吸收,有利于骨骼健康。谢乙宁[32]研究发现,在饲粮添加低聚木糖可以显著提高断奶仔猪对钙的吸收。杨世丽等[33]研究发现,给圈养猕猴添加水苏糖后可显著提高其血清钙含量。研究表明,饲粮中添加甜菊糖苷可促进肉鸡钙的消化吸收[34]。以往研究发现,在生长大鼠饲粮中添加GOS可以促进镁和钙的吸收,且2%~6%是促进镁吸收的适宜剂量[8, 35]。另外,短链GOS和长链低聚果糖的混合物可以增加生长大鼠对磷和镁的吸收[36-37],而低聚果糖和GOS混合物还可以促进断奶仔猪对钙和磷的消化吸收[38]。此外,添加一定量GOS可以促进大鼠肠道铁的吸收及利用率[39]。与前人研究结果一致,本试验结果同样表明,添加适宜剂量GOS显著提高了犊牛血清中镁和钙含量,并有提高血清铁含量的趋势。这一结果间接表明,添加GOS有利于促进肠道矿物质元素吸收,GOS可能通过其分子上的正电荷与细胞膜结合,改变细胞膜上紧密连接蛋白的结构,进而开放离子跨膜通道,从而促进矿物质元素吸收进入血液[40],但其具体机制还有待于进一步研究。

4 结论

① 添加GOS可以提高犊牛的生长性能,降低其腹泻率。

② 添加GOS对脂质代谢有积极影响,有提高血清HDL含量的趋势。

③ 添加GOS对矿物质元素吸收有积极影响,可提高血清中钙和镁含量,并有提高血清铁含量的趋势。

④ 在本试验条件下,综合各项指标,GOS在犊牛饲粮中的添加剂量以10 g/(d·头)为宜。

参考文献
[1]
CASTRO J J, GOMEZ A, WHITE B, et al. Changes in the intestinal bacterial community, short-chain fatty acid profile, and intestinal development of preweaned Holstein calves.2.Effects of gastrointestinal site and age[J]. Journal of Dairy Science, 2016, 99(12): 9703-9715. DOI:10.3168/jds.2016-11007
[2]
WHISNER C M, CASTILLO L F. Prebiotics, bone and mineral metabolism[J]. Calcified Tissue International, 2018, 102(4): 443-479. DOI:10.1007/s00223-017-0339-3
[3]
GONZÁLEZ-DELGADO I, SEGURA Y, MARTÍN A, et al. β-galactosidase covalent immobilization over large-pore mesoporous silica supports for the production of high galacto-oligosaccharides (GOS)[J]. Microporous and Mesoporous Materials, 2017, 257: 51-61.
[4]
李科南, 邢媛媛, 史彬林. 低聚半乳糖在动物生产中的应用研究[J]. 饲料研究, 2019, 42(12): 126-128.
LI K N, XING Y Y, SHI B L. Study on application of galacto-oligosacchride in animal production[J]. Feed Research, 2019, 42(12): 126-128 (in Chinese).
[5]
RICHARDS P J, FLAUJAC LAFONTAINE G M, CONNERTON P L, et al. Galacto-oligosaccharides modulate the juvenile gut microbiome and innate immunity to improve broiler chicken performance[J]. mSystems, 2020, 5(1): e00827-19.
[6]
CHENG W, LU J, LIN W, et al. Effects of a galacto-oligosaccharide-rich diet on fecal microbiota and metabolite profiles in mice[J]. Food & Function, 2018, 9(3): 1612-1620.
[7]
AZAGRA-BORONAT I, MASSOT-CLADERA M, KNIPPING K, et al. Supplementation with 2'-FL and scGOS/lcFOS ameliorates rotavirus-induced diarrhea in suckling rats[J]. Frontiers in Cellular and Infection Microbiology, 2018, 8: 372. DOI:10.3389/fcimb.2018.00372
[8]
WEAVER C M, MARTIN B R, NAKATSU C H, et al. Galactooligosaccharides improve mineral absorption and bone properties in growing rats through gut fermentation[J]. Journal of Agricultural and Food Chemistry, 2011, 59(12): 6501-6510. DOI:10.1021/jf2009777
[9]
TEIXEIRA A G V, STEPHENS L, DIVERS T J, et al. Effect of crofelemer extract on severity and consistency of experimentally induced enterotoxigenic Escherichia coli diarrhea in newborn Holstein calves[J]. Journal of Dairy Science, 2015, 98(11): 8035-8043. DOI:10.3168/jds.2015-9513
[10]
杨云燕, 王其炎, 彭地纬, 等. 日粮添加肉桂醛对奶牛公犊生长、健康及瘤胃发酵性能的影响[J]. 中国农业科学, 2021, 54(10): 2229-2238.
YANG Y Y, WANG Q Y, PENG D W, et al. Effects of cinnamaldehyde on growth performance, health status, rumen fermentation and microflora of dairy calves[J]. Scientia Agricultura Sinica, 2021, 54(10): 2229-2238 (in Chinese). DOI:10.3864/j.issn.0578-1752.2021.10.018
[11]
郝丽媛. 不同锌源对新生犊牛生长性能、机体锌代谢及直肠微生物的影响[D]. 硕士学位论文. 北京: 中国农业科学院, 2018.
HAO L Y. Effects of different zinc sources on the performance, zinc metabolism and rectal microorganism of newborn calves[D]. Master's Thesis. Beijing: Chinese Academy of Agricultural Sciences, 2018. (in Chinese)
[12]
MUKTAR Y, MAMO G, TESFAYE B, et al. A review on major bacterial causes of calf diarrhea and its diagnostic method[J]. Journal of Veterinary Medicine and Animal Health, 2015, 7(5): 173-185. DOI:10.5897/JVMAH2014.0351
[13]
CHANG M N, WEI J Y, HAO L Y, et al. Effects of different types of zinc supplement on the growth, incidence of diarrhea, immune function, and rectal microbiota of newborn dairy calves[J]. Journal of Dairy Science, 2020, 103(7): 6100-6113. DOI:10.3168/jds.2019-17610
[14]
WINDEYER M C, LESLIE K E, GODDEN S M, et al. Factors associated with morbidity, mortality, and growth of dairy heifer calves up to 3 months of age[J]. Preventive Veterinary Medicine, 2014, 113(2): 231-240. DOI:10.1016/j.prevetmed.2013.10.019
[15]
HEINRICHS A J, HEINRICHS B S, HAREL O, et al. A prospective study of calf factors affecting age, body size, and body condition score at first calving of Holstein dairy heifers[J]. Journal of Dairy Science, 2005, 88(8): 2828-2835. DOI:10.3168/jds.S0022-0302(05)72963-5
[16]
WANG Y, MENG Z Q, GUO J Q, et al. Effect of wheat bran feruloyl oligosaccharides on the performance, blood metabolites, antioxidant status and rumen fermentation of lambs[J]. Small Ruminant Research, 2019, 175: 65-71. DOI:10.1016/j.smallrumres.2019.04.006
[17]
QUIJADA N M, BODAS R, LORENZO J M, et al. Dietary supplementation with sugar beet fructooligosaccharides and garlic residues promotes growth of beneficial bacteria and increases weight gain in neonatal lambs[J]. Biomolecules, 2020, 10(8): 1179. DOI:10.3390/biom10081179
[18]
谭兵兵, 姬玉娇, 丁浩, 等. 低聚木糖对断奶仔猪生长性能、腹泻率和血浆生化参数的影响[J]. 动物营养学报, 2016, 28(8): 2556-2563.
TAN B B, JI Y J, DING H, et al. Effects of xylo-oligosaccharide on growth performance, diarrhea rate and plasma biochemical parameters of weaned piglets[J]. Chinese Journal of Animal Nutrition, 2016, 28(8): 2556-2563 (in Chinese). DOI:10.3969/j.issn.1006-267x.2016.08.028
[19]
康坤, 聂琴, 李彪. 甘露寡糖(MOS)对犊牛腹泻及生长性能的影响[J]. 畜禽业, 2015(2): 85.
KANG K, NIE Q, LI B. Effects of mannan oligosaccharide (MOS) on diarrhea and growth performance of calves[J]. Livestock and Poultry Industry, 2015(2): 85 (in Chinese).
[20]
AFTABGARD M, SALARZADEH A, MOHSENI M. The effects of a synbiotic mixture of galacto-oligosaccharides and Bacillus strains in Caspian salmon, Salmo trutta caspius fingerlings[J]. Probiotics and Antimicrobial Proteins, 2019, 11(4): 1300-1308. DOI:10.1007/s12602-018-9498-4
[21]
TIAN S Y, WANG J, YU H, et al. Effects of galacto-oligosaccharides on growth and gut function of newborn suckling piglets[J]. Journal of Animal Science and Biotechnology, 2018, 9: 75. DOI:10.1186/s40104-018-0290-9
[22]
李科南. 低聚半乳糖对断奶仔猪生长性能、免疫和抗氧化功能的影响[D]. 硕士学位论文. 呼和浩特: 内蒙古农业大学, 2018.
LI K N. Effects of galacto-oligosaccharide on growth performance, immune and antioxidative function in weaned piglets[D]. Master's Thesis. Hohhot: Inner Mongolia Agricultural University, 2018. (in Chinese)
[23]
李炎明, 刘海洋, 欧阳徘徊, 等. 低聚半乳糖和光合细菌对鸭生长性能和肉品质的影响[J]. 畜牧与兽医, 2012, 44(S1): 197-198.
LI Y M, LIU H Y, OUYANG P H, et al. Effects of galactose oligosaccharide and photosynthetic bacteria on growth performance and meat quality of ducks[J]. Animal Husbandry & Veterinary Medicine, 2012, 44(S1): 197-198 (in Chinese).
[24]
BEDNARCZYK M, STADNICKA K, KOZŁOWSKA I, et al. Influence of different prebiotics and mode of their administration on broiler chicken performance[J]. Animal, 2016, 10(8): 1271-1279. DOI:10.1017/S1751731116000173
[25]
DALL'OGLIO F, MILANI M, MICALI G. Effects of oral supplementation with FOS and GOS prebiotics in women with adult acne: the"S.O. Sweet"study: a proof-of-concept pilot trial[J]. Clinical, Cosmetic and Investigational Dermatology, 2018, 11: 445-449. DOI:10.2147/CCID.S179627
[26]
ANANDHARAJ M, SIVASANKARI B, RANI R P. Effects of probiotics, prebiotics, and synbiotics on hypercholesterolemia: a review[J]. Chinese Journal of Biology, 2014, 2014: 572754.
[27]
OVERDUIN J, SCHOTERMAN M H C, CALAME W, et al. Dietary galacto-oligosaccharides and calcium: effects on energy intake, fat-pad weight and satiety-related, gastrointestinal hormones in rats[J]. British Journal of Nutrition, 2013, 109(7): 1338-1348. DOI:10.1017/S0007114512003066
[28]
黄星俊. GOS减肥活性及机制研究[D]. 硕士学位论文. 广州: 广东药科大学, 2019.
HUANG X J. Anti-obesity effect and mechanism of galactooligosaccharides[D]. Master's Thesis. Guangzhou: Guangdong Pharmaceutical University, 2019. (in Chinese)
[29]
王硕, 苗赟, 焦崇, 等. 不同中性洗涤纤维来源和粒度的全混合日粮对哺乳期犊牛生长性能、血清生化指标和采食行为的影响[J]. 动物营养学报, 2021, 33(7): 3934-3948.
WANG S, MIAO Y, JIAO C, et al. Effects of different neutral detergent fiber sources and particle sizes of total mixed ration on growth performance, serum biochemical parameters and feeding behavior of suckling calves[J]. Chinese Journal of Animal Nutrition, 2021, 33(7): 3934-3948 (in Chinese). DOI:10.3969/j.issn.1006-267x.2021.07.035
[30]
杨凤. 动物营养学[M]. 北京: 中国农业出版社, 2004.
YANG F. Animal nutrition[M]. Beijing: China Agriculture Press, 2004 (in Chinese).
[31]
金宇航, 麻柱, 高铎, 等. 不同锌源对新生荷斯坦犊牛生长性能、血清免疫和抗氧化指标以及血浆微量元素含量的影响[J]. 动物营养学报, 2021, 33(6): 3334-3342.
JIN Y H, MA Z, GAO D, et al. Effects of different zinc sources on growth performance, serum immune and antioxidant indices and plasma trace element contents of newborn Holstein calves[J]. Chinese Journal of Animal Nutrition, 2021, 33(6): 3334-3342 (in Chinese). DOI:10.3969/j.issn.1006-267x.2021.06.035
[32]
谢乙宁. 低聚木糖对断奶仔猪生产性能、养分消化和肠道微生物菌群的影响[D]. 硕士学位论文. 绵阳: 西南科技大学, 2020.
XIE Y N. Effects of xylooligosaccharides on growth performance, nutrient digestion and intestinal microbiota in weaned piglets[D]. Master's Thesis. Mianyang: Southwest University of Science and Technology, 2020. (in Chinese)
[33]
杨世丽, 李海芳, 陈科元, 等. 水苏糖对圈养猕猴肠道菌群及血液生理生化指标的影响[J]. 野生动物学报, 2018, 39(3): 513-519.
YANG S L, LI H F, CHEN K Y, et al. Influence of stachyose on the intestinal flora and blood physiological and biochemical indexes of captive macaques (Macaca mulatta)[J]. Chinese Journal of Wildlife, 2018, 39(3): 513-519 (in Chinese). DOI:10.3969/j.issn.1000-0127.2018.03.010
[34]
WU X Z, YANG P L, SIFA D, et al. Effect of dietary stevioside supplementation on growth performance, nutrient digestibility, serum parameters, and intestinal microflora in broilers[J]. Food & Function, 2019, 10(5): 2340-2346.
[35]
DOS SANTOS E F, TSUBOI K H, ARAÚJO M R, et al. Dietary galactooligosaccharides increase calcium absorption in normal and gastrectomized rats[J]. Revista Do Colegio Brasileiro de Cirurgioes, 2011, 38(3): 186-191. DOI:10.1590/S0100-69912011000300009
[36]
BRYK G, CORONEL M Z, LUGONES C, et al. Effect of a mixture of GOS/FOS® on calcium absorption and retention during recovery from protein malnutrition: experimental model in growing rats[J]. European Journal of Nutrition, 2016, 55(8): 2445-2458. DOI:10.1007/s00394-015-1052-5
[37]
BRYK G, CORONEL M Z, PELLEGRINI G, et al. Effect of a combination GOS/FOS® prebiotic mixture and interaction with calcium intake on mineral absorption and bone parameters in growing rats[J]. European Journal of Nutrition, 2015, 54(6): 913-923. DOI:10.1007/s00394-014-0768-y
[38]
周水岳. 低聚糖对幼龄动物生产性能、血液生化指标和养分利用的影响[D]. 硕士学位论文. 长沙: 湖南农业大学, 2018.
ZHOU S Y. Effects of oligosaccharide on growth performance, serum biochemical indices and nutrient utilization in neonate[D]. Master's Thesis. Changsha: Hunan Agricultural University, 2018. (in Chinese)
[39]
王艺苑. 探究低聚半乳糖的补充对大鼠肠道铁吸收的影响[D]. 硕士学位论文. 广州: 南方医科大学, 2019.
WANG Y Y. Investigate the effect of galacto-oligosaccharide supplementation on intestinal absorption of iron in rats[D]. Master's Thesis. Guangzhou: Southern Medical University, 2019. (in Chinese)
[40]
侯春林, 顾其胜. 几丁质与医学[M]. 上海: 上海科学技术出版社, 2001.
HOU C L, GU Q S. Chitin and medicine[M]. Shanghai: Shanghai Scientific & Technical Publishers, 2001 (in Chinese).