动物营养学报    2022, Vol. 34 Issue (4): 2105-2113    PDF    
枯草芽孢杆菌在猪生产中的应用及其作用机制的研究进展
刘帅1,2 , 熊云霞2 , 孙铝辉1 , 王丽2     
1. 华中农业大学动物科技学院动物医学院, 武汉 430070;
2. 广东省农业科学院动物科学研究所, 农业农村部华南动物营养与饲料重点实验室, 畜禽育种国家重点实验室, 岭南现代农业科学与 技术广东省实验室茂名分中心, 广东省畜禽育种与营养研究重点实验室, 广州 510640
摘要: 枯草芽孢杆菌是猪生产中常用的益生菌之一。多以添加剂或发酵菌种的形式运用于饲料生产中, 且常与酶制剂、其他益生菌及益生元复配使用。枯草芽孢杆菌有提高猪生长性能、改善肠道健康和提升肉品质的有益作用。本文综述了枯草芽孢杆菌的生物学特性和对猪生长性能、肠道健康、肌肉品质的影响及其机制, 为其合理的生产和使用提供一定的理论依据。
关键词: 枯草芽孢杆菌        生长性能    肠道健康    肉品质    
Research Progress of Application of Bacillus subtilis as Feed Additive in Pigs Production
LIU Shuai1,2 , XIONG Yunxia2 , SUN Lyuhui1 , WANG Li2     
1. College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China;
2. State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China Ministry of Agriculture, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
Abstract: Bacillus subtilis is one of the common probiotics used in pig production, and used in feed production in the form of multi-additive or fermentation bacteria, and often used in combination with enzyme preparations, other probiotics and prebiotics. Bacillus subtilis has the effects of improving pigs' performance, intestinal health and meat quality. This paper reviews the biological properties, and the effects of Bacillus subtilis on pigs' performance, intestinal health and muscle quality, and the underlying mechanisms, to provide some theoretical basis for its rational production and use.
Key words: Bacillus subtilis    pigs    growth performance    intestinal health    meat quality    

近年来,世界各国都把畜禽饲料减抗、替抗提上日程,我国也禁止向商品饲料中添加除中草药外的其他促生长类药物饲料添加剂。益生菌因其安全、高效、无抗药性、无残留等特性成为重要的新型绿色抗生素替代品之一,乳杆菌、酵母菌、芽孢菌等已成为猪生产养殖过程中常用的益生菌种。益生菌在储存、运输、加工等过程中失活是其在生产应用中遇到的卡脖子问题。枯草芽孢杆菌(Bacillus subtilis,BS)耐高温、耐挤压、耐酸碱,可以在猪肠道中很好的生存、定植,使得其在生产中应用广泛,是我国饲料添加剂目录中12个可直接饲喂的饲用益生菌之一。本文简单介绍枯草芽孢杆菌的生理特性,综述其在猪生产上的应用,及其对猪生长性能、肠道健康、肉品质等的影响和作用机制,以期为枯草芽孢杆菌在猪生产中的进一步应用提供参考。

1 枯草芽孢杆菌的生理特性

枯草芽孢杆菌是革兰氏阳性菌芽孢杆菌属的一种,需氧或兼性厌氧,广泛存在土壤及腐败的生物体中,易于分离和培养[1]。芽孢状态时能在极端环境下生存,是一种抗氧化、耐高温、耐挤压、耐酸碱的细菌,便于运输、存储及加工[2]。枯草芽孢杆菌可以在动物消化道很好的存活及定植,黄玉岚等[3]报道发现,枯草芽孢杆菌WEI-62经人工胃液处理或胃肠液顺序处理后,存活率均在75%以上;经人工肠液处理3 h后的存活率在90%以上。枯草芽孢杆菌在代谢过程中可产生抑菌物质,如抗菌肽等抑菌物质,抑制链球菌、大肠杆菌、沙门氏杆菌等有害菌的生长[4-7]。另外,枯草芽孢杆菌还可以促进肠道有益菌乳杆菌和双歧杆菌的生长[8-9]

2 枯草芽孢杆菌在猪生产中的应用

枯草芽孢杆菌是养猪生产中常用的益生菌之一,传统的应用形式有3种:1)直接添加于饲粮中进行饲喂;2)作为发酵菌种发酵饲粮后再进行饲喂;3)直接口服或灌胃菌粉剂。在生产中,枯草芽孢杆菌常常和酶制剂、其他益生菌及益生元复配使用。近年来也有不少研究将枯草芽孢杆菌作为机体的免疫诱导剂或作为疫苗载体[10-13]

2.1 枯草芽孢杆菌在母猪中的应用

研究发现,枯草芽孢杆菌可以提高母猪血清免疫球蛋白G(immunoglobulins g,IgG)和总蛋白含量,提高泌乳前3周的泌乳量[14],并可潜在提高母猪生殖繁育能力,提高母猪窝产仔数[15-16]。并且,在母猪饲粮中添加枯草芽孢杆菌,对仔猪具有代间传递效应。韩丽[17]在母猪妊娠第85天开始饲喂添加枯草芽孢杆菌(1.0×109 CFU/kg)的饲粮,发现其子代哺乳期血清尿素氮和甘油三酯含量降低,粪便大肠杆菌数量降低。但是Michiels等[18]研究表明,定植于母猪肠道的枯草芽孢杆菌不会转移至其子代,枯草芽孢杆菌如何通过母体影响其子代的机制有待进一步研究。另外,枯草芽孢杆菌可以减轻玉米赤霉烯酮诱导的初产母猪的氧化应激和组织病理学变化[19]

2.2 枯草芽孢杆菌在仔猪中的应用

饲粮中添加枯草芽孢杆菌可以提高仔猪的生长性能[20]。Lewton等[21]研究表明,饲粮中添加7.4×107 CFU/kg的枯草芽孢杆菌可以提高仔猪氨基酸的消化率。王晓丹[22]在研究枯草芽孢杆菌对断奶仔猪生长性能的影响时发现,饲粮中添加250 g/t(4×109 CFU/g)枯草芽孢杆菌能有效降低仔猪腹泻率,提高仔猪平均日增重,促进仔猪生长。并且,饲粮添加枯草芽孢杆菌可影响断奶仔猪与脂肪代谢有关的血液生化指标[23]。使用枯草芽孢杆菌对饲粮或饲粮部分原料进行发酵后,饲喂断奶仔猪也能取得较好效果。Lee等[24]研究发现,添加经枯草芽孢杆菌发酵过的柑橘残渣,仔猪平均日采食量和平均日增重线性增加。在仔猪饲粮中使用经枯草芽孢杆菌发酵过的豆粕,可提高仔猪平均日增重,降低腹泻率,提高养分表观消化率[25]。病毒侵袭的情况下,枯草芽孢杆菌的益生作用更加明显。口服枯草芽孢杆菌制剂可以预防仔猪因大肠杆菌诱导的水肿病的发生,降低回肠和粪便中大肠杆菌数量,减轻回肠和盲肠绒毛水肿[26],缓解病毒性腹泻导致的相关病理变化[27]。枯草芽孢杆菌可以减轻全身炎症反应,提高肠道屏障的完整性,减轻大肠杆菌引起的仔猪生长受阻和腹泻[28]。Jia等[29]研究表明,枯草芽孢杆菌可以减轻脱氧雪腐镰刀菌烯醇(deoxynivalenol,DON)污染的饲粮引起的仔猪中毒反应,减缓了DON在血清、肝脏和肾脏中的扩散。

枯草芽孢杆菌与其他菌种联合具有良好的协同作用。Zhu等[30]使用枯草芽孢杆菌、植物乳杆菌和酿酒酵母对豆粕进行联合固态发酵,结果显示,联合菌发酵豆粕可以显著提高断奶仔猪生长性能,改善肠道健康,降低空肠和回肠自噬因子微管蛋白1轻链3B(microtubule-associated protein 1 light chain 3 b,LC3B)的含量。王亚芳等[31]研究也发现,枯草芽孢杆菌可以缓解大肠杆菌等致病菌导致的腹泻、平均日增重降低、料重比升高等,且枯草芽孢杆菌与其他菌株组合后效果更佳。枯草芽孢杆菌与地衣芽孢杆菌联合使用可以提高饲粮消化率[32],改善肠道健康,缓解炎症[33]。Zhang等[6]发现,口服饲喂枯草芽孢杆菌混合液可以重组仔猪肠道微生物区系,增强杯状细胞的功能,改善大肠杆菌引起的肠炎。

2.3 枯草芽孢杆菌在育肥猪中的应用

枯草芽孢杆菌可以提高育肥猪的生长性能、机体免疫、抗氧化能力。王煜琦等[34]发现,在饲粮中添加枯草芽孢杆菌(1×109 CFU/kg),可提高育肥猪平均日增重、平均日采食量、粗蛋白质和钙及磷的消化率、铜和锌吸收率、血清总抗氧化能力及IgG含量等,并降低血清丙二醛含量。饲粮添加0.1%的枯草芽孢杆菌(1×109 CFU/g)提高育肥猪血清总抗氧化能力、谷胱甘肽过氧化物酶活性及肝脏细胞色素P450(cytochrome P450,P450)、细胞色素氧化酶2A6(cytochrome oxidase 2A6,CYP2A6)、细胞色素氧化酶2E1(cytochrome oxidase 2E1,CYP2E1)含量[35]。饲粮添加枯草芽孢杆菌可以提高育肥猪生长性能和养分表观消化率,并且枯草芽孢杆菌的使用降低猪场氨气(NH3)的排放及粪便臭味,对于养殖业减排和环保具有重要意义[36]。此外,枯草芽孢杆菌在改善肥育猪胴体性状及肉质上也有很好的效果。Cui等[37]研究发现,饲粮添加枯草芽孢杆菌(4×1011 CFU/kg)可以显著提高育肥猪眼肌面积,降低板油重。Meng等[38]研究发现,饲粮添加枯草芽孢杆菌(2×109 CFU/kg)可以提高育肥猪肉色评分及pH。枯草芽孢杆菌也常与其他添加剂联合应用于育肥猪生产。彭俊平等[39]研究发现,枯草芽孢杆菌与植物甾醇和复合酶制剂联合使用可以降低育肥猪料重比,降低背膘厚度,提高肉色评分。Balasubramanian等[40]将枯草芽孢杆菌与凝结芽孢杆菌、地衣芽孢杆菌和醋酸梭菌联合使用,结果显示,复合益生菌可以提高平均日增重和饲料转化率,降低背脂含量,增加肉色评分,增加粪便乳酸杆菌数量,减少肠道大肠杆菌数量。枯草芽孢杆菌与地衣芽孢杆菌联合使用可以促进生长猪的发育,降低NH3和硫化氢(H2S)等有害气体的排放[41]

3 枯草芽孢杆菌的作用和机制 3.1 提高生长性能

枯草芽孢杆菌具有较好地分泌蛋白酶、纤维酶、淀粉酶、脂肪酶等活性物质,对饲粮植物源抗原蛋白具有较强的降解效果[42-43]。生产中常常作为复合益生菌之一用来发酵全价料或者某一配料原料,以降低其中的抗营养因子,增加饲粮的消化率。经枯草芽孢杆菌发酵后的饲料和蛋白质原料,可溶性蛋白、总氨基酸含量增加,抗营养因子含量降低[44]。Shi等[45]利用体外发酵试验表明,枯草芽孢杆菌可以降低玉米-豆粕型饲粮的大豆抗原、植酸、中性洗涤纤维含量,增加游离氨基酸和小肽的含量。这是枯草芽孢杆菌能提高断奶仔猪生长性能的主要原因之一,此外枯草芽孢杆菌改善仔猪肠道健康状况也是提高生长性能的原因。

3.2 改善肠道健康 3.2.1 提高消化酶活性

肠道消化酶的含量和活性直接影响仔猪的养分利用和生长性能。早期断奶仔猪肠道发育不完善,断奶后消化酶含量迅速降低,加上应激反应,各种酶活性受到抑制,营养消化率下降,生长发育受阻。枯草芽孢杆菌能100%到达肠道中,是因为在芽孢状态下具有良好的稳定性。枯草芽孢杆菌分泌的蛋白酶、脂肪酶及纤维素酶等可以补充仔猪肠道消化酶数量,协同肠道消化酶一起发挥作用[46]。Hu等[47]研究发现,在7日龄断奶仔猪饲粮中添加枯草芽孢杆菌可以提高其肠道中麦芽糖酶和蔗糖酶的活性。

3.2.2 保护肠道屏障完整性

仔猪肠道屏障包括机械屏障、化学屏障、微生物屏障和免疫屏障。仔猪断奶后,肠道不适应固态饲粮,肠绒毛磨损,加上抗体含量下降,很难抵抗病原体的攻击,小肠黏膜进一步受到伤害,引发感染性腹泻。Douarche等[48]研究发现,枯草芽孢杆菌可以在肠道黏膜细胞表面构建一层可以提高机械阻力的生物膜。并且,枯草芽孢杆菌还可以促进小肠绒毛发育和小肠表皮细胞生长因子(epidermal growth factor,EGF)、胰岛素样生长因子-1受体(insulin like growth factor-1 receptor,IGF-1R)等mRNA的表达[49]。菌膜强度增加可使上皮细胞紧密连接蛋白表达量上调,减小了肠道受机械外力造成的损伤。枯草芽孢杆菌可以提高肠道紧密连接蛋白表达,Gu等[50]研究表明,枯草芽孢杆菌可以改善DON诱导猪肠道屏障损伤,上调肠道紧密连接蛋白-1(zona occludens protein-1,ZO-1)和封闭蛋白(Occludin)的表达。枯草芽孢杆菌自身分泌的壳聚糖酶有抗真菌的生物学活性[51],另外枯草芽孢杆菌诱导小肠免疫球蛋白A(IgA)分泌细胞增殖分化,促进分泌型IgA(secretory IgA,sIgA)的分泌[52]。sIgA可以促进抗原跨肠上皮逆向转运至肠道淋巴组织中的树突细胞亚群,缓解致病菌和病原引起的促炎反应[53]

3.2.3 肠道免疫调节

仔猪在断奶阶段免疫系统发育不完善,当体内母源抗体减少后,被动免疫减弱,极易遭受致病菌侵袭。利用枯草芽孢杆菌能够改善肠道黏膜免疫,提高仔猪免疫力。猪的小肠中存在许多Toll样受体(Toll-like receptor,TLR),其中TLR2和TLR9的表达有利于仔猪的生长,并且可以刺激仔猪肠道免疫反应。饲喂枯草芽孢杆菌能够显著提高TLR9的表达量,而TLR2表达量的提高需要枯草芽孢杆菌在肠道内萌芽,且TLR2必须与TLR1或TLR6结合形成异二聚体才能与细菌识别。李云峰等[52]通过枯草芽孢杆菌灌胃后发现,仔猪十二指肠中TLR9、白细胞介素-6(interleukin-6,IL-6)表达量提高。He等[54]的结果也显示,枯草芽孢杆菌可以上调仔猪血清IL-6的含量。IL-6不仅能够促进B细胞和浆细胞的增殖和抗体的分泌,还能在肠道的淋巴细胞结中促进分泌免疫球蛋白M(IgM)的细胞转化为IgA分泌细胞。祝天龙等[55]在研究枯草芽孢杆菌制剂对仔猪生长及免疫的影响发现,枯草芽孢杆菌可使相关免疫指标如IgA、IgG、补体3(C3)和补体4(C4)含量增加。利用枯草芽孢杆菌饲喂小鼠发现,早期免疫反应IgG2a的分泌量显著比IgG1多,随后IgG2b的分泌量增多[56]。IgG2a与IgG、IgG2b由不同细胞调节的免疫反应产物,前者是由辅助性T细胞1(helper 1 cell,Th1)调节的,而后者是由辅助性T细胞2(helper 2 cell,Th2)调节的免疫反应产物。以上结果表明,免疫反应初期,枯草芽孢杆菌芽孢先通过刺激Th1细胞免疫应答,转化形成细胞毒性T淋巴细胞,反应后期主要就作用于Th2细胞,产生sIgA和IgG1。同时在免疫反应初期,枯草芽孢杆菌芽孢还能够刺激肠道黏膜淋巴结中的炎性趋化因子肿瘤坏死因子-α(tumor necrosis factor-α,TNF-α)和免疫干扰素-γ(interferon-γ,IFN-γ)的表达,而IFN-γ能够刺激吞噬细胞的吞噬作用。在一项体外试验中发现,将枯草芽孢杆菌芽孢与人单核细胞共同培养后,可显著提高单核细胞白细胞介素-1β(IL-1β)和TNF-α的含量,表明其芽孢激活了Th1细胞免疫应答[57]。但是,将芽孢与巨噬细胞共培养后,巨噬细胞中只有IL-6的mRNA表达量增加,TNF-αIL-1α的表达差异不大,表明芽孢激活的是Th2细胞的免疫反应。

3.2.4 维持肠道菌群稳态

枯草芽孢杆菌可以改变肠道菌群的组成,其分泌抗菌物质和乳酸等降低肠道pH,抑制病原菌生长,消耗氧气,并为双歧杆菌、乳酸杆菌等提供厌氧环境[7]。枯草芽孢杆菌可以促进双歧杆菌和乳杆菌生长,抑制大肠杆菌、梭菌、链球菌的生长[42-43]。Yu等[58]在体外培养试验发现,枯草芽孢杆菌通过提高过氧化氢酶的活性来缓解活性氧对乳杆菌的氧化损伤,进而促进乳杆菌生长。肠道内同种微生物存在群体感应,可通过介导基因表达对自身种群密度进行调控,当肠道缺乏益生菌时,有害病原菌会大量繁殖。Piewngam等[59]研究发现,枯草芽孢杆菌可以通过阻断同一细菌的不同个体间的信号传导,进而抑制细菌的增殖,起到调控肠道菌群的作用。

3.3 改善肌肉品质

枯草芽孢杆菌通过调控育肥猪糖脂代谢和抗氧化能力改善肉品质。枯草芽孢杆菌可以下调脂肪合成关键基因脂肪酸合成酶(fatty acid synthetase,FAS)、乙酰辅酶A羧化酶(acetyl CoA carboxylase,ACC)等mRNA的表达,降低脂肪合成关键酶的生成,来调节机体脂质代谢[37]。研究发现,育肥猪背脂厚度与肠道拟杆菌丰度呈线性负相关,枯草芽孢杆菌可通过调节肠道拟杆菌的丰度来影响机体的脂质代谢[37]。此外,动物屠宰后,胴体脂肪会被缓慢氧化[60]。肉的红度是由肌红蛋白的含量决定的,肉中肌红蛋白被氧化后,会降低肉色评分[61]。枯草芽孢杆菌通过育肥猪抗氧化能力改善肉质提升肉色。

4 枯草芽孢杆菌在生产应用中存在的问题

枯草芽孢杆菌在母猪、仔猪和育肥猪上均有使用,但饲喂的剂量、持续时间长短及饲喂时动物的生长阶段是影响其效果的重要因素(表 1)。益生菌在肠道定植后才能发挥作用,市面上很多添加于畜禽饲粮的枯草芽孢杆菌并非宿主来源,因此无法保证其在宿主肠道的定植。如Leser等[62]研究发现,枯草芽孢杆菌CH201无法长期定植在猪肠道。因此,选择能够在肠道定植的菌株可能会有更好的效果。

表 1 枯草芽孢杆菌在猪生产中的使用剂量、阶段和效果汇总 Table 1 Summary of doses, stages and effects of Bacillus subtilis used in pigs production

目前为止,枯草芽孢杆菌在猪生产上的使用还没有统一的标准,生产中使用的菌种来源广泛,种类繁多,生产工艺的不同也使得制定标准存在困难。枯草芽孢杆菌代谢产生的抗菌物质是否会导致有害菌产生耐药性也不得而知。另外,不同的枯草芽孢杆菌生理活性和生理功能也各不相同,这也造成生产中菌株的选用存在困难。

5 小结

综上所述,枯草芽孢杆菌应用在猪生产上,主要是通过提高母猪繁殖性能、仔猪生长性能,改善肠道健康,改善育肥猪的肉质,提高猪的免疫力和抗病能力来改善经济效益。相比传统的直接饲喂或发酵等使用方式,近年来以枯草芽孢杆菌作为疫苗载体和免疫诱导剂的研究方法也为枯草芽孢杆菌在猪生产上的应用提供了新思路。但在实际生产中,对于剂量、使用方法还未达成一致。不同菌种的功效和作用机制,与酶制剂、其他益生菌及益生元的相互作用机制也不清楚。因此,要推动行业的发展,还需要我们对枯草芽孢杆菌的特性、作用机制做更深入的研究。

参考文献
[1]
KOVÁCS Á T. Bacillus subtilis[J]. Trends in Microbiology, 2019, 27(8): 724-725. DOI:10.1016/j.tim.2019.03.008
[2]
LARSEN N, THORSEN L, KPIKPI E N, et al. Characterization of Bacillus spp. strains for use as probiotic additives in pig feed[J]. Applied Microbiology and Biotechnology, 2014, 98(3): 1105-1118. DOI:10.1007/s00253-013-5343-6
[3]
黄玉岚, 霍小东, 姚宏明, 等. 枯草芽孢杆菌WEI-62体外益生评价及其对仔猪生长性能、肠道形态和肠道菌群的影响[J]. 中国畜牧杂志, 2020, 56(11): 140-145.
HUANG Y L, HUO X D, YAO H M, et al. Bacillus subtilis WEI-62 in vitro evaluation of its effect on a probiotic growth performance, intestinal morphology and intestinal flora[J]. Chinese Journal of Animal Science, 2020, 56(11): 140-145 (in Chinese).
[4]
XU J, ZHONG F, ZHANG Y H, et al. Construction of Bacillus subtilis strain engineered for expression of porcine β-defensin-2/cecropin P1 fusion antimicrobial peptides and its growth-promoting effect and antimicrobial activity[J]. Asian-Australasian Journal of Animal Sciences, 2017, 30(4): 576-584.
[5]
UPADHAYA S D, SHANMUGAM S K, KANG D K, et al. Preliminary assessment on potentials of probiotic B. subtilis RX7 and B. methylotrophicus C14 strains as an immune modulator in Salmonella-challenged weaned pigs[J]. Tropical Animal Health and Production, 2017, 49(5): 1065-1070. DOI:10.1007/s11250-017-1278-8
[6]
ZHANG W, ZHU Y H, ZHOU D, et al. Oral administration of a select mixture of Bacillus probiotics affects the gut microbiota and goblet cell function following Escherichia coli challenge in newly weaned pigs of genotype MUC4 that are supposed to be enterotoxigenic E.coli F4ab/ac receptor negative[J]. Applied and Environmental Microbiology, 2017, 83(3): e2716-e2747.
[7]
CAULIER S, NANNAN C, GILLIS A, et al. Overview of the antimicrobial compounds produced by members of the Bacillus subtilis group[J]. Frontiers in Microbiology, 2019, 10: 302. DOI:10.3389/fmicb.2019.00302
[8]
KAEWTAPEE C, BURBACH K, TOMFORDE G, et al. Effect of Bacillus subtilis and Bacillus licheniformis supplementation in diets with low- and high-protein content on ileal crude protein and amino acid digestibility and intestinal microbiota composition of growing pigs[J]. Journal of Animal Science and Biotechnology, 2017, 8: 37. DOI:10.1186/s40104-017-0168-2
[9]
SUVA M A, SUREJA V P, KHENI D B. Novel insight on probiotic Bacillus subtilis: mechanism of action and clinical applications[J]. Journal of Current Research in Scientific Medicine, 2016, 2(2): 65-72. DOI:10.4103/2455-3069.198381
[10]
WANG J L, HUANG L L, MOU C X, et al. Mucosal immune responses induced by oral administration recombinant Bacillus subtilis expressing the COE antigen of PEDV in newborn piglets[J]. Bioscience Reports, 2019, 39(3): BSR20182028. DOI:10.1042/BSR20182028
[11]
WANG J L, WANG Y H, ZHANG E, et al. Intranasal administration with recombinant Bacillus subtilis induces strong mucosal immune responses against pseudorabies[J]. Microbial Cell Factories, 2019, 18(1): 103. DOI:10.1186/s12934-019-1151-8
[12]
YANG Y H, JING Y C, YANG J J, et al. Effects of intranasal administration with Bacillus subtilis on immune cells in the nasal mucosa and tonsils of piglets[J]. Experimental and Therapeutic Medicine, 2018, 15(6): 5189-5198.
[13]
ZHANG S, MOU C X, CAO Y N, et al. Immune response in piglets orally immunized with recombinant Bacillus subtilis expressing the capsid protein of porcine circovirus type 2[J]. Cell Communication and Signaling, 2020, 18(1): 23. DOI:10.1186/s12964-020-0514-4
[14]
AYALA L, BOCOURT R, CASTRO M, et al. Effect of the probiotic additive Bacillus subtilis and their endospores on milk production and immune response of lactating sows[J]. Cuban Journal of Agricultural Science, 2015, 49(1): 1-4.
[15]
MENEGAT M B, GOURLEY K M, BRAUN M B, et al. Effects of a Bacillus-based probiotic on sow performance and on progeny growth performance, fecal consistency, and fecal microflora[J]. Kansas Agricultural Experiment Station Research Reports, 2018, 4(9).
[16]
MENEGAT M B, DEROUCHEY J M, WOODWORTH J C, et al. Effects of Bacillus subtilis C-3102 on sow and progeny performance, fecal consistency, and fecal microbes during gestation, lactation, and nursery periods[J]. Journal of Animal Science, 2019, 97(9): 3920-3937. DOI:10.1093/jas/skz236
[17]
韩丽. 不同芽孢杆菌制剂对母猪繁殖性能及子代生长发育的调控[D]. 硕士学位论文. 洛阳: 河南科技大学, 2018.
HAN L. Regulation of several Bacillus preparations on reproductive performance of sows and growth and development of offspring[D]. Master's Thesis. Luoyang: Henan University Of Science And Technology, 2018. (in Chinese)
[18]
MICHIELS J, POSSEMIERS S, DEGROOTE J, et al. Feeding Bacillus subtilis C-3102 to sows and suckling piglets and to weaned piglets improves parameters of gut health and feed: gain ratio in weaners[J]. Journal of Animal Science, 2016, 94(Suppl.3): 135-137.
[19]
ZHOU J C, AO X, LEI Y P, et al. Bacillus subtilis ANSB01G culture alleviates oxidative stress and cell apoptosis induced by dietary zearalenone in first-parity gestation sows[J]. Animal Nutrition, 2020, 6(3): 372-378. DOI:10.1016/j.aninu.2020.03.011
[20]
WANG H, KIM K P, KIM I H. Influence of Bacillus subtilis GCB-13-001 on growth performance, nutrient digestibility, blood characteristics, faecal microbiota and faecal score in weanling pigs[J]. Journal of Animal Physiology and Animal Nutrition, 2019, 103(6): 1919-1925. DOI:10.1111/jpn.13199
[21]
LEWTON J R, WOODWARD A D, MOSER R L, et al. Effects of a multi-strain Bacillus subtilis-based direct-fed microbial on weanling pig growth performance and nutrient digestibility[J]. Translational Animal Science, 2021, 5(3): txab058. DOI:10.1093/tas/txab058
[22]
王晓丹. 芽孢杆菌制剂对断奶仔猪生长性能和肠道健康的影响[D]. 硕士学位论文. 洛阳: 河南科技大学, 2019.
WANG X D. Effects of bacillus preparation on growth performance and intestinal health of weaned piglets[D]. Master's Thesis. Luoyang: Henan University Of Science And Technology, 2018. (in Chinese)
[23]
丁浩, 黄攀, 章文明, 等. 饲粮添加枯草芽孢杆菌对保育猪生长性能和血浆生化参数的影响[J]. 动物营养学报, 2020, 32(2): 605-612.
DING H, HUANG P, ZHANG W M, et al. Effects of dietary Bacillus subtilis on growth performance and plasma biochemical parameters of nursery piglets[J]. Chinese Journal of Animal Nutrition, 2020, 32(2): 605-612 (in Chinese). DOI:10.3969/j.issn.1006-267x.2020.02.016
[24]
LEE S H, INGALE S L, KIM J S, et al. Effects of dietary supplementation with Bacillus subtilis LS 1-2 fermentation biomass on growth performance, nutrient digestibility, cecal microbiota and intestinal morphology of weanling pig[J]. Animal Feed Science and Technology, 2014, 188: 102-110. DOI:10.1016/j.anifeedsci.2013.12.001
[25]
YUAN L, CHANG J, YIN Q Q, et al. Fermented soybean meal improves the growth performance, nutrient digestibility, and microbial flora in piglets[J]. Animal Nutrition, 2017, 3(1): 19-24. DOI:10.1016/j.aninu.2016.11.003
[26]
TSUKAHARA T, TSURUTA T, NAKANISHI N, et al. The preventive effect of Bacillus subtilus strain DB9011 against experimental infection with enterotoxcemic Escherichia coli in weaning piglets[J]. Animal Science Journal, 2013, 84(4): 316-321. DOI:10.1111/asj.12003
[27]
CANNING P, RUSTON C, MADSON D, et al. Effect of direct-fed microbial Bacillus subtilis C-3102 on enteric health in nursery pigs after challenge with porcine epidemic diarrhea virus[J]. Journal of Swine Health and Production, 2017, 25(3): 129-137.
[28]
HE Y J, JINNO C, KIM K, et al. Dietary Bacillus spp. enhanced growth and disease resistance of weaned pigs by modulating intestinal microbiota and systemic immunity[J]. Journal of Animal Science and Biotechnology, 2020, 11: 101. DOI:10.1186/s40104-020-00498-3
[29]
JIA R, SADIQ F A, LIU W B, et al. Protective effects of Bacillus subtilis ASAG 216 on growth performance, antioxidant capacity, gut microbiota and tissues residues of weaned piglets fed deoxynivalenol contaminated diets[J]. Food and Chemical Toxicology, 2021, 148: 111962. DOI:10.1016/j.fct.2020.111962
[30]
ZHU J J, GAO M X, ZHANG R L, et al. Effects of soybean meal fermented by L. plantarum, B. subtilis and S. cerevisieae on growth, immune function and intestinal morphology in weaned piglets[J]. Microbial Cell Factories, 2017, 16(1): 191. DOI:10.1186/s12934-017-0809-3
[31]
王亚芳, 肖群平, 吕慧源, 等. 猪复合微生态制剂菌株的筛选及对仔猪生产性能的影响[J]. 中国畜牧杂志, 2014, 50(4): 58-62.
WANG Y F, XIAO Q P, LV H Y, et al. The complex probiotics strain screening and its impact on production performance of piglets[J]. Chinese Journal of Animal Science, 2014, 50(4): 58-62 (in Chinese). DOI:10.3969/j.issn.0258-7033.2014.04.013
[32]
JØRGENSEN J N, LAGUNA J S, MILLÁN C, et al. Effects of a Bacillus-based probiotic and dietary energy content on the performance and nutrient digestibility of wean to finish pigs[J]. Animal Feed Science and Technology, 2016, 221(Part A): 54-61.
[33]
YANG G Y, ZHU Y H, ZHANG W, et al. Influence of orally fed a select mixture of Bacillus probiotics on intestinal T-cell migration in weaned MUC4 resistant pigs following Escherichia coli challenge[J]. Veterinary Research, 2016, 47(1): 71. DOI:10.1186/s13567-016-0355-8
[34]
王煜琦, 吴腾龙, 宋春阳, 等. 植物乳杆菌与枯草芽孢杆菌对育肥猪生长性能和养分表观消化率及血清生化指标的影响[J]. 中国畜牧杂志, 2021, 57(8): 237-241.
WANG Y Q, WU T L, SONG C Y, et al. Effects of Lactobacillu plantarum and Bacillus subtilis on growth performance, nutrient apparent digestibility and serum biochemical indexes of finishing pigs[J]. Chinese Journal of Animal Science, 2021, 57(8): 237-241 (in Chinese).
[35]
SHENG Q K, ZHOU K F, HU H M, et al. Effect of Bacillus subtilis natto on meat quality and skatole content in TOPIGS pigs[J]. Asian-Australasian Journal of Animal Sciences, 2016, 29(5): 716-721.
[36]
UPADHAYA S, KIM S, VALIENTES R, et al. The effect of bacillus-based feed additive on growth performance, nutrient digestibility, fecal gas emission, and pen cleanup characteristics of growing-finishing pigs[J]. Asian-Australasian Journal of Animal Sciences, 2015, 28: 999. DOI:10.5713/ajas.15.0066
[37]
CUI C, SHEN C J, JIA G, et al. Effect of dietary Bacillus subtilis on proportion of Bacteroidetes and Firmicutes in swine intestine and lipid metabolism[J]. Genetics and Molecular Research, 2013, 12(2): 1766-1776. DOI:10.4238/2013.May.23.1
[38]
MENG Q W, YAN L, AO X, et al. Influence of probiotics in different energy and nutrient density diets on growth performance, nutrient digestibility, meat quality, and blood characteristics in growing-finishing pigs[J]. Journal of Animal Science, 2010, 88(10): 3320-3326. DOI:10.2527/jas.2009-2308
[39]
彭俊平, 舒鑫标, 施杏芬, 等. 饲粮中添加植物甾醇、枯草芽孢杆菌及复合酶制剂对育肥猪生长性能和肉品质的影响[J]. 中国饲料, 2018(15): 62-64.
PENG J P, SHU X B, SHI X F, et al. Effects of dietary supplementation of phytosterols, Bacillus subtilis and compound enzyme on growth performance and meat quality of growing-finishing pigs[J]. China Feed, 2018(15): 62-64 (in Chinese).
[40]
BALASUBRAMANIAN B, LEE S I, KIM I H. Inclusion of dietary multi-species probiotic on growth performance, nutrient digestibility, meat quality traits, faecal microbiota and diarrhoea score in growing-finishing pigs[J]. Italian Journal of Animal Science, 2018, 17(1): 100-106. DOI:10.1080/1828051X.2017.1340097
[41]
LAN R X, KIM I H. Effects of Bacillus licheniformis and Bacillus subtilis complex on growth performance and faecal noxious gas emissions in growing-finishing pigs[J]. Journal of the Science of Food and Agriculture, 2019, 99(4): 1554-1560. DOI:10.1002/jsfa.9333
[42]
DUMITRU M, SORESCU I, HABEANU M, et al. Preliminary characterisation of Bacillus subtilis strain use as a dietary probiotic bio-additive in weaning piglet[J]. Food and Feed Research, 2018, 45(2): 203-211.
[43]
AKHTAR N, CAI H Y, KIARIE E G, et al. A novel Bacillus sp. with rapid growth property and high enzyme activity that allows efficient fermentation of soybean meal for improving digestibility in growing pigs[J/OL]. Journal of Applied Microbiology, 2021[2021-08-31]. https://pubmed.ncbi.nlm.nih.gov/34464998/.
[44]
MOK W K, TAN Y X, LEE J, et al. A metabolomic approach to understand the solid-state fermentation of okara using Bacillus subtilis WX-17 for enhanced nutritional profile[J]. AMB Express, 2019, 9(1): 60. DOI:10.1186/s13568-019-0786-5
[45]
SHI C Y, ZHANG Y, LU Z Q, et al. Solid-state fermentation of corn-soybean meal mixed feed with Bacillus subtilis and Enterococcus faecium for degrading antinutritional factors and enhancing nutritional value[J]. Journal of Animal Science and Biotechnology, 2017, 8: 50. DOI:10.1186/s40104-017-0184-2
[46]
LIU J B, CAO S C, LIU J, et al. Effect of probiotics and xylo-oligosaccharide supplementation on nutrient digestibility, intestinal health and noxious gas emission in weanling pigs[J]. Asian-Australasian Journal of Animal Sciences, 2018, 31(10): 1660-1669. DOI:10.5713/ajas.17.0908
[47]
HU L, PENG X, CHEN H, et al. Effects of intrauterine growth retardation and Bacillus subtilis PB6 supplementation on growth performance, intestinal development and immune function of piglets during the suckling period[J]. European Journal of Nutrition, 2017, 56(4): 1753-1765. DOI:10.1007/s00394-016-1223-z
[48]
DOUARCHE C, ALLAIN J M, RASPAUD E. Bacillus subtilis bacteria generate an internal mechanical force within a biofilm[J]. Biophysical Journal, 2015, 109(10): 2195-2202. DOI:10.1016/j.bpj.2015.10.004
[49]
TANG W J, QIAN Y, YU B, et al. Effects of Bacillus subtilis DSM32315 supplementation and dietary crude protein level on performance, gut barrier function and microbiota profile in weaned piglets[J]. Journal of Animal Science, 2019, 97(5): 2125-2138. DOI:10.1093/jas/skz090
[50]
GU M J, SONG S K, PARK S M, et al. Bacillus subtilis protects porcine intestinal barrier from deoxynivalenol via improved zonula occludens-1 expression[J]. Asian-Australasian Journal of Animal Sciences, 2014, 27(4): 580-586. DOI:10.5713/ajas.2013.13744
[51]
REN J J, HE W H, LI C Y, et al. Purification and identification of a novel antifungal protein from Bacillus subtilis XB-1[J]. World Journal of Microbiology and Biotechnology, 2019, 35(10): 150. DOI:10.1007/s11274-019-2726-6
[52]
李云锋, 邓军, 张锦华, 等. 枯草芽孢杆菌对仔猪小肠局部天然免疫及TLR表达的影响[J]. 畜牧兽医学报, 2011, 42(4): 562-566.
LI Y F, DENG J, ZHANG J H, et al. The effects of Bacillus subtilis on local innate immune and expression of TLR of pigs[J]. Acta Veterinaria et Zootechnica Sinica, 2011, 42(4): 562-566 (in Chinese).
[53]
MANTIS N J, ROL N, CORTHÉSY B. Secretory IgA's complex roles in immunity and mucosal homeostasis in the gut[J]. Mucosal Immunology, 2011, 4(6): 603-611. DOI:10.1038/mi.2011.41
[54]
HE Y Y, MAO C X, WEN H, et al. Influence of ad libitum feeding of piglets with Bacillus subtilis fermented liquid feed on gut flora, luminal contents and health[J]. Scientific Reports, 2017, 7: 44553. DOI:10.1038/srep44553
[55]
祝天龙, 李奎, 邵强, 等. 枯草芽孢杆菌制剂对仔猪生长及免疫的影响[J]. 饲料研究, 2015(3): 26-31.
ZHU T L, LI K, SHAO Q, et al. Effects of Bacillus subtilis preparations on growth and immunity of piglets[J]. Feed Research, 2015(3): 26-31 (in Chinese).
[56]
DUC L H, HONG H A, BARBOSA T M, et al. Characterization of Bacillus probiotics available for human use[J]. Applied and Environmental Microbiology, 2004, 70(4): 2161-2171. DOI:10.1128/AEM.70.4.2161-2171.2004
[57]
CIABATTINI A, PARIGI R, ISTICATO R, et al. Oral priming of mice by recombinant spores of Bacillus subtilis[J]. Vaccine, 2004, 22(31/32): 4139-4143.
[58]
YU T, KONG J, ZHANG L, et al. New crosstalk between probiotics Lactobacillus plantarum and Bacillus subtilis[J]. Scientific Reports, 2019, 9(1): 13151. DOI:10.1038/s41598-019-49688-8
[59]
PIEWNGAM P, ZHENG Y, NGUYEN T H, et al. Pathogen elimination by probiotic Bacillus via signalling interference[J]. Nature, 2018, 562(7728): 532-537. DOI:10.1038/s41586-018-0616-y
[60]
VELASCO V, WILLIAMS P. Improving meat quality through natural antioxidants[J]. Chilean Journal of Agricultural Research, 2011, 71(2): 313. DOI:10.4067/S0718-58392011000200017
[61]
NERÍN C, TOVAR L, DJENANE D, et al. Stabilization of beef meat by a new active packaging containing natural antioxidants[J]. Journal of Agricultural and Food Chemistry, 2006, 54(20): 7840-7846. DOI:10.1021/jf060775c
[62]
LESER T D, KNARREBORG A, WORM J. Germination and outgrowth of Bacillus subtilis and Bacillus licheniformis spores in the gastrointestinal tract of pigs[J]. Journal of Applied Microbiology, 2008, 104(4): 1025-1033. DOI:10.1111/j.1365-2672.2007.03633.x