动物营养学报    2022, Vol. 34 Issue (4): 2140-2147    PDF    
益生菌、益生元、合生元与犬猫肠道健康的研究进展
毛爱鹏1,2 , 孙皓然1 , 张海华2 , 徐超1     
1. 中国农业科学院特产研究所, 长春 130112;
2. 河北科技师范学院动物科技学院, 河北省特色动物种质资源挖掘与创新重点实验室, 秦皇岛 066004
摘要: 益生菌、益生元作为宠物食品添加剂, 可调节肠道菌群结构及相关代谢产物而有益于宿主健康。本文对益生菌、益生元等在宠物食品中的应用进行综述, 并探讨益生菌、益生元、合生元在宠物营养中的作用, 以期为提高犬猫肠道健康及宠物食品合理配制提供参考。
关键词: 益生菌    益生元    合生元    宠物食品    肠道菌群    
Research Progress of Probiotics, Prebiotics, Synbiotics and Intestinal Health in Canine and Feline
MAO Aipeng1,2 , SUN Haoran1 , ZHANG Haihua2 , XU Chao1     
1. Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China;
2. Hebei Key Laboratory of Specialty Animal Germplasm Resources Exploration and Innovation, College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China
Abstract: As pet food additives, probiotics and prebiotics can regulate the structure of gut microbiota and related metabolites, which are beneficial to the health of the host. In this review, we summarize the application of probiotics, prebiotics and other substances in canine and feline, and discuss the role of probiotics and prebiotics in pet nutrition, in order to provide reference for improving intestinal health of canine and feline and the rational preparation of pet food.
Key words: probiotics    prebiotics    synbiotics    pet food    gut microbiota    

犬猫是人类生活中最常见的伴侣动物,随着科学养宠理念的逐步建立,宠物营养与健康越来越引起人们的关注。将益生菌、益生元等物质添加到宠物食品中形成功能性宠物食品,可改变犬猫胃肠道健康,促进生理生化指标改变,改善神经系统机能,降低特殊疾病发展的风险。如果作为多样化饮食组成定期食用,不仅可维持动物基本营养需求,而且在预防特定疾病发生,增强特定生理机能方面发挥重要作用[1-2]

肠道不仅是营养物质消化吸收的器官,而且作为机体重要的免疫屏障,决定着宠物的整体健康状况。宠物肠道健康不仅体现为其结构与功能的完整,还表现为肠道微生态环境的稳定[3]。动物摄入的养分只有同时满足自身细胞与微生物的共同需要,才能使机体处于真正健康的状态[4]。在营养水平一致的情况下,不同来源、结构和组成的营养物质对肠道微生物的影响可能存在极大差异,而微生物水平的变化最终会影响动物整体的健康状况。

1 肠道微生物对犬猫的作用

在动物体表或体内生存的大量微生物与动物机体自身细胞形成有机统一,并对宿主适应性有着深远影响[5-7]。胃肠道是微生物(包括细菌、真菌、病毒和原生动物等)生存的主要场所,在动物胃肠道中有1010~1014个微生物,大约是宿主所有细胞数量的10倍,且肠道微生物编码基因总数比宿主自身细胞编码基因总数多出100倍,被认为是机体第二基因组[8-9]。胃肠道微生态复杂的动态平衡在宿主整个生命周期中不断发展,动物饮食偏好、年龄、生活方式和遗传背景等均会影响肠道微生物的组成;另外,肠道中的微生物群又反过来影响宿主吸收的营养物质、生理代谢等,并通过介导免疫反应促进机体健康[10-11]

应用宏基因组学方法来表征犬胃肠道微生物群,表明犬肠道菌群的优势菌门与人类和啮齿动物模型相似,古生菌、真菌和病毒仅占所有序列的一小部分,其存在水平与其他哺乳动物一致[12]。犬猫肠道中的微生物均以厚壁菌门最为丰富,其次犬为拟杆菌门,猫为放线菌门较为丰富,子囊菌门是猫体内唯一发现的真菌门,在犬中还包括担子菌门、球囊菌门和接合菌门[13]。健康犬和急性腹泻犬的粪便样本中存在各种真菌属,它们在胃肠道健康和疾病中的作用机理尚不确定[14]。与腹泻犬相比,健康犬粪便中拟杆菌门比例明显偏高[15]。腹泻犬粪便中有益菌如乳酸杆菌、双歧杆菌和肠球菌数量降低,而肠杆菌等致病菌数量有增加的趋势[16]。研究表明,每种动物都有独特的微生物特征,且随年龄的增长不断变化[17-18];不同品种犬猫之间粪便微生物菌群也存在差异[19];微生物组成在不同肠道生态位之间也不同,且微生物数量和多样性随肠道的延伸而增加[20]。肠道内微生物大部分与机体细胞密切接触,相互传递信息并交换能量物质,不仅影响营养物质的消化吸收,还直接或间接调控宿主多项生理功能。

肠炎患者粪便中含有更高水平的3-羟基硫酸盐胆汁酸,次级胆汁酸的硫酸化可消除其抗炎特性[21]。肠道中的微生物能将进入结肠的初级胆汁酸转化为次级胆汁酸,初级胆汁酸与次级胆汁酸通过激活胰高血糖素样肽-1(glucagon-like peptide-1,GLP-1)调节胰岛素和葡萄糖代谢,抑制艰难梭菌孢子的萌发并下调炎症[22]。短链脂肪酸(short chain fatty acids,SCFAs)是微生物在肠道中发酵产生的一类重要的代谢产物。乙酸、丙酸和丁酸为肠道中含量最多的3种SCFAs,占总体含量的95%以上。从拉布拉多犬粪便中分离的约氏乳杆菌CPN23可显著提高同品种犬粪便中乙酸和丁酸的含量[23]。患慢性肠病犬粪便中SCFAs(尤其是乙酸和丙酸)的含量比健康犬低,这与粪便中微生物群落的显著变化有关[24]。肠道中的微生物及其代谢产物通过调节特定的宿主信号通路,不仅与营养物质的吸收代谢密切相关,还参与腹泻、炎性肠病等多种疾病的发生和发展[25-27]

肠道菌群在动物生理和心理健康中均发挥重要作用,菌群的改变会导致肠道中胆汁酸、SCFAs等代谢产物的含量变化,进而影响机体健康状况。长期以来营养都处于健康的中心地位,通过饮食改善肠道菌群结构的策略受到广泛关注,在宠物食品中添加益生菌、益生元等对肠道菌群调节及微生态环境稳定至关重要,是维护宠物健康和福利的重要手段。

2 益生菌在犬猫中的应用

国际益生菌与益生元科学协会(International Scientific Association for Probiotics and Prebiotics,ISAPP)对益生菌的最新定义为摄入一定量时对宿主健康产生有益作用的活体微生物[28]。最常见的益生菌为乳酸杆菌和双歧杆菌等[29],在肠道中可竞争黏附于肠上皮,加强肠黏膜屏障,并且在改善宿主肠道微生物群、调节机体免疫力等方面发挥重要作用[30-31]。研究表明,发酵乳杆菌CCM7421可增加犬粪便乳酸杆菌相对丰度,降低梭状芽孢杆菌及部分革兰氏阴性菌相对丰度[32]。在犬粮中添加嗜酸乳杆菌DSM13241也可使粪便中乳酸菌相对丰度增加,并降低梭菌属相对丰度[33]。在猫粮中添加嗜酸乳杆菌DSM13241可增加嗜酸乳杆菌等乳酸杆菌相对丰度,并降低梭状芽孢杆菌和粪肠球菌相对丰度,使成年猫粪便pH降低,表明结肠微生态环境对有益乳酸菌群具有选择性[34]。乳酸杆菌和双歧杆菌是动物肠道中最早定植的菌群,动物双歧杆菌可通过减弱体内核因子-κB(NF-κB)反应发挥抗炎作用[35]。双歧杆菌AHC7对易患胃肠疾病的犬具有潜在的恢复健康的作用[36]。在实际生产中,一定比例的混合益生菌对机体健康表现出更高的优势,用枯草芽孢杆菌和地衣芽孢杆菌组成的复合益生菌可减少比格犬粪便恶臭气味,除了降低酚类、喹啉含量外,还降低了腐胺、亚精胺和尸胺等生物胺的含量,从而在一定程度上改善肠道健康[37]。补充适当的益生菌可使老年动物肠道菌群结构年轻化,如干酪乳杆菌、植物乳杆菌和双歧杆菌组成的复合益生菌通过调节肠道菌群结构,提高了各年龄阶段犬血液免疫球蛋白G(IgG)、干扰素-α(IFN-α)和粪便分泌型免疫球蛋白A(sIgA)含量,降低肿瘤坏死因子-α(TNF-α)含量,同时增加肠道有益菌(乳酸菌、柔嫩梭菌等)相对丰度,减少潜在有害细菌(大肠杆菌、产气荚膜梭菌和萨特氏菌属等)相对丰度,使老年犬肠道菌群组成趋向于年轻犬,从而强化宿主免疫,改善机体健康状况[38]

除了被鉴定为益生菌的细菌,一些属于真菌的酵母也对机体具有益生作用,如布拉迪酵母(Saccharomyces boulardiiS.boulardii),有不同于细菌的生理结构,也不受抗生素影响,具有良好的益生菌特性[39]S. boulardii可预防和治疗人类急性(腹泻)或慢性(炎性肠病)胃肠道疾病[40]。起初S. boulardii在形态学和生理学上都被鉴定为酿酒酵母(Saccharomyces cerevisiaeS. cerevisiae),2002年有研究发现了仅存在于S. boulardii 4号基因座的专一性序列(CAG)9,并将其从S. cerevisiae的其他种中分离出来,确定为酿酒酵母亚种[41]。在犬粮中添加S. boulardii也可有效调节机体肠道菌群,并降低腹泻发生率[42],但相关研究较少,有关猫的研究更是鲜有报道。

益生菌在机体内发挥有益作用的主要障碍是胃酸和胆盐[29],胃部极低的pH和胃蛋白酶可以杀死大多数微生物[43],因此益生菌需要极高的耐受性才能通过胃部的恶劣环境;肝脏中的胆盐分泌到肠道中,可增强营养物质的吸收,亦可破坏肠道微生物膜脂质层结构[44]S. boulardii和芽孢杆菌可以抵抗胆盐和水解酶的降解,在含有胃蛋白酶和盐酸的模拟胃液中仍有活性,且在胆盐的影响下也很稳定[45]。选择益生菌的重要前提是通过宿主胃肠道的存活率及对肠道上皮的特异黏附性,外源性益生菌在肠黏膜表面定植形成微生物膜,可加强肠黏膜屏障并维持肠道微生态环境稳定。然而一些研究表明,益生菌在进入机体后不久,会随粪便全部排出[46-47],益生菌在胃肠道酸性环境中的存活率以及能否在肠黏膜表面定植饱受争议[29]。益生菌在肠上皮的黏附能力对菌株的定植至关重要,动物双歧杆菌乳亚种LKM512,不仅表现出强大的耐酸性,还可与肠道黏蛋白黏附并大量增殖,可作为有效的犬类益生菌[48]。犬粪便来源嗜酸乳杆菌LAB20与犬结肠黏液的黏附性高于猪结肠分离的黏液,LAB20不仅与HT-29和Caco-2细胞具有黏附作用,且与犬肠道上皮细胞(intestinal epithelial cells,IECs)也有黏附性[49],能附着于犬肠道上皮并大量存活,显示出肠道上皮屏障强化和抗炎作用[50]。从动物自身分离的益生菌能更有效地定植于其肠道中[51],宿主源微生物可能是最佳的益生菌制剂来源[52],从犬猫体内分离的有益微生物能更符合胃肠道自身的需求。

3 益生元在犬猫中的应用

随着益生元的来源及应用越来越广泛,ISAPP在2016年对益生元定义为:能被宿主微生物选择性利用而对机体健康产生有益作用的物质[53]。膳食纤维作为常见的宠物食品添加剂,可改善肠道菌群结构,减少胃排空、血液中胆固醇含量及胃运输时间,稀释饮食热量密度及增加饱腹感、糖摄入量等[54]。猫虽然是食肉动物,但其肠道中也存在微生物群,可发酵果聚糖、甜菜粕等膳食纤维[55],膳食纤维也会减少犬粪便中梭菌门相对丰度,增加厚壁菌门相对丰度,但这些变化在所有犬中并不一致[56]

一些属于纤维的功能性低聚糖和菊多糖在改善犬猫肠道菌群中起重要作用[57],在犬粮中单独添加低聚果糖或与甘露寡糖混合使用,可提高回肠免疫球蛋白A(immunoglobulin A,IgA)的含量,降低粪便吲哚和苯酚含量,从而改善犬肠道健康和免疫状态[58]。肠上皮细胞膜表面受体为糖蛋白,许多致病菌能通过Ⅰ型菌毛特异性识别糖蛋白受体,黏附于肠上皮细胞刺激感染的发生,甘露寡糖具有膜表面糖蛋白受体类似结构,可与带有Ⅰ型菌毛的病原菌(沙门氏菌、大肠杆菌等)特异性结合,从而减少致病菌在胃肠道中的定植[59]。在犬猫体外粪便发酵系统中接种乳寡糖,可选择性促进双歧杆菌、乳酸杆菌增殖,抑制大肠杆菌、志贺菌和沙门氏菌等肠道致病菌生长和定植,并产生SCFAs和支链脂肪酸(branch chain fatty acids,BCFAs)等物质有益于宿主健康[60]。菊多糖又称菊粉,菊苣纤维,在犬粮中添加菊多糖可使粪便中双歧杆菌的相对丰度升高,产气荚膜梭菌相对丰度降低,二者表现出拮抗性[61]。低聚果糖、纤维素和果胶等益生元,可增加猫粪便中有益菌(乳酸菌、双歧杆菌等)相对丰度,减少大肠杆菌和产气荚膜梭菌等有害菌相对丰度[62]。益生元不易被唾液、胰液和肠液中的酶类分解,具有良好的耐消化性,还具有耐酸碱、耐高温、保存期长等优点。不同益生元对犬猫肠道微生物群的组成和活性有不同的影响,摄入一定量后可减少致病菌在肠道中的定植,并经大肠微生物发酵后产生SCFAs等可降低肠道pH,提高矿物质的溶解吸收,进而有益于改善宿主健康状况。

4 合生元在犬猫中的应用

研究表明,益生菌-益生元组合也可通过调节肠道菌群来改善宿主健康,某些特定的益生菌-益生元组合比仅含有益生菌或益生元的产品具有更佳的调节效果[63-64]。2020年ISAPP对合生元定义为由能被宿主微生物选择利用的物质与活体微生物组成的,对机体健康有益的混合物[65]。合生元可选择性刺激1种或多种细菌增殖或激活其代谢,能改善益生菌在宿主胃肠道中的存活和定植,同时又能刺激肠道中固有微生物的增殖。每日饲喂含有2×109 CFU的屎肠球菌NCIMB10415 4b1707、46.4 mg低聚果糖和阿拉伯树胶的胶囊,可显著降低犬腹泻发生率,减少兽医干预和动物饲养成本[66]。王闪闪[67]通过人体肠道微生物发酵模型,筛选出能显著刺激益生菌生长的合生元组合,对有益菌均表现出积极的调节作用,但调节具有菌属/种特异性。在体外评价合生元发酵犬粪便微生物的研究中,低聚半乳糖可促进两歧双歧杆菌02 450B的生长,二者组合可显著增加粪便中双歧杆菌相对丰度,对犬粪便菌群表现出更强的调节作用[68]。犬源发酵乳杆菌CCM7421已被证明对犬存在一定的健康益处(前文提到),与菊多糖组成合生元可使犬粪便中乳酸杆菌相对丰度增加,梭状芽孢杆菌相对丰度降低,粪便pH下降,但二者的组合并未表现出强化发酵乳杆菌CCM7421的功效[69],表明并不是所有的益生菌与益生元组合都能发挥良好的合生元功效,只有特定的益生菌与益生元组合才被认为是合生元。

合生元对犬猫机体更具有调节优势,但目前合生元的研究尚处于初级阶段,益生菌与益生元的配伍缺乏基础的试验数据,有效的合生元组合仍有待进一步研究。

5 小结及展望

为更好地了解犬猫新陈代谢,满足宠物不同阶段的生理需求,优化伴侣动物的营养和健康状况,益生菌、益生元等物质应用于功能性宠物食品,可改善犬猫肠道菌群结构及相关代谢产物含量,为伴侣动物的健康与福利提供保障。然而,益生菌在犬猫肠道中的存活率及定植问题仍有待改进,从宠物自身分离的微生物能更易适应犬猫肠道微生态环境,是良好的益生菌来源;益生元不需要考虑定植及存活率等问题,且易于保存运输,能在肠道中发挥更稳定持久的作用。除此之外,特定的益生菌-益生元组合对机体表现出更佳的优势,但有关具体配伍及使用还需大量的基础研究。

参考文献
[1]
DI CERBO A, MORALES-MEDINA J C, PALMIERI B, et al. Functional foods in pet nutrition: focus on dogs and cats[J]. Research in Veterinary Science, 2017, 112: 161-166. DOI:10.1016/j.rvsc.2017.03.020
[2]
HASLER C M. The changing face of functional foods[J]. Journal of the American College of Nutrition, 2000, 19(Suppl.5): 499S-506S.
[3]
陈宝江, 刘树栋, 韩帅娟. 宠物肠道健康与营养调控研究进展[J]. 饲料工业, 2020, 41(13): 9-13.
CHEN B J, LIU S D, HAN S J. Research development of nutritional regulation and intestinal health of pets[J]. Feed Industry, 2020, 41(13): 9-13 (in Chinese).
[4]
陈代文. 从动物营养学发展趋势看饲料科技创新思路[J]. 饲料工业, 2015, 36(6): 1-5.
CHEN D W. Ideas for feed technical innovations based on the prediction of future animal nutrition science[J]. Feed Industry, 2015, 36(6): 1-5 (in Chinese).
[5]
KIEFT T L, SIMMONS K A. Allometry of animal-microbe interactions and global census of animal-associated microbes[J]. Proceedings.Biological Sciences, 2015, 282(1810): 20150702.
[6]
MCFALL-NGAI M, HADFIELD M G, BOSCH T C G, et al. Animals in a bacterial world, a new imperative for the life sciences[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(9): 3229-3236. DOI:10.1073/pnas.1218525110
[7]
FRAUNE S, BOSCH T C G. Why bacteria matter in animal development and evolution[J]. BioEssays, 2010, 32(7): 571-580. DOI:10.1002/bies.200900192
[8]
SUCHODOLSKI J S. Diagnosis and interpretation of intestinal dysbiosis in dogs and cats[J]. Veterinary Journal, 2016, 215: 30-37. DOI:10.1016/j.tvjl.2016.04.011
[9]
HONNEFFER J B, MINAMOTO Y, SUCHODOLSKI J S. Microbiota alterations in acute and chronic gastrointestinal inflammation of cats and dogs[J]. World Journal of Gastroenterology, 2014, 20(44): 16489-16497. DOI:10.3748/wjg.v20.i44.16489
[10]
FRISWELL M K, GIKA H, STRATFORD I J, et al. Site and strain-specific variation in gut microbiota profiles and metabolism in experimental mice[J]. PLoS One, 2010, 5(1): e8584. DOI:10.1371/journal.pone.0008584
[11]
HAND D, WALLIS C, COLYER A, et al. Pyrosequencing the canine faecal microbiota: breadth and depth of biodiversity[J]. PLoS One, 2013, 8(1): e53115. DOI:10.1371/journal.pone.0053115
[12]
SWANSON K S, DOWD S E, SUCHODOLSKI J S, et al. Phylogenetic and gene-centric metagenomics of the canine intestinal microbiome reveals similarities with humans and mice[J]. The ISME Journal, 2011, 5(4): 639-649. DOI:10.1038/ismej.2010.162
[13]
HANDL S, DOWD S E, GARCIA-MAZCORRO J F, et al. Massive parallel 16S rRNA gene pyrosequencing reveals highly diverse fecal bacterial and fungal communities in healthy dogs and cats[J]. FEMS Microbiology Ecology, 2011, 76(2): 301-310. DOI:10.1111/j.1574-6941.2011.01058.x
[14]
FOSTER M L, DOWD S E, STEPHENSON C, et al. Characterization of the fungal microbiome (mycobiome) in fecal samples from dogs[J]. Veterinary Medicine International, 2013, 2013: 658373.
[15]
CHABAN B, LINKS M G, HILL J E. A molecular enrichment strategy based on cpn60 for detection of epsilon-proteobacteria in the dog fecal microbiome[J]. Microbial Ecology, 2012, 63(2): 348-357. DOI:10.1007/s00248-011-9931-7
[16]
温建新. 健康与腹泻幼犬肠道菌群的比较研究[J]. 天津农业科学, 2011, 17(1): 109-113.
WEN J X. The comparison study on the intestinal microflora of the healthy and diarrhea puppies[J]. Tianjin Agricultural Sciences, 2011, 17(1): 109-113 (in Chinese). DOI:10.3969/j.issn.1006-6500.2011.01.028
[17]
MASUOKA H, SHIMADA K, KIYOSUE-YASUDA T, et al. Transition of the intestinal microbiota of dogs with age[J]. Bioscience of Microbiota, Food and Health, 2017, 36(1): 27-31. DOI:10.12938/bmfh.BMFH-2016-021
[18]
MASUOKA H, SHIMADA K, KIYOSUE-YASUDA T, et al. Transition of the intestinal microbiota of cats with age[J]. PLoS One, 2017, 12(8): e0181739. DOI:10.1371/journal.pone.0181739
[19]
RITCHIE L E, BURKE K F, GARCIA-MAZCORRO J F, et al. Characterization of fecal microbiota in cats using universal 16S rRNA gene and group-specific primers for Lactobacillus and Bifidobacterium spp[J]. Veterinary Microbiology, 2010, 144(1/2): 140-146.
[20]
SUCHODOLSKI J S, RUAUX C G, STEINER J M, et al. Assessment of the qualitative variation in bacterial microflora among compartments of the intestinal tract of dogs by use of a molecular fingerprinting technique[J]. American Journal of Veterinary Research, 2005, 66(9): 1556-1562. DOI:10.2460/ajvr.2005.66.1556
[21]
DUBOC H, RAJCA S, RAINTEAU D, et al. Connecting dysbiosis, bile-acid dysmetabolism and gut inflammation in inflammatory bowel diseases[J]. Gut, 2013, 62(4): 531-539. DOI:10.1136/gutjnl-2012-302578
[22]
PAVLIDIS P, POWELL N, VINCENT R P, et al. Systematic review: bile acids and intestinal inflammation-luminal aggressors or regulators of mucosal defence?[J]. Alimentary Pharmacology & Therapeutics, 2015, 42(7): 802-817.
[23]
KUMAR S, PATTANAIK A K, SHARMA S, et al. Probiotic potential of a Lactobacillus bacterium of canine faecal-origin and its impact on select gut health indices and immune response of dogs[J]. Probiotics and Antimicrobial Proteins, 2017, 9(3): 262-277. DOI:10.1007/s12602-017-9256-z
[24]
MINAMOTO Y, MINAMOTO T, ISAIAH A, et al. Fecal short-chain fatty acid concentrations and dysbiosis in dogs with chronic enteropathy[J]. Journal of Veterinary Internal Medicine, 2019, 33(4): 1608-1618. DOI:10.1111/jvim.15520
[25]
HAVENAAR R. Intestinal health functions of colonic microbial metabolites: a review[J]. Beneficial Microbes, 2011, 2(2): 103-114. DOI:10.3920/BM2011.0003
[26]
PARADA VENEGAS D, DE LA FUENTE M K, LANDSKRON G, et al. Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases[J]. Frontiers in Immunology, 2019, 10: 277. DOI:10.3389/fimmu.2019.00277
[27]
LEE W J, HASE K. Gut microbiota-generated metabolites in animal health and disease[J]. Nature Chemical Biology, 2014, 10(6): 416-424. DOI:10.1038/nchembio.1535
[28]
HILL C, GUARNER F, REID G, et al. Expert consensus document.The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic[J]. Nature Reviews.Gastroenterology & Hepatology, 2014, 11(8): 506-514.
[29]
BEZKOROVAINY A. Probiotics: determinants of survival and growth in the gut[J]. The American Journal of Clinical Nutrition, 2001, 73(Suppl.2): 399S-405S.
[30]
BERMUDEZ-BRITO M, PLAZA-DÍAZ J, MUÑOZ-QUEZADA S, et al. Probiotic mechanisms of action[J]. Annals of Nutrition & Metabolism, 2012, 61(2): 160-174.
[31]
CENCIC A, CHINGWARU W. The role of functional foods, nutraceuticals, and food supplements in intestinal health[J]. Nutrients, 2010, 2(6): 611-625. DOI:10.3390/nu2060611
[32]
STROMPFOVÁ V, KUBAŠOVÁ I, LAUKOVÁ A. Health benefits observed after probiotic Lactobacillus fermentum CCM 7421 application in dogs[J]. Applied Microbiology and Biotechnology, 2017, 101(16): 6309-6319. DOI:10.1007/s00253-017-8425-z
[33]
BAILLON M L A, MARSHALL-JONES Z V, BUTTERWICK R F. Effects of probiotic Lactobacillus acidophilus strain DSM13241 in healthy adult dogs[J]. American Journal of Veterinary Research, 2004, 65(3): 338-343. DOI:10.2460/ajvr.2004.65.338
[34]
MARSHALL-JONES Z V, BAILLON M L A, CROFT J M, et al. Effects of Lactobacillus acidophilus DSM13241 as a probiotic in healthy adult cats[J]. American Journal of Veterinary Research, 2006, 67(6): 1005-1012. DOI:10.2460/ajvr.67.6.1005
[35]
O'MAHONY D, MURPHY S, BOILEAU T, et al. Bifidobacterium animalis AHC7 protects against pathogen-induced NF-κB activation in vivo[J]. BMC Immunology, 2010, 11: 63. DOI:10.1186/1471-2172-11-63
[36]
KELLEY R L, MINIKHIEM D, KIELY B, et al. Clinical benefits of probiotic canine-derived Bifidobacterium animalis strain AHC7 in dogs with acute idiopathic diarrhea[J]. Veterinary Therapeutics: Research in Applied Veterinary Medicine, 2009, 10(3): 121-130.
[37]
BASTOS T S, DE LIMA D C, SOUZA C M M, et al. Bacillus subtilis and Bacillus licheniformis reduce faecal protein catabolites concentration and odour in dogs[J]. BMC Vet Res, 2020, 16(1): 116. DOI:10.1186/s12917-020-02321-7
[38]
XU H Y, HUANG W Q, HOU Q C, et al. Oral administration of compound probiotics improved canine feed intake, weight gain, immunity and intestinal microbiota[J]. Frontiers in Immunology, 2019, 10: 666. DOI:10.3389/fimmu.2019.00666
[39]
CZERUCKA D, PICHE T, RAMPAL P. Review article: yeast as probiotics-Saccharomyces boulardii[J]. Alimentary Pharmacology & Therapeutics, 2007, 26(6): 767-778.
[40]
KELESIDIS T, POTHOULAKIS C. Efficacy and safety of the probiotic Saccharomyces boulardii for the prevention and therapy of gastrointestinal disorders[J]. Therapeutic Advances in Gastroenterology, 2012, 5(2): 111-125. DOI:10.1177/1756283X11428502
[41]
CZERUCKA D, RAMPAL P. Experimental effects of Saccharomyces boulardii on diarrheal pathogens[J]. Microbes and Infection, 2002, 4(7): 733-739. DOI:10.1016/S1286-4579(02)01592-7
[42]
D'ANGELO S, FRACASSI F, BRESCIANI F, et al. Effect of Saccharomyces boulardii in dog with chronic enteropathies: double-blinded, placebo-controlled study[J]. The Veterinary Record, 2018, 182(9): 258. DOI:10.1136/vr.104241
[43]
MARTINSEN T C, BERGH K, WALDUM H L. Gastric juice: a barrier against infectious diseases[J]. Basic & Clinical Pharmacology & Toxicology, 2005, 96(2): 94-102.
[44]
FIETTO J L R, ARAÚJO R S, VALADÃO F N, et al. Molecular and physiological comparisons between Saccharomyces cerevisiae and Saccharomyces boulardii[J]. Canadian Journal of Microbiology, 2004, 50(8): 615-621. DOI:10.1139/w04-050
[45]
KABLUCHKO T V, BOMKO T V, NOSALSKAYA T N, et al. In the gastrointestinal tract exist the protective mechanisms which prevent overgrowth of pathogenic bacterial and its incorporation[J]. Annals of Mechnikov's Institute, 2017, 1: 28-33.
[46]
SIERRA S, LARA-VILLOSLADA F, SEMPERE L, et al. Intestinal and immunological effects of daily oral administration of Lactobacillus salivarius CECT5713 to healthy adults[J]. Anaerobe, 2010, 16(3): 195-200. DOI:10.1016/j.anaerobe.2010.02.001
[47]
WANG C X, NAGATA S, ASAHARA T, et al. Intestinal microbiota profiles of healthy pre-school and school-age children and effects of probiotic supplementation[J]. Annals of Nutrition & Metabolism, 2015, 67(4): 257-266.
[48]
NAKAMURA A, OHNISHI Y, SHIROTORI K, MATSUMOTO M. Evaluation of viability Bifidobacterium animalis subsp.lactis LKM512 in dogs[J]. Benef Microbes, 2015, 6(6): 791-797. DOI:10.3920/BM2015.0050
[49]
KAINULAINEN V, TANG Y R, SPILLMANN T, et al. The canine isolate Lactobacillus acidophilus LAB20 adheres to intestinal epithelium and attenuates LPS-induced IL-8 secretion of enterocytes in vitro[J]. BMC Microbiology, 2015, 15(1): 4. DOI:10.1186/s12866-014-0337-9
[50]
TANG Y R, SARIS P E J. Viable intestinal passage of a canine jejunal commensal strain Lactobacillus acidophilus LAB20 in dogs[J]. Current Microbiology, 2014, 69(4): 467-473. DOI:10.1007/s00284-014-0610-z
[51]
KUMAR S, PATTANAIK A K, SHARMA S, et al. Comparative assessment of canine-origin Lactobacillus johnsonii CPN23 and dairy-origin Lactobacillus acidophillus NCDC 15 for nutrient digestibility, faecal fermentative metabolites and selected gut health indices in dogs[J]. Journal of Nutritional Science, 2017, 6: e38. DOI:10.1017/jns.2017.35
[52]
GRZEŚKOWIAK Ł, ENDO A, BEASLEY S, et al. Microbiota and probiotics in canine and feline welfare[J]. Anaerobe, 2015, 34: 14-23. DOI:10.1016/j.anaerobe.2015.04.002
[53]
GIBSON G R, HUTKINS R, SANDERS M E, et al. Expert consensus document: the International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics[J]. Nature Reviews.Gastroenterology & Hepatology, 2017, 14(8): 491-502.
[54]
DE GODOY M R C, BAUER L L, PARSONS C M, et al. Select corn coproducts from the ethanol industry and their potential as ingredients in pet foods[J]. Journal of Animal Science, 2009, 87(1): 189-199. DOI:10.2527/jas.2007-0596
[55]
ROCHUS K, JANSSENS G P J, HESTA M. Dietary fibre and the importance of the gut microbiota in feline nutrition: a review[J]. Nutrition Research Reviews, 2014, 27(2): 295-307. DOI:10.1017/S0954422414000213
[56]
MIDDELBOS I S, VESTER BOLER B M, QU A, et al. Phylogenetic characterization of fecal microbial communities of dogs fed diets with or without supplemental dietary fiber using 454 pyrosequencing[J]. PLoS One, 2010, 5(3): e9768. DOI:10.1371/journal.pone.0009768
[57]
HUSSEIN H S, FLICKINGER E A, FAHEY G C, J r. Petfood applications of inulin and oligofructose[J]. The Journal of Nutrition, 1999, 129(Suppl.7): 1454S-1456S.
[58]
SWANSON K S, GRIESHOP C M, FLICKINGER E A, et al. Supplemental fructooligosaccharides and mannanoligosaccharides influence immune function, ileal and total tract nutrient digestibilities, microbial populations and concentrations of protein catabolites in the large bowel of dogs[J]. The Journal of Nutrition, 2002, 132(5): 980-989. DOI:10.1093/jn/132.5.980
[59]
SPRING P, WENK C, DAWSON K A, et al. The effects of dietary mannaoligosaccharides on cecal parameters and the concentrations of enteric bacteria in the ceca of salmonella-challenged broiler chicks[J]. Poultry Science, 2000, 79(2): 205-211. DOI:10.1093/ps/79.2.205
[60]
OBA P M, VIDAL S, WYSS R, et al. Effect of a novel animal milk oligosaccharide biosimilar on the gut microbial communities and metabolites of in vitro incubations using feline and canine fecal inocula[J]. Journal of Animal Science, 2020, 98(9): skaa273.
[61]
ZENTEK J, MARQUART B, PIETRZAK T, et al. Dietary effects on Bifidobacteria and Clostridium perfringens in the canine intestinal tract[J]. Journal of Animal Physiology and Animal Nutrition, 2003, 87(11/12): 397-407.
[62]
BARRY K A, WOJCICKI B J, MIDDELBOS I S, et al. Dietary cellulose, fructooligosaccharides, and pectin modify fecal protein catabolites and microbial populations in adult cats[J]. Journal of Animal Science, 2010, 88(9): 2978-2987. DOI:10.2527/jas.2009-2464
[63]
KOSUWON P, LAO-ARAYA M, UTHAISANGSOOK S, et al. A synbiotic mixture of scGOS/lcFOS and Bifidobacterium breve M-16V increases faecal Bifidobacterium in healthy young children[J]. Beneficial Microbes, 2018, 9(4): 541-552. DOI:10.3920/BM2017.0110
[64]
PANDEY K R, NAIK S R, VAKIL B V. Probiotics, prebiotics and synbiotics—a review[J]. Journal of Food Science and Technology, 2015, 52(12): 7577-7587.
[65]
SWANSON K S, GIBSON G R, HUTKINS R, et al. The international scientific association for probiotics and prebiotics (ISAPP) consensus statement on the definition and scope of synbiotics[J]. Nature Reviews Gastroenterology & Hepatology, 2020, 17(11): 687-701.
[66]
ROSE L, ROSE J, GOSLING S, et al. Efficacy of a probiotic-prebiotic supplement on incidence of diarrhea in a dog shelter: a randomized, double-blind, placebo-controlled trial[J]. Journal of Veterinary Internal Medicine, 2017, 31(2): 377-382.
[67]
王闪闪. 基于人肠道微生物体外发酵模型的益生元和益生菌的功能评价和配伍研究[D]. 硕士学位论文. 无锡: 江南大学, 2020.
WANG S S. Functional evaluation and compatibility research of prebiotics and probiotics based on human gut microbiota in vitro fermentation model[D]. Master's Thesis. Wuxi: Jiangnan University, 2020. (in Chinese)
[68]
OGUÉ-BON E, KHOO C, MCCARTNEY A L, et al. In vitro effects of synbiotic fermentation on the canine faecal microbiota[J]. FEMS Microbiology Ecology, 2010, 73(3): 587-600.
[69]
STROMPFOVÁ V, LAUKOVÁ A, CILIK D. Synbiotic administration of canine-derived strain Lactobacillus fermentum CCM 7421 and inulin to healthy dogs[J]. Canadian Journal of Microbiology, 2013, 59(5): 347-352.