动物营养学报    2022, Vol. 34 Issue (4): 2041-2053    PDF    
早期断奶仔猪蛋白质需要量及其影响因素的研究进展
侯磊 , 熊云霞 , 王丽 , 蒋宗勇     
广东省农业科学院动物科学研究所, 农业农村部华南动物营养与饲料重点实验室, 畜禽育种国家重点实验室, 岭南现代农业科学与技术广东省实验室茂名分中心, 广东省畜禽育种与营养研究重点实验室, 广州 510640
摘要: 早期断奶仔猪具有快速生长和较强蛋白质沉积能力, 对蛋白质营养需要量高。饲粮蛋白质水平对断奶仔猪生长性能、肠道健康、营养物质消化吸收代谢及体蛋白质沉积具有深远影响, 是断奶仔猪发挥生长潜力的关键因素。本文主要综述饲粮蛋白质水平对断奶仔猪生长性能、肠道健康、营养物质消化吸收以及体蛋白质沉积的影响, 早期断奶仔猪蛋白质需要量标准及影响断奶仔猪蛋白质需要量的因素, 以期在饲料禁抗及铜、锌限量添加的情况下, 为断奶仔猪蛋白质营养需要量研究提供一定理论基础。
关键词: 断奶仔猪    蛋白质需要量    肠道健康    体蛋白质沉积    
Research Progress on Protein Requirement and Its Influencing Factors of Early Weaned Piglets
HOU Lei , XIONG Yunxia , WANG Li , JIANG Zongyong     
Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming Branch, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
Abstract: Early weaned piglets grow fast and have strong protein deposition ability, so they have high protein requirements. Dietary protein level has a profound effect on the growth performance, intestinal health, nutrient digestion, absorption and metabolism, and body protein deposition of weaned piglets, so it is a key factor for weaned piglets to develop their growth potential. Meanwhile, the protein requirement of weaned piglets is affected by their basic intestinal health, dietary amino acid balance and energy intake. This review summarizes the effect of dietary protein level on the production performance, the protein requirement standard and the factors affecting the protein requirement of weaned piglets. We tend to provide a theoretical basis for the study of protein nutritional requirement of weaned piglets under the condition of feed antibiotics prohibition and limited addition of copper and zinc.
Key words: weaned piglets    protein requirements    intestinal health    body protein deposition    

早期断奶仔猪具有快速生长和较强的蛋白质沉积能力,对蛋白质需要量高[1-2]。确定断奶仔猪每日蛋白质需要量对于改善其生长性能、肠道健康、营养物质消化吸收代谢及体蛋白质沉积,进而发挥其生长潜力非常关键。但是,断奶仔猪消化系统发育不健全,且断奶后营养源从母乳转变为饲粮,加上饲养环境的改变,由转栏、混栏和离母等造成的心理应激,仔猪极易在断奶过渡期(断奶后2周)发生断奶应激而引起腹泻。如果发生较严重腹泻时仍然饲喂较高蛋白质水平饲粮,则会因过多未消化蛋白质进入后肠发酵而使腹泻加重[3-4]。过去,生产中通常保持饲粮高蛋白质水平的同时,添加抗生素、高剂量氧化锌和硫酸铜以预防、降低仔猪在断奶过渡期腹泻的发生[5-7]。然而,饲用抗生素滥用导致抗生素耐药性及抗生素耐药菌的传播,对全球公共卫生构成严重威胁[8-9];且在饲粮中添加高锌、高铜会引起土壤和水等环境的严重污染[10-11]。瑞典自1986年、丹麦自1998年、欧洲自2006年已禁止在畜禽饲料中添加抗生素。此外,欧盟决定自2017年起5年内取消所有含氧化锌的兽药上市许可,自2018年8月13日起,仔猪饲粮铜添加量上限从170 mg/kg降低到150 mg/kg(哺乳期及断奶后4周内)和100 mg/kg(断奶后5~8周)。中国也自2018年起降低了锌、铜在畜禽饲粮的添加上限,并宣布自2021年起畜禽饲料全面禁抗。以往关于断奶仔猪蛋白质需要量的研究多基于有抗及高铜、高锌添加的饲粮,在饲用抗生素禁用、氧化锌及硫酸铜限量使用的大背景下,断奶仔猪蛋白质需要量亦会有所变化。本文主要综述饲粮蛋白质水平对断奶仔猪生长性能的影响,早期断奶仔猪蛋白质需要量标准及影响断奶仔猪蛋白质需要量的因素,以期为新形势下断奶仔猪蛋白质营养需要量研究提供参考。

1 饲粮蛋白质水平对断奶仔猪的影响 1.1 饲粮蛋白质水平对断奶仔猪生长性能的影响

仔猪具有快速生长能力,对蛋白质需要量高[12]。断奶过渡期提高饲粮蛋白质水平可显著提高断奶仔猪生长性能[13-14]。但是,由于仔猪在断奶过渡期极易发生腹泻,生产上,通常在该阶段降低饲粮蛋白质水平以降低其腹泻严重程度。然而,降低饲粮蛋白质水平往往会导致断奶仔猪生长受限,通过平衡饲粮氨基酸可缓解低蛋白质对仔猪生长的负面影响。Toledo等[15]研究发现,在补充平衡赖氨酸、蛋氨酸、苏氨酸、色氨酸、缬氨酸和异亮氨基酸后,蛋白质水平从21.0%降低到15.0%并不会降低断奶仔猪平均日增重及平均日采食量。同时,Liu等[16]发现饲粮蛋白质水平从20%降低到17%虽然会显著降低仔猪断奶后第21天体重以及1~21 d平均日增重,但是调整赖氨酸: 蛋白质比值从6.14%到7.32%后,断奶后1~21 d平均日增重可恢复正常水平。然而,也有研究者指出,平衡氨基酸后的低蛋白质饲粮还是会造成断奶仔猪生长受限,如Zhang等[17]研究发现,与20.9%蛋白质饲粮相比,17.1%蛋白质饲粮(补充平衡赖氨酸、蛋氨酸、苏氨酸和色氨酸4种必需氨基酸)显著降低仔猪断奶1~14 d的平均日增重和料重比,即使在平衡4种必需氨基酸基础上进一步补充平衡异亮氨酸、亮氨酸和缬氨酸3种支链氨基酸后,平均日增重还是降低了5.6%,料重比降低了9.8%;Yue等[18]也发现,与23.1%蛋白质饲粮相比,即使补充平衡赖氨酸、蛋氨酸、苏氨酸、色氨酸、异亮氨酸、缬氨酸、苯丙氨酸和组氨酸8种必需氨基酸,17.2%蛋白质饲粮显著降低仔猪断奶1~14 d的平均日增重及料重比。综上所述,平衡氨基酸组成并不总能缓解低蛋白质饲粮引起的断奶仔猪生长阻滞效应。仔猪对饲粮蛋白质水平在生长性能方面响应不同,可能是由于蛋白质的消化率及其氨基酸组成、与动物需要量紧密相关的氨基酸含量和平衡、合成非必需氨基酸的氮的供应、结晶氨基酸与完整蛋白质中氨基酸沉积体蛋白质效率等的不同所致[19-20]

此外,在断奶过渡期饲喂低蛋白质饲粮,随后在保育期饲喂正常蛋白质水平饲粮,仔猪可能会有一段补偿生长期。Shi等[21]指出,与全期饲喂19%蛋白质饲粮的仔猪相比,饲喂13%蛋白质饲粮的仔猪虽然在断奶1~14 d平均日增重、平均日采食量及料重比均显著降低,但在15~28 d恢复饲粮蛋白质水平至19%后有提高平均日增重的趋势。然而,也有研究发现,在断奶后1~30 d分别饲喂仔猪20%和14%蛋白质饲粮,随后在31~65 d均饲喂17%蛋白质饲粮,在66~104 d均饲喂15%蛋白质饲粮,早期低蛋白质饲粮(14%)的仔猪体重在断奶第66天并没有得以恢复,而是直到断奶第105天后才得以恢复[22]。因此,仔猪断奶过渡期饲喂低蛋白质饲粮的时间不宜过长,控制在1~2周为宜,有利于仔猪后期补偿生长。

1.2 饲粮蛋白质水平对断奶仔猪肠道健康的影响

仔猪断奶后腹泻通常与胃肠道中产肠毒素大肠杆菌(enterotoxigenic Escherichia coli,ETEC)的增殖有关,而ETEC主要利用蛋白质发酵供其增殖。断奶仔猪由于应激导致腹泻,使得营养物质消化不全,未被消化的蛋白质进入大肠后加速肠道ETEC的增殖,且蛋白质经ETEC发酵产生尸胺和腐胺等一系列有毒物质,会加重仔猪腹泻[23-24]。饲用抗生素曾被广泛应用于预防、缓解仔猪断奶后腹泻[25]。然而,由于饲用抗生素滥用导致的抗生素耐药菌的出现,全球许多国家及区域已宣布畜禽饲料全面禁抗。因此,低蛋白质饲粮不失为应对仔猪断奶后腹泻的一种有效营养策略。研究表明,降低饲粮蛋白质水平可以显著降低仔猪断奶后2~3周的腹泻率[21, 26-27]。然而,Htoo等[28]却发现无论是饲喂20%还是24%蛋白质水平的无抗饲粮,对仔猪断奶后1~21 d腹泻情况均无显著影响,这可能与试验选用的仔猪群肠道基础健康状况有关,只有在仔猪群发生严重腹泻时,降低饲粮蛋白质水平才有显著效果;而Htoo等[28]选用的仔猪肠道都比较健康,没有发生严重腹泻,且其选用的蛋白质水平梯度中的低蛋白质水平也能达到正常饲粮的蛋白质水平。肠道形态、物理屏障、免疫屏障及微生物屏障功能是评价畜禽肠道健康的主要指征[29-31]。断奶仔猪蛋白质摄入不足会降低其肠道绒毛高度和绒隐比,引起肠道形态学损伤[22, 32],降低肠道紧密连接蛋白表达,影响其屏障功能。研究发现,低蛋白质饲粮显著降低了仔猪断奶第14天十二指肠绒毛高度和回肠紧密连接蛋白闭合蛋白(Occludin)的表达[17, 33]。降低断奶仔猪饲粮蛋白质水平还会影响肠道免疫反应,降低肠道黏膜促炎因子、提高肠道抗炎因子的表达[22, 34]。此外,降低饲粮蛋白质水平可能还会影响断奶仔猪肠道微生物组成及结构。范沛昕[33]研究发现,低蛋白质饲粮可显著降低回肠有害菌蓝藻细菌的相对丰度,同时提高结肠有益菌毛螺菌科的相对丰度。然而,Yu等[35]研究发现,不论断奶仔猪饲喂20%、17%还是14%蛋白质饲粮,各组空肠和结肠肠道菌群的α多样性和肠道菌属均无显著差异。造成不同研究间肠道菌群结果不同的原因,可能是不同研究处理时间长短不同,且不同研究中仔猪肠道基础健康状况不同。

1.3 饲粮蛋白质水平对断奶仔猪营养物质消化吸收的影响

饲粮蛋白质水平对断奶仔猪营养物质消化吸收的影响,主要表现为对蛋白质消化吸收的影响。Bikker等[36]报道,饲粮蛋白质水平由15%提高到22%后,仔猪粗蛋白质表观消化率得到了提高。然而,Fang等[37]发现,饲粮蛋白质水平由19.7%提高到21.7%和23.7%后,断奶仔猪粗蛋白质消化率线性降低。但是,也有研究发现,饲喂不同蛋白质水平饲粮对仔猪粗蛋白质表观消化率没有影响[38]。这些研究结果的不同可能是由于试验中的饲粮原料组成、动物生长阶段以及健康状况不同所致。蛋白质由氨基酸组成,蛋白质的消化代谢主要为氨基酸代谢,而蛋白质水平和氨基酸平衡会影响氨基酸代谢[39-40]。氨基酸转运载体负责肠道氨基酸转运,进而影响氨基酸向组织的供应和血清氨基酸含量的稳态。因此,血清中游离氨基酸含量可以反映动物的生理条件和营养状况[41-42]。研究发现,饲粮蛋白质可通过调控肠道碱性和中性氨基酸转运载体mRNA相对表达量而影响血清中数种相应氨基酸含量[43-45]。此外,Yu等[35]、Fang等[37]和Heo等[46]均发现提高饲粮蛋白质水平可提高断奶仔猪血清尿素氮含量。血清尿素氮含量虽然可作为反映饲粮蛋白质质量和动物氮摄入量的指标,确定动物蛋白质需求量的响应参数,但需要注意的是动物在摄入较多的蛋白质后,引起机体吸收增加会相应提高血清尿素氮含量,而摄入的蛋白质超过机体蛋白质需要量或者是饲喂相同蛋白质水平饲粮后血清尿素氮含量增加,则反映的是氮利用效率的降低[47]。因此,在估测断奶仔猪蛋白质需要量时,不能仅观察营养物质消化吸收与代谢对饲粮蛋白质水平的响应。

1.4 饲粮蛋白质水平对断奶仔猪体蛋白质沉积的影响

早期断奶仔猪具有很高的体蛋白质沉积能力。5~18 kg、6~21 kg和8~25 kg仔猪体蛋白质沉积分别为61、75和89 g/d[48]。Oresanya等[49]研究发现,饲喂9~25 kg仔猪蛋白质水平24.7%、净能9.9 MJ/kg的饲粮,其体蛋白质沉积为94 g/d,仔猪每日体蛋白质沉积: 每日蛋白质摄入量为0.48。同时,Silva等[50]研究发现,饲喂15~25 kg仔猪蛋白质水平12.5%、净能11.1 MJ/kg的饲粮,其体蛋白质沉积为66 g/d,仔猪每日体蛋白质沉积: 每日蛋白质摄入量为0.60。由以上仔猪每日体蛋白质沉积: 每日蛋白质摄入量比值可知,仔猪每日摄入的蛋白质数量有1/2用于其体蛋白质沉积。此外,在Silva等[50]的研究中,仔猪每日体蛋白质沉积数据大幅度低于Jones等[48]和Oresanya等[49],推测其可能原因是试验饲粮蛋白质水平过低,仔猪每日蛋白质摄入量仅为109 g/d,远低于NRC(2012)[51]推荐的11~25 kg仔猪蛋白质需要量171 g/d和中国《猪营养需要》(2020)[52]推荐8~25 kg仔猪蛋白质需要量154 g/d,这也反映了蛋白质摄入量与体蛋白质沉积的密切关系。体水分或体粗灰分含量与体蛋白质含量密切相关,反映为体蛋白质的伴随变化[53-54],因此,饲粮蛋白质水平还会影响除体蛋白质以外的其他体成分沉积。研究发现,降低饲粮蛋白质水平降低了仔猪体蛋白质、体水分和体粗灰分含量及沉积速率,并提高体脂肪含量及沉积速率[55-56]。出现这种现象可能是由于动物饲喂低蛋白质饲粮时,体蛋白质沉积速率也低,这样饲粮中有大量的能量以体脂肪形式储存;而在采食量没有显著改变的条件下,饲粮蛋白质水平增加时,在动物体蛋白质沉积上限还尚未达到时,体蛋白质沉积速率也会增加,进而能量储存为体脂肪也减少[57]。因此,准确了解断奶仔猪体成分沉积对蛋白质摄入量的响应,可以更好地确定其蛋白质需要量。

2 断奶仔猪蛋白质需要量标准

不同国家和区域,在不同时期,根据断奶仔猪日龄、体重、健康状况,其蛋白质需求量有不同的标准,这可能和当时的行业规范、饲料添加剂生产、饲养条件等有关。ARC(1981)[58]推荐0~3周龄和3~8周龄仔猪适宜饲粮蛋白质水平分别为20.8%和18.2%;NRC(1998)[59]推荐5~10 kg和10~20 kg仔猪适宜饲粮蛋白质水平分别为23.7%和20.9%,仔猪每日蛋白质需要量分别为119和209 g/d;NRC(2012)[51]推荐5~7 kg、7~11 kg和11~25 kg仔猪适宜饲粮蛋白质水平分别为22.7%、20.6%和18.9%,仔猪每日蛋白质需要量分别为61、96和171 g/d;丹麦猪营养标准(SEGES)(2020)[60]则为仔猪提供了2种饲粮方案:标准饲粮和保护性饲粮,其饲粮蛋白质水平在6~9 kg分别为19.7%~21.6%和17.9%~19.8%,9~15 kg分别为19.5%~21.5%和18.8%~20.7%,15~30 kg分别为21.8%~23.9%和20.9%~22.8%;标准饲粮是基于获得最佳经济效益,而保护性饲粮则是针对那些爆发周期性腹泻的仔猪以缓解腹泻压力;中国《猪饲养标准》(2004)[61]推荐3~8 kg和8~20 kg瘦肉型仔猪适宜饲粮蛋白质水平分别为21.0%和19.0%,仔猪每日蛋白质需要量分别为63和141 g/d;中国《猪营养需要量》(2020)[52]推荐3~8 kg和8~25 kg瘦肉型仔猪适宜饲粮蛋白质水平分别为21.0%和18.5%,仔猪每日蛋白质需要量分别为61和154 g/d。

现有关于饲粮蛋白质水平对断奶仔猪的影响研究多以不同时期,各国或区域猪营养标准为前提,设置高低蛋白质水平梯度展开。在中国知网和Web of Science两大数据库平台搜索了自2000年以来国内外发表的仔猪蛋白质需要量研究文献,筛选标准以饲粮蛋白质水平至少含有4个梯度为准(饲料蛋白质水平梯度设置以上述标准为参考),并以平均日增重为评价指标,利用折线线性和折线二次模型估测了仔猪的蛋白质需要量(表 1)。从表 1中可知,现有的大部分断奶仔猪蛋白质需要量的研究,其饲粮或添加药物饲料添加剂,或添加的氧化锌或硫酸铜含量分别超过我国规定的上限(1 600、125 mg/kg)。同时,发现仅贾荣玲等[62]进行了比较屠宰试验测定仔猪体成分含量以估测断奶仔猪蛋白质需要量,而其他文献则只观察了生长性能或血清尿素氮含量对饲粮蛋白质水平的响应。比较屠宰法虽然工序复杂、耗时费力、成本又高,但它是提供畜禽空体宏量和微量营养成分组成可靠数据的唯一方法,而且是确定营养物质需要量的经典方法[63-64]

表 1 断奶仔猪蛋白质需要量研究文献总结 Table 1 Summary of research literature on protein requirements of weaned piglets
3 影响断奶仔猪蛋白质需要量的因素 3.1 肠道健康

断奶仔猪蛋白质需要量与断奶过渡期仔猪肠道的基础健康状况息息相关,不同肠道健康状况下的仔猪需要不同的饲喂策略。生产中常常应用抗生素于仔猪断奶期以应对其腹泻情况,抗生素可通过抑制病原菌生长,减少肠道菌群对营养物质的利用和增强肠上皮细胞对营养物质的吸收等达到促进动物生长和控制肠道疾病的效果[75-76]。然而,饲用抗生素滥用导致的抗生素耐药菌的传播,会对全球公共卫生构成严重威胁[8-9]。因此,全球各国及区域已经陆续禁止抗生素在畜禽饲料中的使用,我国也自2020年起禁止使用含有抗生素的饲料。此外,除抗生素外,超过动物营养需要量数10倍的高剂量锌、铜常常被用于预防仔猪腹泻及促生长[5-6]。但是,这些重金属排放会引起土壤中蓄积及水等环境的严重污染。中国自2018年7月1日起,就将仔猪断奶后前2周饲粮中氧化锌形式的锌添加量由以前的上限2 250 mg/kg下调至1 600 mg/kg,仔猪(≤25 kg),铜的添加量由以前上限的200 mg/kg下调至125 mg/kg。在饲用抗生素禁用、氧化锌及硫酸铜限量使用的背景下,断奶仔猪的肠道健康问题成为了关注的热点问题。本研究室基于前期数10个断奶仔猪试验数据结果,直观地将仔猪断奶后2周的肠道健康划分为4个等级[77]:健康(T1,腹泻率 < 5%,平均日增重 > 240 g/d,平均日采食量>358 g/d,料重比 < 1.53)、较健康(T2,腹泻率:5%~15%,平均日增重:240~190 g/d,平均日采食量:358~302 g/d,料重比:1.53~1.84)、较不健康(T3,腹泻率:15%~25%,平均日增重:190~139 g/d,平均日采食量:302~249 g/d,料重比:1.84~2.15)和不健康(T4,腹泻率>25%,平均日增重 < 139 g/d,平均日采食量 < 249 g/d,料重比 > 2.15)。丹麦营养标准(2020)[60]也专门针对那些爆发周期性腹泻的断奶仔猪提供了保护性饲粮方案以降低腹泻压力。

Wu等[78]在饲粮无抗生素和氧化锌条件下,研究不同饲粮蛋白质水平(17.0%、19.0%、23.7%)对仔猪断奶后2周的生长性能的影响时发现,随着饲粮蛋白质水平提高,断奶仔猪腹泻率线性提高(25%-44%-55%),断奶仔猪平均日增重线性降低(107 g/d-46 g/d-32 g/d)。其中23.7%蛋白质组的断奶仔猪腹泻率高达55%,平均日增重仅为32 g/d,表明断奶仔猪肠道已经非常不健康,实际上断奶仔猪肠道健康已经处于上述肠道健康分级的T4等级。而饲喂17%蛋白质饲粮,腹泻率可控制在25%,平均日增重提高到107 g/d。在有抗生素及高剂量锌、铜使用的情况下,断奶仔猪对饲粮蛋白质水平的响应可能与饲粮无抗生素及锌、铜限量使用的情况下会有所不同。添加抗生素会影响宿主氮代谢,提高仔猪蛋白质、苯丙氨酸、缬氨酸、丙氨酸、酪氨酸和总氨基酸的回肠表观消化率,提高仔猪血清尿素含量,上调血清中大部分的氨基酸含量,下调肠道内容物中大部分的氨基酸含量,同时,显著增加大肠中氨基酸脱羧产物如腐胺、尸胺和亚精胺等[79-82]。而在无抗的情况下,提高饲粮蛋白质水平显著提高仔猪断奶1~14 d的生长性能及粪便分数[14]。研究发现,饲喂高蛋白质饲粮或无氧化锌饲粮可提高ETEC攻毒断奶仔猪的粪便稠度,而低蛋白质饲粮及添加氧化锌饲粮可显著降低ETEC攻毒断奶仔猪腹泻率[83]

3.2 氨基酸平衡

早在50多年前,Mitchell[84]就提出了“理想蛋白质”的概念,1981年ARC[58]首次将该理念应用于养猪生产上。理想蛋白质假定其蛋白质的氨基酸组成和比例与特定生理条件下猪维持、生产所需要的氨基酸组成比例一致,理想蛋白质中最重要的是氨基酸平衡。饲喂理想氨基酸平衡模式饲粮的仔猪体蛋白质含量和体蛋白质沉积速率要显著高于其他组[85]。饲粮氨基酸比例不平衡,会造成其营养价值降低,并引起肠道氨基酸的竞争性吸收和转运,导致肠道损伤和代谢紊乱。研究发现,饲粮缺乏含硫氨基酸会影响仔猪不同体组织中如胴体、背最长肌和血液中蛋白质沉积速率和氨基酸组成[86];而饲粮缺乏赖氨酸会显著降低机体氮留量,在补充赖氨酸后会使蛋白质沉积速度增加[87]。不同氨基酸平衡模式下,仔猪的蛋白质需要量不同,在标准回肠可消化赖氨酸水平为1.0%时,适宜饲粮蛋白质水平为16.8%,而在标准回肠可消化赖氨酸水平为1.1%时,适宜饲粮蛋白质水平为18.1%[38]表 2总结了不同国家在不同时期推荐的仔猪理想蛋白质标准回肠可消化氨基酸平衡模式,以第一限制性必需氨基酸赖氨酸作为基准氨基酸,其相对需要量定为100,其他氨基酸需要量表示为赖氨酸需要量的百分比。

表 2 仔猪理想蛋白质标准回肠可消化氨基酸平衡模式 Table 2 Standardized ileal digestible amino acid balance pattern of ideal protein for piglets
3.3 能量摄入量

能量摄入量是决定猪生长速度的关键因素[51],断奶仔猪体蛋白质沉积与能量摄入量呈正相关[89]。体重低于20 kg的仔猪,受采食量限制,如果饲粮能量浓度过低就无法保证其对能量的需要量,同时会导致其他营养物质的摄入量过低。4~9 kg早期断奶仔猪适宜的饲粮消化能浓度推荐为15.64 MJ/kg[90],要高于生长育肥猪适宜的饲粮消化能浓度[91-92]。另外,在设计饲粮营养组成时,除了考虑饲粮能量浓度外,非常有必要考虑饲粮蛋白质水平和蛋白质: 能量比。研究发现,提高饲粮净能水平同时降低其蛋白质水平和蛋白质: 净能比值,对10~25 kg仔猪生长性能没有显著影响,但是会提高仔猪体脂肪含量,且降低体蛋白质含量[49]。以上研究表明,只有在满足仔猪蛋白质需要量时,其体蛋白质沉积量才会随能量摄入量增加而线性增加,且这种线性关系的斜率会随着猪体重的增加而变小[51]。Fang等[37]在研究不同代谢能水平(13.8和13.4 MJ/kg)和蛋白质水平(23.7%、21.7%和19.7%)对9~14 kg仔猪生长性能影响时发现,饲粮蛋白质水平为19.7%、代谢能水平为13.8 MJ、蛋白质: 代谢能比值为14.3 g/MJ时生长性能最佳。贾荣玲等[62]在研究不同蛋白质水平(20.2%、17.5%、15.0%和12.5%)和蛋白质: 代谢能比值(13.8、12.2、10.1和8.6 g/MJ)对9~23 kg仔猪生长性能时发现,适宜的蛋白质水平和蛋白质: 代谢能比值分别为21.5%和13.8 g/MJ。此外,蛋白质的基本结构单位是氨基酸,动物对蛋白质的需求主要是氨基酸的需求。赖氨酸是大多数饲粮中的第一限制性氨基酸,所以很多研究由推荐蛋白质: 能量比转变到推荐赖氨酸: 能量比。然而,Cline等[93]在研究具有相同表观回肠可消化赖氨酸: 代谢能比值(0.34 g/MJ),但表观回肠可消化赖氨酸(0.40%~0.56%)、蛋白质(11.3%~14.6%)和代谢能水平(11.6~16.2 MJ/kg)不同的饲粮,对断奶仔猪生长性能的影响发现,含有满足营养需要表观回肠可消化赖氨酸: 代谢能比值的饲粮并不能充分保证猪的最佳生长性能,并认为需要评估和校正饲粮中蛋白质和能量水平以获得最佳的生长和效率。综上所述,在确定断奶仔猪蛋白质需要量的同时需要考虑其能量需要量,而准确估测其能量摄入量,并基于其摄入饲粮的物理能力,设计适宜的饲粮能量水平和饲粮蛋白质: 能量比才可以更好地发挥仔猪的生长潜能。

4 小结

断奶仔猪每日蛋白质供给会显著影响其生长性能、肠道健康、营养物质消化吸收及体蛋白质沉积,而断奶仔猪蛋白质需要量又受其肠道基础健康状况、饲粮氨基酸平衡及能量摄入量的影响。已有关于断奶仔猪蛋白质需要量研究多是以生产性能如平均日增重,或者以代谢指标如血清尿素氮含量作为评价指标,而较少以胴体性状如体蛋白质沉积作为评价指标。再者,在饲用抗生素禁用背景下,通常采用低蛋白质饲粮来降低仔猪在断奶过渡期腹泻发生的严重程度,但低蛋白质饲粮策略通常伴随仔猪生长性能的下降,在保育期将饲粮恢复至正常蛋白质水平后可能会发生补偿性生长,但对于是否发生补偿性体蛋白质沉积研究还较少。综上所述,以往有关断奶仔猪蛋白质需要量的研究多是基于有抗生素及高铜、高锌添加的基础上得出,在无抗生素,铜、锌限量添加的背景下,仔猪断奶过渡期蛋白质需要量还需进一步研究。

参考文献
[1]
MEISINGER D J. National swine nutrition guide[M]. Des Moines: U.S.Pork Center of Excellence,, 2010.
[2]
武振龙, 伍国耀. 猪蛋白质营养与代谢研究的新发现和展望[J]. 中国畜牧杂志, 2018, 54(7): 1-5.
WU Z L, WU G Y. New findings and prospects of protein nutrition and metabolism in pigs[J]. Chinese Journal of Animal Science, 2018, 54(7): 1-5 (in Chinese).
[3]
WELLOCK I J, FORTOMARIS P D, HOUDIJK J G M, et al. Effects of dietary protein supply, weaning age and experimental enterotoxigenic Escherichia coli infection on newly weaned pigs: health[J]. Animal, 2008, 2(6): 834-842. DOI:10.1017/S1751731108002048
[4]
PLUSKE J R, PETHICK D W, HOPWOOD D E, et al. Nutritional influences on some major enteric bacterial diseases of pig[J]. Nutrition Research Reviews, 2002, 15(2): 333-371. DOI:10.1079/NRR200242
[5]
HILL G M, CROMWELL G L, CRENSHAW T D, et al. Growth promotion effects and plasma changes from feeding high dietary concentrations of zinc and copper to weanling pigs (regional study)[J]. Journal of Animal Science, 2000, 78(4): 1010-1016. DOI:10.2527/2000.7841010x
[6]
KLOUBERT V, BLAABJERG K, DALGAARD T S, et al. Influence of zinc supplementation on immune parameters in weaned pigs[J]. Journal of Trace Elements in Medicine and Biology, 2018, 49: 231-240. DOI:10.1016/j.jtemb.2018.01.006
[7]
CROMWELL G L. Why and how antibiotics are used in swine production[J]. Animal Biotechnology, 2002, 13(1): 7-27. DOI:10.1081/ABIO-120005767
[8]
NHUNG N T, CUONG N V, THWAITES G, et al. Antimicrobial usage and antimicrobial resistance in animal production in southeast Asia: a review[J]. Antibiotics, 2016, 5(4): 37. DOI:10.3390/antibiotics5040037
[9]
MOREHEAD M S, SCARBROUGH C. Emergence of global antibiotic resistance[J]. Primary Care: Clinics in Office Practice, 2018, 45(3): 467-484. DOI:10.1016/j.pop.2018.05.006
[10]
EFSA Panel on Additives and Products or Substances used in Animal Feed. Scientific opinion on the potential reduction of the currently authorised maximum zinc content in complete feed[J]. EFSA Journal, 2014, 12(5): 3668.
[11]
EFSA Panel on Additives and Products or Substances used in Animal Feed. Revision of the currently authorised maximum copper content in complete feed[J]. EFSA Journal, 2016, 14(8): e04563.
[12]
HODGE R W. Efficiency of food conversion and body composition of the preruminant lamb and the young pig[J]. British Journal of Nutrition, 1974, 32(1): 113-126. DOI:10.1079/BJN19740062
[13]
NYACHOTI C M, OMOGBENIGUN F O, RADEMACHER M, et al. Performance responses and indicators of gastrointestinal health in early-weaned pigs fed low-protein amino acid-supplemented diets[J]. Journal of Animal Science, 2006, 84(1): 125-134. DOI:10.2527/2006.841125x
[14]
WELLOCK I J, FORTOMARIS P D, HOUDIJK J G M, et al. The effect of dietary protein supply on the performance and risk of post-weaning enteric disorders in newly weaned pigs[J]. Animal Science, 2006, 82(3): 327-335. DOI:10.1079/ASC200643
[15]
TOLEDO J B, FURLAN A C, POZZA P C, et al. Effect of the reduction of the crude protein content of diets supplemented with essential amino acids on the performance of piglets weighing 6-15 kg[J]. Livestock Science, 2014, 168: 94-101. DOI:10.1016/j.livsci.2014.07.006
[16]
LIU H N, WU L, HAN H, et al. Reduced dietary nitrogen with a high lys: CP ratio restricted dietary N excretion without negatively affecting weaned piglets[J]. Animal Nutrition, 2019, 5(2): 115-123. DOI:10.1016/j.aninu.2019.01.001
[17]
ZHANG S H, QIAO S Y, REN M, et al. Supplementation with branched-chain amino acids to a low-protein diet regulates intestinal expression of amino acid and peptide transporters in weanling pigs[J]. Amino Acids, 2013, 45(5): 1191-1205. DOI:10.1007/s00726-013-1577-y
[18]
YUE L Y, QIAO S Y. Effects of low-protein diets supplemented with crystalline amino acids performance and intestinal development in piglets over the first 2 weeks after weaning[J]. Livestock Science, 2008, 115(2/3): 144-152.
[19]
VAN MILGEN J, DOURMAD J Y. Concept and application of ideal protein for pigs[J]. Journal of Animal Science and Biotechnology, 2015, 6(1): 15. DOI:10.1186/s40104-015-0016-1
[20]
TUITOEK K, YOUNG L G, DE LANGE C F, et al. The effect of reducing excess dietary amino acids on growing-finishing pig performance: an elevation of the ideal protein concept[J]. Journal of Animal Science, 1997, 75(6): 1575-1583. DOI:10.2527/1997.7561575x
[21]
SHI Q, ZHU Y, WANG J, et al. Protein restriction and succedent realimentation affecting ileal morphology, ileal microbial composition and metabolites in weaned piglets[J]. Animal, 2019, 13(11): 2463-2472. DOI:10.1017/S1751731119000776
[22]
ZHAO X, FU H Y, QIU S N, et al. Effects of early protein restriction on the growth performance and gut development of pigs fed diets with or without antibiotic[J]. Animal, 2020, 14(7): 1392-1401. DOI:10.1017/S1751731119002921
[23]
FAIRBROTHER J M, NADEAU E, GYLES C L. Escherichia coli in postweaning diarrhea in pigs: an update on bacterial types, pathogenesis, and prevention strategies[J]. Animal Health Research Reviews, 2005, 6(1): 17-39. DOI:10.1079/AHR2005105
[24]
NAGY B, FEKETE P Z. Enterotoxigenic Escherichia coli in veterinary medicine[J]. International Journal of Medical Microbiology, 2005, 295(6/7): 443-454.
[25]
HEO J M, OPAPEJU F O, PLUSKE J R, et al. Gastrointestinal health and function in weaned pigs: a review of feeding strategies to control post-weaning diarrhoea without using in-feed antimicrobial compounds[J]. Journal of Animal Physiology and Animal Nutrition, 2013, 97(2): 207-237. DOI:10.1111/j.1439-0396.2012.01284.x
[26]
KIL D Y, STEIN H H. Invited review: management and feeding strategies to ameliorate the impact of removing antibiotic growth promoters from diets fed to weanling pigs[J]. Canadian Journal of Animal Science, 2010, 90(4): 447-460. DOI:10.4141/cjas10028
[27]
辛小召, 邓祖丽颖, 石秋锋, 等. 不同蛋白水平日粮对断奶仔猪的影响[J]. 江西农业学报, 2014, 26(2): 124-128.
XIN X Z, DENGZU L Y, SHI Q F, et al. Effects of diets with different levels of protein on weaned piglets[J]. Acta Agriculturae Jiangxi, 2014, 26(2): 124-128 (in Chinese). DOI:10.3969/j.issn.1001-8581.2014.02.033
[28]
HTOO J K, ARAIZA B, SAUER W C, et al. Effect of dietary protein content on ileal amino acid digestibility, growth performance, and formation of microbial metabolites in ileal and cecal digesta of early-weaned pigs[J]. Journal of Animal Science, 2007, 85(12): 3303-3312. DOI:10.2527/jas.2007-0105
[29]
YE G, QIU Y, HE X L, et al. Effect of two macrocephala flavored powder supplementation on intestinal morphology and intestinal microbiota in weaning pigs[J]. International Journal of Clinical and Experimental Medicine, 2015, 8(1): 1504-1514.
[30]
GROSCHWITZ K R, HOGAN S P. Intestinal barrier function: molecular regulation and disease pathogenesis[J]. The Journal of Allergy and Clinical Immunology, 2009, 124(1): 3-20. DOI:10.1016/j.jaci.2009.05.038
[31]
MENG Q W, SUN S S, LUO Z, et al. Maternal dietary resveratrol alleviates weaning-associated diarrhea and intestinal inflammation in pig offspring by changing intestinal gene expression and microbiota[J]. Food & Function, 2019, 10(9): 5626-5643.
[32]
PLUSKE J R, HAMPSON D J, WILLIAMS I H. Factors influencing the structure and function of the small intestine in the weaned pig: a review[J]. Livestock Production Science, 1997, 51(1/3): 215-236.
[33]
范沛昕. 低蛋白日粮对断奶仔猪和育肥猪肠道微生物区系的影响[D]. 硕士学位论文. 北京: 中国农业大学, 2016.
FAN P X. Effects of low protein diets on the intestinal microbiota of weaned piglets and finishing pigs[D]. Master's Thesis. Beijing: China Agricultural University, 2016. (in Chinese)
[34]
刘雅婷, 孔祥峰. 低蛋白质氨基酸平衡饲粮对猪肠道健康影响的研究进展[J]. 动物营养学报, 2021, 33(2): 679-685.
LIU Y T, KONG X F. Advance: effects of low protein diets with balanced amino acids on intestinal health of pigs[J]. Chinese Journal of Animal Nutrition, 2021, 33(2): 679-685 (in Chinese). DOI:10.3969/j.issn.1006-267x.2021.02.009
[35]
YU D F, ZHU W Y, HANG S Q. Effects of low-protein diet on the intestinal morphology, digestive enzyme activity, blood urea nitrogen, and gut microbiota and metabolites in weaned pigs[J]. Archives of Animal Nutrition, 2019, 73(4): 287-305. DOI:10.1080/1745039X.2019.1614849
[36]
BIKKER P, DIRKZWAGER A, FLEDDERUS J, et al. The effect of dietary protein and fermentable carbohydrates levels on growth performance and intestinal characteristics in newly weaned piglets[J]. Journal of Animal Science, 2006, 84(12): 3337-3345. DOI:10.2527/jas.2006-076
[37]
FANG L H, JIN Y H, DO S H, et al. Effects of dietary energy and crude protein levels on growth performance, blood profiles, and nutrient digestibility in weaning pigs[J]. Asian-Australasian Journal of Animal Sciences, 2019, 32(4): 556-563.
[38]
MILLET S, ALUWÉ M, DE BOEVER J, et al. The effect of crude protein reduction on performance and nitrogen metabolism in piglets (four to nine weeks of age) fed two dietary lysine levels[J]. Journal of Animal Science, 2018, 96(9): 3824-3836. DOI:10.1093/jas/sky254
[39]
HE L Q, YANG H S, HOU Y Q, et al. Effects of dietary L-lysine intake on the intestinal mucosa and expression of CAT genes in weaned piglets[J]. Amino Acids, 2013, 45(2): 383-391. DOI:10.1007/s00726-013-1514-0
[40]
CHEN G, ZHANG J, ZHANG Y Z, et al. Oral MSG administration alters hepatic expression of genes for lipid and nitrogen metabolism in suckling piglets[J]. Amino Acids, 2014, 46(1): 245-250. DOI:10.1007/s00726-013-1615-9
[41]
HE Q H, REN P P, KONG X F, et al. Comparison of serum metabolite compositions between obese and lean growing pigs using an NMR-based metabonomic approach[J]. The Journal of Nutritional Biochemistry, 2012, 23(2): 133-139. DOI:10.1016/j.jnutbio.2010.11.007
[42]
ZHANG J, YIN Y L, HE Q H, et al. Effects of MSG supplementation on free amino acids in plasma of growing-finishing pigs[J]. Journal of Food Agriculture & Environment, 2012, 10(3/4): 600-605.
[43]
LI Y Y, YIN J, HAN H, et al. Metabolic and proteomic responses to long-term protein restriction in a pig model[J]. Journal of Agricultural and Food Chemistry, 2018, 66(47): 12571-12579. DOI:10.1021/acs.jafc.8b05305
[44]
SKALLI A, ZAMBONINO-INFANTE J L, KOTZAMANIS Y, et al. Peptide molecular weight distribution of soluble protein fraction affects growth performance and quality in European sea bass (Dicentrarchus labrax) larvae[J]. Aquaculture Nutrition, 2014, 20(2): 118-131. DOI:10.1111/anu.12058
[45]
WU L, HE L Q, CUI Z J, et al. Effects of reducing dietary protein on the expression of nutrition sensing genes (amino acid transporters) in weaned piglets[J]. Journal of Zhejiang University: Science B, 2015, 16(6): 496-502. DOI:10.1631/jzus.B1400259
[46]
HEO J M, KIM J C, HANSEN C F, et al. Effects of feeding low protein diets to piglets on plasma urea nitrogen, faecal ammonia nitrogen, the incidence of diarrhoea and performance after weaning[J]. Archives of Animal Nutrition, 2008, 62(5): 343-358. DOI:10.1080/17450390802327811
[47]
PEDERSEN C, BOISEN S. Studies on the response time for plasma urea nitrogen as a rapid measure for dietary protein quality in pigs[J]. Acta Agriculturae Scandinavica Section A: Animal Science, 2001, 51(4): 209-216.
[48]
JONES C K, GABLER N K, MAIN R G, et al. Characterizing growth and carcass composition differences in pigs with varying weaning weights and postweaning performance[J]. Journal of Animal Science, 2012, 90(11): 4072-4080. DOI:10.2527/jas.2011-4793
[49]
ORESANYA T F, BEAULIEU A D, PATIENCE J F. Investigations of energy metabolism in weanling barrows: the interaction of dietary energy concentration and daily feed (energy) intake[J]. Journal of Animal Science, 2008, 86(2): 348-363. DOI:10.2527/jas.2007-0009
[50]
SILVA K E, HUBER L A, MANSILLA W D, et al. The effect of reduced dietary glycine and serine and supplemental threonine on growth performance, protein deposition in carcass and viscera, and skin collagen abundance of nursery pigs fed low crude protein diets[J]. Journal of Animal Science, 2020, 98(5): skaa157. DOI:10.1093/jas/skaa157
[51]
N RC. Nutrient requirements of swine[M]. 11th ed. Washington, District of Columbia: National Academies Press, 2012.
[52]
李德发. 中国猪营养需要[M]. 北京: 中国农业出版社, 2020.
LI D F. Nutrient requirements of swine in China[M]. Beijing: China Agriculture Press, 2020 (in Chinese).
[53]
COLINA J J, MILLER P S, LEWIS A J, et al. Body composition, tissue deposition, and lysine utilization for protein deposition of barrows and gilts fed crystalline or protein-bound lysine[J]. Journal of Animal Science, 2016, 94(5): 1972-1981. DOI:10.2527/jas.2015-0190
[54]
DE GREEF K H. Prediction of production: nutritional induced tissue partitioning in growing pigs[D]. Ph. D. Thesis. Wageningen: Wageningen University & Research, 1992.
[55]
CONDE-AGUILERA J A, AGUINAGA M A, LARA L, et al. Carcass traits and organ weights of 10-25 kg body weight Iberian pigs fed diets with different protein-to-energy ratio[J]. Animal Feed Science and Technology, 2011, 164(1/2): 116-124.
[56]
WYLLIE D, SPEER V C, EWAN R C, et al. Effects of starter protein level on performance and body composition of pigs[J]. Journal of Animal Science, 1969, 29(3): 433-438. DOI:10.2527/jas1969.293433x
[57]
BATTERHAM E S, ANDERSEN L M, BAIGENT D R, et al. Utilization of ileal digestible amino acids by growing pigs: effect of dietary lysine concentration on efficiency of lysine retention[J]. British Journal of Nutrition, 1990, 64(1): 81-94. DOI:10.1079/BJN19900011
[58]
Commonwealth Agricultural Bureaux. The nutrient requirements of pigs[M]. Slough: Commonwealth Agricultural Bureaux, 1981.
[59]
N RC. Nutrient requirements of swine[M]. 10th ed. Washington, D.C.: National Academies Press, 1998.
[60]
TYBIRK P, SLOTH N M, KJELDSEN N, et al. Danish nutrient standards[S]. Copenhagen: SEGES Danish Pig Research Centre, 2020.
[61]
中华人民共和国农业部. 猪饲养标准: NY/T 65—2004[S]. 北京: 中国农业出版社, 2004.
Ministry of Agriculture of the People's Republic of China. Feeding standard of swine: NY/T 65—2004[S]. Beijing: China Agricultural Press, 2004. (in Chinese)
[62]
贾荣玲, 李生涛, 王新炎. 不同粗蛋白质和消化能比日粮对仔猪生长性能、组织器官重量及屠体成分的影响[J]. 中国饲料, 2018(18): 63-66.
JIA R L, LI S T, WANG X Y. Dietary crude protein and digestible energy levels on growth performance, organ relative weight and carcass composition of piglets[J]. China Feed, 2018(18): 63-66 (in Chinese).
[63]
RUIZ-ASCACIBAR I, STOLL P, KREUZER M, et al. Dietary CP and amino acid restriction has a different impact on the dynamics of protein, amino acid and fat deposition in entire male, astrated and female pigs[J]. Animal, 2019, 13(1): 74-82. DOI:10.1017/S1751731118000770
[64]
SCHINCKEL A P, MAHAN D C, WISEMAN T G, et al. Growth of protein, moisture, lipid, and ash of two genetic lines of barrows and gilts from twenty to one hundred twenty-five kilograms of body weight[J]. Journal of Animal Science, 2008, 86(2): 460-471. DOI:10.2527/jas.2007-0625
[65]
林映才, 蒋宗勇, 吴世林, 等. 3.4~9.5 kg超早期断奶仔猪粗蛋白质需求参数研究[J]. 中国畜牧杂志, 2001, 37(3): 5-7.
LIN Y C, JIANG Z Y, WU S L, et al. Study on the crude protein requirement of 3.4 to 9.5 kg early-weaned piglets[J]. Chinese Journal of Animal Science, 2001, 37(3): 5-7 (in Chinese). DOI:10.3969/j.issn.0258-7033.2001.03.002
[66]
罗洪明, 陈代文. 不同蛋白水平对早期断奶仔猪生产性能、血液生化指标的影响[J]. 饲料研究, 2005(8): 3-8.
LUO H M, CHEN D W. Influences of various dietary protein levels on growth performance and blood biochemical parameters in early weaned piglets[J]. Feed Research, 2005(8): 3-8 (in Chinese). DOI:10.3969/j.issn.1002-2813.2005.08.002
[67]
JONES C K, TOKACH M D, USRY J L, et al. Evaluating lysine requirements of nursery pigs fed low protein diets with different sources of nonessential amino acids[J]. Journal of Animal Science, 2014, 92(8): 3460-3470. DOI:10.2527/jas.2014-7018
[68]
张维, 龚月生, 曹雨莉, 等. 日粮蛋白质水平对早期断奶仔猪生产性能、粪便微生物及血液生化指标的影响[J]. 西北农业学报, 2007, 16(6): 57-62.
ZHANG W, GONG Y S, CAO Y L, et al. Effect of dietary protein level on performance, feces micro-flora and blood biochemical parameters in early-weaned piglets[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2007, 16(6): 57-62 (in Chinese). DOI:10.3969/j.issn.1004-1389.2007.06.013
[69]
GLOAGUEN M, LE FLOC'H N, CORRENT E, et al. The use of free amino acids allows formulating very low crude protein diets for piglets[J]. Journal of Animal Science, 2014, 92(2): 637-644. DOI:10.2527/jas.2013-6514
[70]
WARNANTS N, VAN OECKEL M J, DE PAEPE M. Study of the optimum ideal protein level for weaned piglets[J]. Journal of Animal Physiology and Animal Nutrition, 2001, 85(11/12): 356-368.
[71]
林映才, 蒋宗勇, 余德谦, 等. 10~20 kg仔猪粗蛋白需求参数研究[J]. 饲料博览, 2001(1): 5-7.
LIN Y C, JIANG Z Y, YU D Q, et al. Study on the crude protein requirements of 10 to 20 kg piglets[J]. Feed Review, 2001(1): 5-7 (in Chinese). DOI:10.3969/j.issn.1001-0084.2001.01.002
[72]
薛强, 张鹤亮, 李秀花, 等. 低粗蛋白质氨基酸平衡日粮对仔猪生长性能、血液指标、营养物质表观消化率和腹泻率的影响[J]. 中国畜牧兽医, 2019, 46(8): 2307-2314.
XUE Q, ZHANG H L, LI X H, et al. Effects of low crude protein diet supplemented with amino acids on the growth performance, blood indexes, nutrient apparent digestibility and diarrhea rate of weaned piglets[J]. China Animal Husbandry & Veterinary Medicine, 2019, 46(8): 2307-2314 (in Chinese).
[73]
TOLEDO J B, FURLAN A C, POZZA P C, et al. Reduction of the crude protein content of diets supplemented with essential amino acids for piglets weighing 15 to 30 kilograms[J]. Revista Brasileira de Zootecnia, 2014, 43(6): 301-309. DOI:10.1590/S1516-35982014000600004
[74]
PENG X, HU L, LIU Y, et al. Effects of low-protein diets supplemented with indispensable amino acids on growth performance, intestinal morphology and immunological parameters in 13 to 35 kg pigs[J]. Animal, 2016, 10(11): 1812-1820. DOI:10.1017/S1751731116000999
[75]
LÓPEZ-GÁLVEZ G, LÓPEZ-ALONSO M, PECHOVA A, et al. Alternatives to antibiotics and trace elements (copper and zinc) to improve gut health and zootechnical parameters in piglets: a review[J]. Animal Feed Science and Technology, 2021, 271: 114727. DOI:10.1016/j.anifeedsci.2020.114727
[76]
BRVSSOW H. Growth promotion and gut microbiota: insights from antibiotic use[J]. Environmental Microbiology, 2015, 17(7): 2216-2227. DOI:10.1111/1462-2920.12786
[77]
易宏波, 唐青松, 侯磊, 等. 断奶仔猪肠道健康分级及其无抗营养策略[J]. 动物营养学报, 2020, 32(10): 4501-4517.
YI H B, TANG Q S, HOU L, et al. Antibiotic-free nutritional strategies based on intestinal health grade classification of weaned piglets[J]. Chinese Journal of Animal Nutrition, 2020, 32(10): 4501-4517 (in Chinese). DOI:10.3969/j.issn.1006-267x.2020.10.004
[78]
WU Y P, JIANG Z Y, ZHENG C T, et al. Effects of protein sources and levels in antibiotic-free diets on diarrhea, intestinal morphology, and expression of tight junctions in weaned piglets[J]. Animal Nutrition, 2015, 1(3): 170-176. DOI:10.1016/j.aninu.2015.08.013
[79]
MU C L, YANG Y X, YU K F, et al. Alteration of metabolomic markers of amino-acid metabolism in piglets with in-feed antibiotics[J]. Amino Acids, 2017, 49(4): 771-781. DOI:10.1007/s00726-017-2379-4
[80]
PI Y, GAO K, PENG Y, et al. Antibiotic-induced alterations of the gut microbiota and microbial fermentation in protein parallel the changes in host nitrogen metabolism of growing pigs[J]. Animal, 2019, 13(2): 262-272. DOI:10.1017/S1751731118001416
[81]
CHOI J Y, KIM J S, INGALE S L, et al. Effect of potential multimicrobe probiotic product processed by high drying temperature and antibiotic on performance of weanling pigs[J]. Journal of Animal Science, 2011, 89(6): 1795-1804. DOI:10.2527/jas.2009-2794
[82]
YU M, ZHANG C J, YANG Y X, et al. Long-term effects of early antibiotic intervention on blood parameters, apparent nutrient digestibility, and fecal microbial fermentation profile in pigs with different dietary protein levels[J]. Journal of Animal Science and Biotechnology, 2018, 9(1): 175-186.
[83]
HEO J M, KIM J C, HANSEN C F, et al. Effects of dietary protein level and zinc oxide supplementation on the incidence of post-weaning diarrhoea in weaner pigs challenged with an enterotoxigenic strain of Escherichia coli[J]. Livestock Science, 2010, 133(1/3): 210-213.
[84]
MITCHELL H. Comparative nutrition of man and domestic animals[M]. New York: Academic Press, 1962.
[85]
GÓMEZ R S, LEWIS A J, MILLER P S, et al. Body composition and tissue accretion rates of barrows fed corn-soybean meal diets or low-protein, amino acid-supplemented diets at different feeding levels[J]. Journal of Animal Science, 2002, 80(3): 654-662. DOI:10.2527/2002.803654x
[86]
CONDE-AGUILERA J A, BAREA R, LE FLOC'H N, et al. A sulfur amino acid deficiency changes the amino acid composition of body protein in piglets[J]. Animal, 2010, 4(8): 1349-1358. DOI:10.1017/S1751731110000340
[87]
SALTER D N, MONTGOMERY A I, HUDSON A, et al. Lysine requirements and whole-body protein turnover in growing pigs[J]. British Journal of Nutrition, 1990, 63(3): 503-513. DOI:10.1079/BJN19900137
[88]
CVB. Nutrient requirements and feed ingredient composition for pigs[R]. CVB-series no. 64, Wageningen: Wageningen Livestock Research, 2020.
[89]
蒋宗勇, 林映才, 郑春田. 仔猪营养需要研究进展[C]//动物营养研究进展论文集. 北京: 中国农业科学技术出版社, 2004: 111-123.
JIANG Z Y, LIN Y C, ZHENG C T. Advance in nutrient requirement for piglets[C]//Proceedings on Research Progress of Animal Nutrition. Beijing: China Agricultural Science and Technology Press, 2004: 111-123. (in Chinese)
[90]
林映才, 蒋宗勇, 杨晓建, 等. 4.1~8.7 kg早期断奶仔猪消化能需求参数研究[J]. 动物营养学报, 2002, 14(4): 24-31.
LIN Y C, JIANG Z Y, YANG X J, et al. Digestibl energy requirement of 4.1 to 8.7 kg early-weaned piglets[J]. Chinese Journal Of Animal Nutrition, 2002, 14(4): 24-31 (in Chinese). DOI:10.3969/j.issn.1006-267X.2002.04.005
[91]
杨薇, 龙定彪, 王浩, 等. 高温高湿环境下饲粮能量水平对生长肥育猪生长性能、血清生化指标和肉品质的影响[J]. 动物营养学报, 2020, 32(4): 1605-1615.
YANG W, LONG D B, WANG H, et al. Effects of dietary energy levels on growth performance, serum biochemical indices and meat quality of growing-finishing pigs in high temperature and high humidity environment[J]. Chinese Journal of Animal Nutrition, 2020, 32(4): 1605-1615 (in Chinese). DOI:10.3969/j.issn.1006-267x.2020.04.018
[92]
王丽, 叶翔杨, 温晓鹿, 等. 猪营养调控技术研究进展[J]. 广东农业科学, 2020, 47(11): 114-124.
WANG L, YE X Y, WEN X L, et al. Research progress of swine nutrition regulation technology[J]. Guangdong Agricultural Sciences, 2020, 47(11): 114-124 (in Chinese).
[93]
CLINE P M, TSAI T C, STELZLENI A M, et al. Interaction of dietary energy and protein on growth performance, carcass characteristics and digestibility in finishing barrows when fed at a constant digestible lysine to metabolizable energy ratio[J]. Livestock Science, 2016, 184: 1-6. DOI:10.1016/j.livsci.2015.11.027