动物营养学报    2022, Vol. 34 Issue (3): 1845-1852    PDF    
菊粉对克氏原螯虾消化酶活性、肠道组织形态和非特异性免疫能力的影响
付运银 , 范文浩 , 阮国良 , 何乃娟 , 李生瑄 , 李青松 , 方刘 , 王乾     
长江大学小龙虾繁育与健康养殖创新技术研究中心, 荆州 434025
摘要: 本试验旨在研究饲料中添加不同水平菊粉对克氏原螯虾消化酶活性、肠道组织形态和非特异性免疫能力的影响。试验选用240尾平均体重为(6.58±0.16)g的克氏原螯虾,随机分为6个组,分别饲喂在基础饲料中添加0(对照组)、0.20%、0.40%、0.60%、0.80%和1.00%菊粉的饲料,每组4个重复,养殖密度为10尾/箱。试验期7周,试验结束后测定胃组织中的消化酶活性和肝胰腺中的免疫酶活性,并用显微镜观察后肠的组织形态。结果表明:1)与对照组相比,0.40%~1.00%菊粉添加组胃组织中淀粉酶、脂肪酶和蛋白酶活性显著提高(P<0.05);其中,0.60%菊粉添加组胃组织中蛋白酶活性最高,0.80%菊粉添加组胃组织中淀粉酶和脂肪酶活性最高。2)与对照组相比,随着饲料中菊粉添加水平的提高,后肠黏膜的皱襞数量增加,结缔组织更为紧密,肌层更加明显和完整;其中,0.40%~1.00%菊粉添加组后肠黏膜皱襞长度和宽度显著高于对照组(P<0.05)。3)与对照组相比,0.40%~1.00%菊粉添加组肝胰腺碱性磷酸酶、酸性磷酸酶和溶菌酶活性显著提高(P<0.05),且均以0.60%菊粉添加组活性最高。结果提示,饲料中添加菊粉可以提高克氏原螯虾胃组织中消化酶活性,改善肠道形态结构,增强非特异性免疫能力,且以0.6%添加水平效果较佳。
关键词: 菊粉    克氏原螯虾    消化酶    肠道形态    免疫酶    
Effects of Inulin on Digestive Enzyme Activities, Intestinal Morphology and Non-Specific Immunity of Procambarus clarkii
FU Yunyin , FAN Wenhao , RUAN Guoliang , HE Naijuan , LI Shengxuan , LI Qingsong , FANG Liu , WANG Qian     
The Innovative Technology Research Center of Crayfish Breeding and Healthy Farming, Yangtze University, Jingzhou 434025, China
Abstract: This experiment was conducted to investigate the effects of different dietary inulin levels on digestive enzyme activities, intestinal morphology and non-specific immunity of Procambarus clarkii. A total of 240 crayfish with an average body weight of (6.58±0.16) g were randomly divided into 6 groups with 4 replicates in each group and 10 crayfish per box. The crayfish were fed the basal diet supplemented with 0 (control group), 0.20%, 0.40%, 0.60%, 0.80% and 1.00% inulin, respectively. The experiment lasted for 7 weeks. After the experiment, the digestive enzyme activities in stomach tissue and immune enzyme activities in hepatopancreas were determined, and the histological morphology of hind-gut was observed under microscope. The results showed as follows: 1) compared with the control group, the activities of amylase, lipase and protease in stomach tissue in 0.40% to 1.00% inulin supplemental groups were significantly increased (P<0.05); among them, the protease activity in stomach tissue in 0.60% inulin supplemental group was the highest, and the amylase and lipase activities in stomach tissue in 0.80% inulin supplemental group were the highest. 2) Compared with the control group, with the increase of inulin supplemental level, the duplicature number in hind-gut was increased, the connective tissue became closer, and the muscle layer became more obvious and complete; the length and width of duplicature in hind-gut in 0.40% to 1.00% inulin supplemental groups were significantly higher than those in the control group (P<0.05). 3) Compared with the control group, the activities of alkaline phosphatase, acid phosphatase and lysozyme in hepatopancreas in 0.40% to 1.00% inulin supplemental groups were significantly increased (P<0.05), and the activities in 0.60% inulin supplemental group were the highest. The results indicate that inulin supplementation can improve the digestive enzyme activities in stomach tissue, improve intestinal morphology and enhance non-specific immunity of Procambarus clarkii, and 0.6% inulin supplementation has a better effect.
Key words: inulin    Procambarus clarkii    digestive enzymes    intestinal morphology    immune enzymes    

克氏原螯虾(Procambarus clarkii)俗称小龙虾,其因营养丰富、肉质鲜美而深受消费者喜爱[1],现已成为当前我国养殖产量最大的经济淡水甲壳类动物[2]。近年来,随着集约化养殖水平的提高和对高产的追求,克氏原螯虾的高密度养殖易导致其病害暴发[3]。在传统的虾类养殖过程中,经常使用抗菌药物治疗疾病,但这致使耐药性病原体的产生和养殖产品中抗生素的残留,从而影响成虾的品质和食品安全。利用益生菌等饲料添加剂替代抗菌药物来提高水产动物的生长及免疫力已在饲料行业受到极大关注[4]。菊粉(inulin)是由果糖单体通过β-2, 1-糖苷键连接而成的聚合度为2~60的果糖聚合物,属于非黏性、可发酵的益生元[5-6],可促进肠道内双歧杆菌等有益菌的增殖,进而在改善消化与吸收、肠道菌群与肠道结构以及提高免疫与抗病等方面发挥重要作用[7],因此在水产饲料添加剂中得到持续研究和广泛应用[8-9]。迄今,有关菊粉作为饲料添加剂的研究多见于鱼类[7, 10-13],而在甲壳类仅见于凡纳滨对虾(Litopenaeus vannamei)[14-15]和中华绒螯蟹(Eriocheir sinensis)[16]。Dong等[17]研究了低聚果糖对克氏原螯虾的免疫刺激作用,但有关菊粉对该虾消化、生长和抗逆性影响的研究则尚未见报道。鉴于此,本试验通过探讨在饲料中添加不同水平的菊粉对克氏原螯虾消化酶活性、肠道组织形态和非特异性免疫能力的影响,旨在为该虾绿色环保饲料添加剂的开发与应用提供基础依据。

1 材料与方法 1.1 饲料的配制与成分测定

试验共配制6种等氮等能的饲料,饲料中菊粉为市售品(纯度>99%),饲料中菊粉添加水平分别为0(基础饲料,对照组)、0.20%、0.40%、0.60%、0.80%和1.00%。饲料组成及营养水平见表 1。所有原料经粉碎后,过80目筛网,按照配方要求准确称量,并逐级混匀后,加入鱼油、豆油和适量水,再次混匀后,经制粒机(NBS-150)挤压为粒径为2 mm的颗粒饲料,60 ℃烘干,密封袋分装,标记,-20 ℃冰箱储存备用。饲料的粗蛋白质、粗脂肪、粗灰分和水分含量的测定分别采用凯氏定氮法、索氏抽提法、灼烧法与105 ℃恒温烘干法。

表 1 饲料组成及营养水平(风干基础) Table 1 Composition and nutrient levels of diets (air-dry basis)
1.2 试验虾及其养殖管理

试验用克氏原螯虾购自湖北省公安县某小龙虾养殖基地,并通过湿法运至室内的养殖系统。在2周的室内暂养期间,每天饱食投喂基础饲料。正式试验开始前禁食24 h,选用规格一致[(6.58±0.16) g]、附肢齐全和活力正常的克氏原螯虾240尾,随机分为6个组,每组4个重复,养殖密度为10尾/箱,放养于由24个容积为84 L水族箱(0.6 m×0.4 m×0.35 m)组成的室内养殖系统中,水位10 cm,分别投喂6种饲料。每日投喂2次(09:00和18:00),投喂量为体重的3%。试验期间养殖用水为充分曝气的自来水,每天换水1/3~1/2,用虹吸法吸出残饵和粪便。每天观察克氏原螯虾健康与摄食状况,定期检查水质,试验期间水温保持在(23±2) ℃,pH为7.0~8.5,不间断增氧,溶解氧含量≥6 mg/L,自然光照。试验期7周。

1.3 样品采集

养殖试验结束后禁食24 h,每组随机抽取3尾虾,冰上解剖并取后肠段的中间部分固定于4%多聚甲醛溶液,委托武汉塞维尔生物科技有限公司进行肠道切片;养殖试验结束后禁食24 h,每组随机抽取6尾虾,冰上解剖其胃和肝胰腺各0.10 g,用滤纸擦干其表面水分后放入EP管中,加入0.9 mL预冷生理盐水,4 ℃匀浆,3 000 r/min离心15 min,吸取上清液,制成10%匀浆液,分装,-80 ℃保存备用。

1.4 肠道组织形态观察

用光学显微镜系统对后肠组织切片进行观察和拍照。记录每张切片中所有肠道黏膜皱襞的长度和宽度。测量标准以肠道黏膜皱襞顶端至基部中线为肠道黏膜皱襞长度;以长度的中点位置作垂线交于肠道黏膜皱襞2侧,2交点之间的距离为肠道黏膜皱襞宽度。

1.5 消化酶和免疫酶活性测定

胃组织匀浆的上清液用于蛋白酶、脂肪酶和淀粉酶活性的测定;肝胰腺组织匀浆的上清液用于酸性磷酸酶(ACP)、碱性磷酸酶(AKP)和溶菌酶(LZM)活性的测定。所有酶活性均采用南京建成生物工程研究所的试剂盒测定。

1.6 数据统计与分析

数据经Excel 2019初步处理,再使用SPSS 26.0软件进行单因素方差分析(one-way ANOVA)及Duncan氏法多重比较,以P<0.05表示差异显著,结果用“平均值±标准差”表示。

2 结果与分析 2.1 菊粉对克氏原螯虾胃组织中消化酶活性的影响

表 2可知,饲料中添加不同水平菊粉显著影响克氏原螯虾胃组织中消化酶活性(P<0.05)。随着饲料中菊粉添加水平的提高,克氏原螯虾胃组织中蛋白酶、淀粉酶和脂肪酶活性呈现先升后降的变化趋势。其中,0.40%~1.00%菊粉添加组胃组织中蛋白酶、淀粉酶和脂肪酶活性均显著高于对照组(P<0.05);0.20%菊粉添加组胃组织中消化酶活性与对照组相比无显著性差异(P>0.05);0.60%菊粉添加组胃组织中蛋白酶活性最高,而0.80%菊粉添加组胃组织中淀粉酶和脂肪酶活性最高。

表 2 菊粉对克氏原螯虾胃组织中消化酶活性的影响 Table 2 Effects of inulin on digestive enzyme activities in stomach tissue of Procambarus clarkii  
2.2 菊粉对克氏原螯虾肠道组织形态的影响

图 1可知,饲料中添加不同水平菊粉可以改善克氏原螯虾肠道组织形态。与对照组相比,随着饲料中菊粉添加水平的提高,后肠整体轮廓更为清晰,肠道黏膜皱襞形成的纵嵴数量增加;各菊粉添加组肠壁内的结缔组织更为紧密,肌层更加明显和完整。

A~F代表饲料中分别添加0、0.20%、0.40%、0.60%、0.80%和1.00%菊粉。W: 宽度;L:长度;EL:上皮层;CT:结缔组织层;M:肌束;ML:肌层。 A to F represented supplementation with 0, 0.20%, 0.40%, 0.60%, 0.80% and 1.00% inulin in diets, respectively. W: width; L: length; EL: upper cortex; CT: connective tissue layer; M: muscle bundle; ML: muscular layer. 图 1 菊粉对克氏原螯虾后肠组织形态的影响 Fig. 1 Effects of inulin on histological morphology of hind-gut of Procambarus clarkii

表 3可知,饲料中添加不同水平菊粉显著影响克氏原螯虾后肠黏膜皱襞长度和宽度(P<0.05)。0.40%~1.00%菊粉添加组后肠黏膜皱襞长度和宽度显著高于对照组(P<0.05);0.20%菊粉添加组后肠黏膜皱襞长度和宽度与对照组相比无显著性差异(P>0.05);0.40%菊粉添加组后肠黏膜皱襞长度和宽度最高。

表 3 菊粉对克氏原螯虾后肠黏膜皱襞形态的影响 Table 3 Effects of inulin on duplicature morphology of hind-gut of Procambarus clarkii  
2.3 菊粉对克氏原螯虾肝胰腺免疫酶活性的影响

表 4可知,饲料中添加不同水平菊粉显著影响克氏原螯虾肝胰腺免疫酶活性(P<0.05)。随着饲料中菊粉添加不同水平的提高,克氏原螯虾肝胰腺AKP、ACP和LZM活性呈现先升后降的变化趋势。0.20%~1.00%菊粉添加组肝胰腺AKP和ACP活性显著高于对照组(P<0.05);0.40%~1.00%菊粉添加组肝胰腺LZM活性显著高于对照组(P<0.05);0.20%菊粉添加组肝胰腺LZM活性与对照组相比无显著性差异(P>0.05);0.60%菊粉添加组肝胰腺AKP、ACP和LZM活性均为最高。

表 4 菊粉对克氏原螯虾肝胰腺免疫酶活性的影响 Table 4 Effects of inulin on hepatopancreatic immunoenzyme activities of Procambarus clarkii  
3 讨论 3.1 菊粉对克氏原螯虾胃组织中消化酶活性的影响

消化酶活性的高低反映动物最基础的消化生理特征,以及其对饲料营养物质的利用能力[10, 18],且虾类的生长与其消化酶活性有关[19]。有研究表明,益生元作为不可消化的水溶性膳食纤维,可以通过调节肠道黏度、产生维生素或酶来促进消化[20-21]。本研究结果显示,当饲料中菊粉添加水平为0.60%~0.80%时,克氏原螯虾胃组织中的3种主要消化酶活性均显著高于对照组,表明菊粉能够提高该虾的消化酶活性。关于菊粉作为饲料添加剂可提高其他水产动物的消化酶活性也有类似报道,如饲料中添加0.4%的菊粉可促进凡纳滨对虾的生长和淀粉酶活性[15];饲料添加1.0%菊粉可显著提高中华绒螯蟹肠道中的胰蛋白酶活性[16];饲料添加1.0%菊粉可显著提高虹鳟(Oncorhynchus mykiss)[11]和暗纹东方鲀(Takifugu obscurus)[12]的胰蛋白酶、脂肪酶和淀粉酶活性。因此,菊粉作为饲料添加剂可以提高不同水产动物的消化酶活性,但其消化酶活性达最高值的所需菊粉添加水平可能是不同的。从本试验的前期生长性能数据看,0.60%~0.80%菊粉添加组的存活率、终末体重、增重率和特定生长率均显著高于其他各组,且0.60%菊粉添加组的饲料系数最低。因此,本研究中饲料添加不同水平菊粉对克氏原螯虾消化和生长的影响是一致的,且饲料中添加0.60%的菊粉可显著促进该虾的生长和饲料利用。

3.2 菊粉对克氏原螯虾肠道组织形态的影响

本试验结果表明,饲料中添加0.40%~1.00%菊粉可以改善克氏原螯虾后肠形态结构,其原因可能是由于菊粉发酵产生的短链脂肪酸促进了肠上皮细胞的增殖、分化和迁移,并维持肠道的内环境稳态[22-23]。肠道形态结构的改善则有利于提高肠道黏膜屏障功能,并降低肠道炎症反应的发生[13, 24],且完善和发达的黏膜皱襞结构可能具备免疫和病原微生物防御功能[7]。研究表明,菊粉能有效增加凡纳滨对虾肠肌肉厚度、肠绒毛长度及肠绒毛凸起密度[25]。因此,菊粉可改善虾类等水产动物的肠道组织形态,从而有益于肠道健康。

目前,一般认为十足目动物的肝胰腺发挥着最主要的消化和吸收功能,而后肠仅具渗透调节和排粪的功能[26]。然而,Lu等[27]在研究甘露寡糖(MOS)对中华绒螯蟹后肠组织形态的影响时,结果表明添加0.3%的MOS可显著提高其后肠黏膜皱襞的长度和宽度,且推测MOS是通过增加肠上皮细胞与营养物质分子之间的接触面积来增强对营养物质的吸收。关于十足目动物后肠是否不具有营养吸收功能,还需从后肠的个体发生、肠黏膜表面结构及其上皮细胞的吸收功能验证等方面进行大量的试验研究加以确证。十足目作为一个庞大的动物类群,其不同物种之间的形态及功能可能存在很大差异。相对于对虾类及沼虾类而言,螯虾类的后肠部分的占比较大[28-29];在个体发生上,真正无吸收功能的“后肠”至少应该在其内表面覆盖有角质层(cuticle)[26],在本试验中,未发现后肠存在角质层,这暗示着此“后肠”可能为真正的“中肠”部分,因而克氏原螯虾后肠的形态改善是否有利于营养吸收尚需深入研究。

3.3 菊粉对克氏原螯虾肝胰腺免疫酶活性的影响

AKP和ACP作为代谢调节酶,在甲壳动物的非特异性免疫反应中发挥着重要作用[30-31]。LZM是由巨噬细胞分泌的碱性蛋白,可水解消化入侵微生物并诱导合成和分泌相关的免疫因子[32],在先天免疫中具有非常重要的作用。本试验中,饲料中添加0.60%菊粉可使克氏原螯虾肝胰腺发挥最高的AKP、ACP和LZM活性,表明菊粉可以增强该虾的免疫功能。类似的研究表明,饲料中添加菊粉可以提高凡纳滨对虾肝胰腺ACP和酚氧化酶(PO)活性[15],并降低白斑综合征病毒(WSSV)的病毒载量和发病率[33]。此外,饲料中添加菊粉可显著提高幼鲤(Cyprinus carpio)血清溶菌酶活性、补体3和补体4含量以及肠道乳酸菌总数[10]。因此,菊粉可提高不同动物的非特异性免疫能力[7],其原因可能与肠道益生菌的丰度增加有关[14-15]

4 结论

本试验条件下,饲料中添加菊粉可以提高克氏原螯虾胃组织中消化酶活性,改善肠道形态结构,增强非特异性免疫能力,且以0.6%添加水平效果较佳。

参考文献
[1]
江红霞, 刘慧芬, 马晓, 等. 转录组测序筛选克氏原螯虾卵巢发育、免疫和生长相关基因[J]. 水产学报, 2021, 45(3): 396-414.
JIANG H X, LIU H F, MA X, et al. Transcriptome analysis of Procambarus clarkii to screen genes related to ovary development, immunity and growth[J]. Journal of Fisheries of China, 2021, 45(3): 396-414 (in Chinese).
[2]
全国水产技术推广总站, 中国水产学会, 中国水产流通与加工协会. 中国小龙虾产业发展报告(2021)[N]. 中国渔业报, 2021-06-21(003).
National Fisheries Technology Extension Center, China Society of Fisheries, China Aquatic Products Processing and Marketing Association. China crayfish (Procambrus clarkii) industry development report (2021)[N]. China Fisheries News, 2021-06-21(003). (in Chinese)
[3]
范文浩, 方刘, 周锦, 等. 养殖密度对克氏原螯虾生长及消化酶、免疫酶活性的影响[J]. 水产科学, 2021, 40(2): 261-266.
FAN W H, FANG L, ZHOU J, et al. Effects of stocking density on growth, digestive enzyme and immune enzyme activities of red swamp crayfish Procambarus clarkii[J]. Fisheries Science, 2021, 40(2): 261-266 (in Chinese).
[4]
李军亮, 杨奇慧, 谭北平, 等. 低鱼粉饲料添加枯草芽孢杆菌对凡纳滨对虾幼虾生长性能、非特异性免疫力及抗病力的影响[J]. 动物营养学报, 2019, 31(5): 2212-2221.
LI J L, YANG Q H, TAN B P, et al. Effects of Bacillus subtilis supplemented in low fish meal diets on growth performance, non-specific immunity and disease resistance of juvenile Litopenaeus vannamei[J]. Chinese Journal of Animal Nutrition, 2019, 31(5): 2212-2221 (in Chinese). DOI:10.3969/j.issn.1006-267x.2019.05.028
[5]
SHOAIB M, SHEHZAD A, OMAR M, et al. Inulin: properties, health benefits and food applications[J]. Carbohydrate Polymers, 2016, 147: 444-454. DOI:10.1016/j.carbpol.2016.04.020
[6]
MUDGIL D. Chapter 3-the interaction between insoluble and soluble fiber[M]//SAMAAN R A. Dietary fiber for the prevention of cardiovascular disease. Pittsburgh: Academic Press, 2017: 35-59.
[7]
GUERREIRO I, OLIVA-TELES A, ENES P. Prebiotics as functional ingredients: focus on Mediterranean fish aquaculture[J]. Reviews in Aquaculture, 2018, 10(4): 800-832. DOI:10.1111/raq.12201
[8]
吕耀平, 李铁民. 益生元在水产品养殖中应用的研究进展[J]. 饲料工业, 2005, 26(16): 8-13.
LV Y P, LI T M. Review on application of prebiotics as aquatic animal feed additive[J]. Feed Industry, 2005, 26(16): 8-13 (in Chinese). DOI:10.3969/j.issn.1001-991X.2005.16.002
[9]
AMENYOGBE E, CHEN G, WANG Z L, et al. The exploitation of probiotics, prebiotics and synbiotics in aquaculture: present study, limitations and future directions.: a review[J]. Aquaculture International, 2020, 28(3): 1017-1041. DOI:10.1007/s10499-020-00509-0
[10]
MOUSAVI E, MOHAMMADIAZARM H, MOUSAVI S M, et al. Effects of inulin, savory and onion powders in diet of juveniles carp Cyprinus carpio (Linnaeus 1758) on gut micro flora, immune response and blood biochemical parameters[J]. Turkish Journal of Fisheries and Aquatic Sciences, 2016, 16(4): 831-838.
[11]
HUNT A Ö, ÇETINKAYA M, YILMAZ F Ö, et al. Effect of dietary supplementation of inulin on growth performance, digestion enzyme activities and antioxidant status of rainbow trout (Oncorhynchus mykiss)[J]. Turkish Journal of Agriculture: Food Science and Technology, 2019, 7(9): 1344-1353. DOI:10.24925/turjaf.v7i9.1344-1353.2581
[12]
蒋飞, 严银龙, 施永海. 饲料中添加菊粉对暗纹东方鲀幼鱼生长、消化及非特异性免疫能力的影响[J]. 动物学杂志, 2020, 55(5): 599-605.
JIANG F, YAN Y L, SHI Y H. Effect of supplemental inulin in dietary on the growth, digestive enzyme and nonspecific immunity in juvenile Takifugu obscures[J]. Chinese Journal of Zoology, 2020, 55(5): 599-605 (in Chinese).
[13]
YANG G, QIU H M, YU R H, et al. Dietary supplementation of β-glucan, inulin and emodin modulates antioxidant response and suppresses intestinal inflammation of grass carp (Ctenopharyngodon idellus)[J]. Animal Feed Science and Technology, 2021, 272: 114789. DOI:10.1016/j.anifeedsci.2020.114789
[14]
LI Y, LIU H, DAI X L, et al. Effects of dietary inulin and mannan oligosaccharide on immune related genes expression and disease resistance of Pacific white shrimp, Litopenaeus vannamei[J]. Fish & Shellfish Immunology, 2018, 76: 78-92.
[15]
ZHOU L, LI H F, QIN J G, et al. Dietary prebiotic inulin benefits on growth performance, antioxidant capacity, immune response and intestinal microbiota in Pacific white shrimp (Litopenaeus vannamei) at low salinity[J]. Aquaculture, 2020, 518: 734847. DOI:10.1016/j.aquaculture.2019.734847
[16]
LU J T, BU X Y, XIAO S S, et al. Effect of single and combined immunostimulants on growth, anti-oxidation activity, non-specific immunity and resistance to Aeromonas hydrophila in Chinese mitten crab (Eriocheir sinensis)[J]. Fish & Shellfish Immunology, 2019, 93: 732-742.
[17]
DONG C H, WANG J. Immunostimulatory effects of dietary fructooligosaccharides on red swamp crayfish, Procambarus clarkia (Girard)[J]. Aquaculture Research, 2013, 44(9): 1416-1424. DOI:10.1111/j.1365-2109.2012.03146.x
[18]
胡晓伟, 上官静波, 黎中宝, 等. 饲料中添加壳寡糖对花鲈(Lateolabrax japonicas)幼鱼的生长、消化和血清生化指标的影响[J]. 海洋学报(中文版), 2018, 40(2): 69-76.
HU X W, SHANGGUAN J B, LI Z B, et al. Effects of dietary chitosan oligosaccharide on the performance, digestion and serum biochemical indexes of the juvenile Japanese seabass (Lateolabrax japonicus)[J]. Acta Oceanologica Sinica (Chinese), 2018, 40(2): 69-76 (in Chinese).
[19]
鲁耀鹏, 汪蕾, 张秀霞, 等. 饲料脂肪水平对红螯螯虾幼虾生长、肌肉组分、消化酶活力和免疫力的影响[J]. 饲料工业, 2018, 39(24): 17-23.
LU Y P, WANG L, ZHANG X X, et al. Effects of dietary lipid levels on growth, muscle composition, activities of digestive enzyme and immunity of juvenile red claw crayfish Cherax quadricarinatus[J]. Feed Industry, 2018, 39(24): 17-23 (in Chinese).
[20]
GANGULY S, PAUL I, MUKHOPADHAYAY S K. Application and effectiveness of immunostimulants, probiotics, and prebiotics in aquaculture: a review[J]. The Israeli Journal of Aquaculture-Bamidgeh, 2010, 62(3): 130-138.
[21]
RINGØ E, MYKLEBUST R, MAYHEW T M, et al. Bacterial translocation and pathogenesis in the digestive tract of larvae and fry[J]. Aquaculture, 2007, 268(1/2/3/4): 251-264.
[22]
TARINI J, WOLEVER T M S. The fermentable fibre inulin increases postprandial serum short-chain fatty acids and reduces free-fatty acids and ghrelin in healthy subjects[J]. Applied Physiology, Nutrition, and Metabolism, 2010, 35(1): 9-16. DOI:10.1139/H09-119
[23]
PATTERSON J K, YASUDA K, WELCH R M, et al. Supplemental dietary inulin of variable chain lengths alters intestinal bacterial populations in young pigs[J]. The Journal of Nutrition, 2010, 140(12): 2158-2161. DOI:10.3945/jn.110.130302
[24]
CHANGCHIEN C H, HAN Y C, CHEN H L. Konjac glucomannan polysaccharide and inulin oligosaccharide enhance the colonic mucosal barrier function and modulate gut-associated lymphoid tissue immunity in C57BL/6J mice[J]. The British Journal of Nutrition, 2020, 123(3): 319-327. DOI:10.1017/S000711451900285X
[25]
李会峰. 水飞蓟素、菊粉和β-葡聚糖对缓解凡纳滨对虾低盐应激的效应研究[D]. 硕士学位论文. 上海: 华东师范大学, 2019.
LI H F. Benificial effects of silymarin, inulin and β-glucan in relieving low-salinity caused stress in Litopenaeus vannamei[D]. Master's Thesis. Shanghai: East China Normal University, 2019. (in Chinese)
[26]
VOGT G. Synthesis of digestive enzymes, food processing, and nutrient absorption in decapod crustaceans: a comparison to the mammalian model of digestion[J]. Zoology, 2021, 147: 125945. DOI:10.1016/j.zool.2021.125945
[27]
LU J T, QI C L, LIMBU S M, et al. Dietary mannan oligosaccharide (MOS) improves growth performance, antioxidant capacity, non-specific immunity and intestinal histology of juvenile Chinese mitten crabs (Eriocheir sinensis)[J]. Aquaculture, 2019, 510: 337-346. DOI:10.1016/j.aquaculture.2019.05.048
[28]
席贻龙, 邓道贵, 崔之学. 日本沼虾消化道形态和组织学特点[J]. 动物学杂志, 1997(3): 9-12.
XI Y L, DENG D G, CUI Z X. Histological and scanning electron microscopic characteristics of the digestive tract of freshwater shrimp, Macrobrachium nipponense[J]. Chinese Journal of Zoology, 1997(3): 9-12 (in Chinese).
[29]
欧阳珊, 吴小平, 颜显辉, 等. 克氏螯虾消化系统的组织学研究[J]. 南昌大学学报(理科版), 2002, 26(1): 92-95,99.
OUYANG S, WU X P, YAN X H, et al. Histological studies of the digestive system of Cambrus clarkia (Crustacea)[J]. Journal of Nanchang University (Natural Science), 2002, 26(1): 92-95,99 (in Chinese).
[30]
邹广众, 孙虎山. 水产甲壳动物免疫学研究进展与前景展望[J]. 生命科学仪器, 2009, 7(6): 17-21.
ZOU G Z, SUN H S. Research advances and prospect in aquatic crustaceans immunology[J]. Life Science Instruments, 2009, 7(6): 17-21 (in Chinese).
[31]
YIN X L, LI Z J, YANG K, et al. Effect of guava leaves on growth and the non-specific immune response of Penaeus monodon[J]. Fish & Shellfish Immunology, 2014, 40(1): 190-196.
[32]
曹剑香, 简纪常, 吴灶和. 虾类体液免疫研究进展[J]. 湛江海洋大学学报(自然科学版), 2006, 26(1): 89-93.
CAO J X, JIAN J C, WU Z H. Research progress on humoral immunity of shrimp[J]. Journal of Zhanjiang Ocean University (Natural Science Edition), 2006, 26(1): 89-93 (in Chinese).
[33]
LUNA-GONZÁLEZ A, ALMARAZ-SALAS J C, FIERRO-CORONADO J A, et al. The prebiotic inulin increases the phenoloxidase activity and reduces the prevalence of WSSV in whiteleg shrimp (Litopenaeus vannamei) cultured under laboratory conditions[J]. Aquaculture, 2012, 362/363: 28-32.