动物营养学报    2022, Vol. 34 Issue (4): 2272-2282    PDF    
复合纤维和植物精油联合添加对大肠杆菌攻毒仔猪生长性能、抗氧化能力和免疫功能的影响
梁婵 , 陈代文 , 何军 , 郑萍 , 毛湘冰 , 虞洁 , 罗玉衡 , 罗钧秋 , 黄志清 , 阎辉 , 余冰     
四川农业大学动物营养研究所, 动物抗病营养教育部重点实验室, 成都 611130
摘要: 本试验旨在研究复合纤维和植物精油联合添加对产肠毒素大肠杆菌(ETEC)攻毒仔猪生长性能、抗氧化能力和免疫功能的影响。试验采用单因素设计, 选取28头(28±1)日龄的健康"杜×长×大"断奶仔猪, 根据体重[(7.93±0.44) kg]相近原则, 随机分为4个组, 分别为对照组(饲喂基础饲粮)、攻毒对照组(饲喂基础饲粮)、抗生素组(饲喂基础饲粮+75 mg/kg金霉素+25 mg/kg维吉尼亚霉素+50 mg/kg喹烯酮)和复合纤维+植物精油组(饲喂基础饲粮+0.5%菊粉+0.5%微晶纤维素+200 mg/kg植物精油), 每组7个重复, 每个重复1头仔猪, 单笼饲养。试验期25 d。于试验第22天上午, 对仔猪进行空腹称重后, 各试验组试猪一次性灌服10 mL/kg BW大肠杆菌(6×109 CFU/mL)悬浮液, 而对照组采用相同方式灌服生理盐水。结果表明: 1)与对照组相比, 攻毒对照组仔猪平均日增重(ADG)降低了7.19%(P>0.05), 料重比(F/G)提高了5.59%(P>0.05), 血清丙二醛(MDA)、白细胞介素-1β(IL-1β)和肿瘤坏死因子-α(TNF-α)含量显著提高(P < 0.05), 血清免疫球蛋白A(IgA)和白细胞介素-4(IL-4)含量显著降低(P < 0.05), 空肠黏膜MDA含量以及白细胞介素-6(IL-6)、核转录因子-κB p65(NF-κB p65)、白细胞介素-1受体相关激酶1(IRAK1) mRNA相对表达量显著提高(P < 0.05)。2)与攻毒对照组相比, 复合纤维+植物精油组仔猪平均日采食量(ADFI)和ADG分别提高了26.06%和31.73%(P>0.05), 血清总抗氧化能力(T-AOC)以及IgA和IL-4含量显著提高(P < 0.05), 血清和空肠黏膜MDA含量显著降低(P < 0.05), 空肠黏膜IL-6、Toll样受体4(TLR4)和NF-κB p65 mRNA相对表达量显著降低(P < 0.05)。3)与抗生素组相比, 复合纤维+植物精油组仔猪血清IgA含量显著提高(P < 0.05), 空肠黏膜IL-1βTNF-αCD14、髓样分化因子88(MyD88)、NF-κB p65和肿瘤坏死因子受体相关因子6(TRAF6) mRNA相对表达量显著降低(P < 0.05)。综上所述, 复合纤维和植物精油联合添加能显著抑制大肠杆菌诱导的仔猪氧化应激和炎症反应, 改善仔猪生长性能, 具有替代抗生素的潜力。
关键词: 复合纤维    植物精油    ETEC    仔猪    生长性能    抗氧化能力    免疫功能    
Effects of Compound Fiber and Plant Essential Oil Combined Supplementation on Growth Performance, Antioxidant Capacity and Immune Function of Weaned Piglets Challenged with Escherichia coli
LIANG Chan , CHEN Daiwen , HE Jun , ZHENG Ping , MAO Xiangbing , YU Jie , LUO Yuheng , LUO Junqiu , HUANG Zhiqing , YAN Hui , YU Bing     
Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
Abstract: This experiment was conducted to investigate the effects of compound fiber and plant essential oil combined supplementation on growth performance, antioxidant capacity and immune function of piglets challenged with enterotoxigenic Escherichia coli (ETEC). Twenty-eight healthy Duroc×Landrace×Yorkshire weaned piglets at (28±1) days of age were randomly divided into 4 groups according to the principle of similar body weight [(7.93±0.44) kg]. The 4 groups were control group (fed a basal diet), challenge control group (fed the basal diet), antibiotic group (fed the basal diet+75 mg/kg aureomycin+25 mg/kg virginiamycin+50 mg/kg quinocetone) and compound fiber and plant essential oil group (fed the basal diet+0.5% inulin+0.5% microcrystalline cellulose+200 mg/kg plant essential oil). There were 7 replicates in each group and 1 piglet in each replicate fed in a single cage. The experiment lasted for 25 days. On the morning of day 22, after fasting weighing, all pigs in the experimental groups were given 10 mL/kg BW Escherichia coli suspension (6×109 CFU/mL) at one time, while those in the control group were given normal saline in the same way. The results showed as follows: 1) compared with the control group, the average daily gain (ADG) of piglets in the challenge control group was decreased by 7.19% (P>0.05), and the feed to gain ratio (F/G) was increased by 5.59% (P>0.05); the contents of malondialdehyde (MDA), interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) in serum were significantly increased (P < 0.05); the contents of immunoglobulin A (IgA) and interleukin-4 (IL-4) in serum were significantly decreased (P < 0.05); and the MDA content and mRNA relative expression levels of interleukin-6 (IL-6), nuclear factor-κB p65 (NF-κB p65) and interleukin-1 receptor-associated kinase 1 (IRAK1) in jejunal mucosa were significantly increased (P < 0.05). 2) Compared with the challenge control group, the average daily feed intake (ADFI) and ADG of piglets in the compound fiber and plant essential oil group were increased by 26.06% and 31.73%, respectively (P>0.05); the total antioxidant capacity (T-AOC) and contents of IgA and IL-4 in serum were significantly increased (P < 0.05); the MDA content in serum and jejunal mucosa was significantly decreased (P < 0.05); and the mRNA relative expression levels of IL-6, Toll-like receptor 4 (TLR4) and NF-κB p65 in jejunal mucosa were significantly decreased (P < 0.05). 3) Compared with the antibiotic group, the serum IgA content in the compound fiber and plant essential oil group was significantly increased (P < 0.05); and the mRNA relative expression levels of IL-1β, TNF-α, CD14, myeloid differentiation factor 88 (MyD88), NF-κB p65 and tumor necrosis factor receptor-related factor 6 (TRAF6) in jejunal mucosa were significantly decreased (P < 0.05). In conclusion, the compound fiber and plant essential oil combined supplementation can significantly inhibit the oxidative stress and inflammatory response induced by Escherichia coli in piglets, and improve the growth performance of piglets, which has the potential to replace antibiotics.
Key words: compound fiber    plant essential oil    ETEC    piglets    growth performance    antioxidant capacity    immune function    

仔猪断奶阶段是机体免疫力增强和胃肠道发育完善的关键过渡期,此时极易遭受外界多种有害因素的干扰,从而引起仔猪腹泻和生长性能下降。饲用抗生素是用于预防和治疗断奶仔猪腹泻和促生长的重要手段之一,但目前我国正处于饲料禁抗的大背景下,因而,推动开发安全、绿色和高效的抗生素替代品和替代方案具有重要意义。近年来,纤维和植物精油作为天然植物的组成部分,具有安全、环保且来源广泛等优点,引起了众多研究者的关注。研究表明,饲粮纤维能够调节动物肠道菌群结构,增加短链脂肪酸(如乙酸、丙酸和丁酸)的产生,对改善动物肠道健康、增强机体免疫和提高生长性能具有重要意义[1-2]。植物精油具有抗菌、抗炎和抗氧化的功能,能够提高动物机体免疫和抗氧化作用,调节肠道菌群结构,改善肠道健康,促进动物生长[3-4]。然而,在动物生产中,单一添加饲粮纤维或植物精油作用有限,均难以达到完全替代抗生素的效果。有研究表明,将可溶和不溶性纤维复合添加、多种植物精油混合使用其效果均优于单一添加[5-7]。Chen等[8]研究发现,可溶和不可溶性纤维(0.5%菊粉+0.5%木质纤维素)复合添加对仔猪促生长效果优于单一纤维;贾淋雁[9]研究指出,仔猪饲粮中添加200 mg/kg复合植物精油能够提高仔猪的免疫功能和抗氧化能力,并能缓解猪流行性腹泻病毒攻毒诱导发生的腹泻和生长性能的下降,且复合植物精油的添加效果优于单一植物精油[10]。此外,蒲俊宁[10]研究表明,植物精油、益生菌和酸化剂(400 mg/kg牛至油+400 mg/kg凝结芽孢杆菌+3 000 mg/kg苯甲酸)组合添加能提高仔猪抗氧化能力,改善生长性能并降低仔猪腹泻。类似的研究也发现,植物精油与酸化剂、益生菌和酶制剂等联合添加在断奶仔猪生产上的应用均表现出协同的效果[11-13]。不过,关于植物精油与纤维联合使用的效果如何,目前相关研究缺乏,有待进一步探索。因此,本研究推测复合纤维和植物精油联合使用可能具有潜在的加性效应,并考察复合纤维和植物精油联合添加在大肠杆菌攻毒条件下对断奶仔猪生长性能、抗氧化能力和免疫功能的影响,旨在为仔猪无抗饲料的研发提供参考依据。

1 材料与方法 1.1 试验材料

菊粉:主要成分为天然果聚糖,白色粉末状,100%可溶,纯度>90%,购自于陕西某公司;微晶纤维素:已纯化并部分解聚的纤维素,白色粉末状,100%不溶,纯度≥99%,购自于山东某公司;植物精油:主要活性成分为多种天然植物精油,由3%尤加利精油、2%牛至精油、0.5%百里香精油、0.1%柠檬精油、0.1%大蒜精油和5%椰子油组成,半包被浅褐色粉末,具有中草药气味,由四川某公司惠赠;金霉素:有效含量15%,使用剂量25~75 g/t;维吉尼亚霉素:有效含量50%,使用剂量10~25 g/t;喹烯酮:有效含量98%,使用剂量50 g/t;产肠毒素大肠杆菌(血清型O149:K91,K88ac)购买于中国兽医微生物菌种保藏管理中心。

1.2 试验设计

试验采用单因素设计,选取28头(28±1)日龄的健康“杜×长×大”断奶仔猪,根据体重[(7.93±0.44) kg]相近原则,随机分为4个组,分别为对照组(饲喂基础饲粮)、攻毒对照组(饲喂基础饲粮)、抗生素组(饲喂基础饲粮+75 mg/kg金霉素+25 mg/kg维吉尼亚霉素+50 mg/kg喹烯酮)和复合纤维+植物精油组(饲喂基础饲粮+0.5%菊粉+0.5%微晶纤维素+200 mg/kg植物精油),每组7个重复,每个重复1头仔猪,单笼饲养。试验期25 d。于试验第22天上午,对仔猪进行空腹称重后,各试验组试猪一次性灌服10 mL/kg BW大肠杆菌(6×109 CFU/mL)悬浮液,而对照组采用相同方式灌服生理盐水。

1.3 试验饲粮

基础饲粮为玉米-豆粕-乳清粉-鱼粉型,参考NRC(2012)营养需求配制而成,各试验组饲粮均由相应产品等量替代基础饲粮中的玉米构成,所有饲粮均为粉料。基础饲粮组成及营养水平见表 1

表 1 基础饲粮组成及营养水平(风干基础) Table 1 Composition and nutrient levels of the basal diet (air-dry basis) 
1.4 饲养管理

试验在四川农业大学动物营养研究所试验基地仔猪试验舍进行,所有仔猪按常规饲养管理方式进行。试验期间,每日饲喂3次(08:00、14:00和20:00),每次以试猪采食结束后料槽略有余料为度,自由饮水。圈舍室温保持在26~28 ℃,相对湿度为45%~75%。对照组和大肠杆菌攻毒组(试验组)试猪分舍饲养,以防止交叉感染。

1.5 样品采集与处理

试验第26天,对所有仔猪空腹称重后,前腔静脉采血15 mL,置于普通真空采血管,室温静置30 min后低温离心(3 500 r/min,10 min),分离出血清,-20 ℃保存,待测血清生化指标。采血完成后,按照试猪体重以0.1 mL/kg肌肉注射术眠灵注射液(主要成分为赛拉嗪、咪达唑仑)进行麻醉,随后颈动脉放血屠宰,打开腹腔,快速结扎空肠。于空肠1/2处剪取20 cm肠段,纵向剖开,用生理盐水冲净肠道内容物并用滤纸吸干水分,使用玻璃片刮取空肠黏膜置于2 mL冻存管中,将样品放入液氮速冻后转入-80 ℃保存待测。

1.6 检测指标及方法 1.6.1 生长性能

于试验第1天和第26天上午,对空腹过夜的仔猪进行称重,并每日记录每头猪只的采食量,计算第1~25天的平均日采食量(ADFI)、平均日增重(ADG)和料重比(F/G)。

1.6.2 血清和肠道抗氧化指标

10%空肠黏膜匀浆样品制备:称取1 g左右空肠黏膜样,准确记录重量,按重量∶体积=1 ∶ 9的比例加入4 ℃预冷的生理盐水,于超声破碎仪匀浆,匀浆液于4 ℃离心机3 000 r/min离心15 min,吸取上清,分装后于-80 ℃保存待测。

血清和空肠黏膜中总抗氧化能力(T-AOC)、总超氧化物歧化酶(T-SOD)和谷胱甘肽过氧化物酶(GSH-Px)活性、丙二醛(MDA)含量以及空肠黏膜中总蛋白(TP)含量均采用相应试剂盒(南京建成生物工程研究所)进行测定,具体操作均严格按照说明书执行。

1.6.3 血清和肠道免疫指标

血清中免疫球蛋白A(IgA)、免疫球蛋白G(IgG)、免疫球蛋白M(IgM)、肿瘤坏死因子-α(TNF-α)、白细胞介素-1β(IL-1β)、白细胞介素-4(IL-4)、白细胞介素-6(IL-6)和白细胞介素-10(IL-10)采用酶联免疫吸附试验(ELISA)试剂盒(江苏酶免实业有限公司)进行测定,具体操作均严格按照说明书进行。

采用实时荧光定量PCR测定空肠黏膜免疫相关基因IL-6、IL-1βTNF-α以及Toll样受体4(TLR4)/髓样分化因子88(MyD88)信号通路相关基因TLR4CD14MyD88、白细胞介素-1受体相关激酶1(IRAK1)、肿瘤坏死因子受体相关因子6(TRAF6)和核转录因子-κB(NF-κB) p65 mRNA相对表达量(详细引物序列见表 2),具体操作方法参考Fu等[14]。所有目的基因mRNA相对表达量均以β-肌动蛋白(β-actin)为内参基因,相对荧光定量采用2-ΔΔCt法计算[15]

表 2 实时荧光定量PCR引物序列 Table 2 Primer sequences for real-time fluorescent quantitative PCR
1.7 数据处理与统计分析

试验数据采用SAS 9.4统计分析软件进行分析。其中,对照组和攻毒对照组之间的差异采用独立样本t检验进行对比分析;而试验组所有指标均采用Mixed模型进行单因素方差分析,并结合Duncan氏法进行多重比较。结果以平均值(mean)表示,数据的变异性以均值标准误(SEM)表示,以P < 0.05视为差异显著,0.05≤P < 0.10视为有差异显著趋势。

2 结果 2.1 复合纤维和植物精油联合添加对大肠杆菌攻毒仔猪生长性能的影响

表 3可知,各组仔猪生长性能无显著差异(P>0.05)。但与对照组相比,攻毒对照组组仔猪ADG降低了7.19%(P>0.05),F/G提高了5.59%(P>0.05);与攻毒对照组相比,复合纤维+植物精油组仔猪ADFI和ADG分别提高了26.06%和31.73%(P>0.05);与抗生素组相比,复合纤维+植物精油组仔猪ADFI和ADG分别提高了10.82%和10.97%(P>0.05)。

表 3 复合纤维和植物精油联合添加对大肠杆菌攻毒仔猪生长性能的影响 Table 3 Effects of compound fiber and plant essential oil combined supplementation on growth performance of piglets challenged with Escherichia coli
2.2 复合纤维和植物精油联合添加对大肠杆菌攻毒仔猪血清和空肠黏膜抗氧化指标的影响

表 4可知,与对照组相比,攻毒对照组仔猪血清和空肠黏膜MDA含量显著提高(P < 0.05),血清GSH-Px活性显著提高(P < 0.05),血清T-AOC有降低的趋势(P=0.064)。与攻毒对照组相比,抗生素组和复合纤维+植物精油组仔猪血清T-AOC显著提高(P < 0.05),空肠黏膜MDA含量显著降低(P < 0.05),且复合纤维+植物精油组血清MDA含量也显著降低(P < 0.05)。与抗生素组相比,复合纤维+植物精油组仔猪血清和空肠黏膜抗氧化指标均无显著差异(P>0.05),但血清MDA含量有降低趋势(P=0.059),空肠黏膜T-AOC有提高趋势(P=0.075)。

表 4 复合纤维和植物精油联合添加对大肠杆菌攻毒仔猪血清和空肠黏膜抗氧化指标的影响 Table 4 Effects of compound fiber and plant essential oil combined supplementation on serum and jejunal mucosa antioxidant indices of piglets challenged with Escherichia coli
2.3 复合纤维和植物精油联合添加对大肠杆菌攻毒仔猪血清免疫指标的影响

表 5可知,与对照组相比,攻毒对照组仔猪血清IgA和IL-4含量显著降低(P < 0.05),血清IL-1β和TNF-α含量显著提高(P < 0.05),血清IL-6含量有提高的趋势(P=0.051)。与攻毒对照组相比,复合纤维+植物精油组仔猪血清IgA和IL-4含量显著提高(P < 0.05)。与抗生素组相比,复合纤维+植物精油组仔猪血清IgA含量显著提高(P < 0.05)。

表 5 复合纤维和植物精油联合添加对大肠杆菌攻毒仔猪血清免疫指标的影响 Table 5 Effects of compound fiber and plant essential oil combined supplementation on serum immune indices of piglets challenged with Escherichia coli
2.4 复合纤维和植物精油联合添加对大肠杆菌攻毒仔猪肠道免疫指标的影响

图 1可知,与对照组相比,攻毒对照组仔猪空肠黏膜IL-6 mRNA相对表达量显著提高(P < 0.05)。与攻毒对照组相比,复合纤维+植物精油组仔猪空肠黏膜IL-6 mRNA相对表达量显著降低(P < 0.05),抗生素组空肠黏膜IL-1β mRNA相对表达量显著提高(P < 0.05)。与抗生素组相比,复合纤维+植物精油组仔猪空肠黏膜IL-1βTNF-α mRNA相对表达量显著降低(P < 0.05)。

#表示对照组与攻毒对照组之间差异显著(P < 0.05)。试验组数据柱标记不同字母表示差异显著(P < 0.05)。图 2同。 # represented significant difference between control group and challenge control group (P < 0.05). Date columns of the experimental groups with different letters mean significantly different (P < 0.05). The same as Fig. 2. 图 1 复合纤维和植物精油联合添加对大肠杆菌攻毒仔猪空肠黏膜细胞因子相关基因表达量的影响 Fig. 1 Effects of compound fiber and plant essential oil combined supplementation on expression levels of cytokine related genes in jejunal mucosa of piglets challenged with Escherichia coli

图 2可知,与对照组相比,攻毒对照组仔猪空肠黏膜NF-κB p65和IRAK1 mRNA相对表达量显著提高(P < 0.05),空肠黏膜TLR4 mRNA相对表达量有提高的趋势(P=0.083)。与攻毒对照组相比,复合纤维+植物精油组仔猪空肠黏膜TLR4NF-κB p65 mRNA相对表达量显著降低(P < 0.05),而抗生素组空肠黏膜CD14MyD88 mRNA相对表达量则显著提高(P < 0.05)。与抗生素组相比,复合纤维+植物精油组仔猪空肠黏膜CD14MyD88NF-κB p65和TRAF6 mRNA相对表达量显著降低(P < 0.05)。

图 2 复合纤维和植物精油联合添加对大肠杆菌攻毒仔猪空肠黏膜TLR4CD14及其下游信号通路相关基因表达量的影响 Fig. 2 Effects of compound fiber and plant essential oil combined supplementation on expression levels of TLR4, CD14 and downstream signaling pathway related genes in jejunal mucosa of piglets challenged with Escherichia coli
3 讨论 3.1 复合纤维和植物精油联合添加对大肠杆菌攻毒仔猪生长性能的影响

纤维和植物精油被认为是潜在的抗生素替代品,在改善动物生长性能和预防腹泻方面具有一定的积极作用[16-17]。Chen等[8]研究发现,1%复合纤维能够提高仔猪ADG,降低F/G。Alali等[18]在肉鸡饮水中添加复合精油可显著提高肉鸡平均体重,降低F/G,且0.05%复合精油能显著减少肉鸡饲粮中海德尔堡沙门氏菌(Salmonella Heidelberg)的污染。本研究发现,与攻毒对照组相比,复合纤维+植物精油组仔猪ADFI和ADG分别提高了26.06%和31.73%,且其应用效果优于抗生素。这说明,在大肠杆菌感染的条件下,复合纤维和植物精油联合添加能有效缓解仔猪生长性能下降,这与前人研究结果一致。尽管纤维和植物精油联合添加具有一定的促生长作用,但其作用机制还不明确。而最近的一项研究发现,在蛋鸡饲粮中添加复合植物提取物(主要成分是大蒜素和菊粉),即纤维和植物精油联合添加能够增强蛋鸡机体的免疫功能及抗氧化能力,并提高产蛋率,改善蛋品质[19]。因此,我们推测本研究中联合添加复合纤维和植物精油发挥促生长作用可能与其对机体免疫和抗氧化能力的增强作用有关。

3.2 复合纤维和植物精油联合添加对大肠杆菌攻毒仔猪抗氧化能力的影响

正常情况下,机体在氧化代谢过程中产生的自由基能被抗氧化系统及时清除,维持体内氧化与抗氧化的平衡。当动物机体遭受应激(如仔猪断奶、细菌或病毒感染)时,体内产生大量自由基,导致氧化还原状态失衡,造成机体氧化损伤[20]。MDA是脂质过氧化产物,可反映机体脂质过氧化的程度,间接反映细胞的损伤程度。在本研究中,与对照组相比,攻毒对照组仔猪血清和空肠黏膜MDA含量显著提高,血清T-AOC有降低的趋势,说明大肠杆菌感染导致仔猪发生氧化应激,降低了机体抗氧化能力。然而,大肠杆菌攻毒后仔猪血清GSH-Px活性显著提高,这可能是由于在轻度和中度氧化应激状态下,机体出于自身保护,体内的自由基会诱导激活抗氧化酶基因的编码启动,从而增强宿主抗氧化系统的能力,但这并不足以保护机体免受损伤[21-22]。研究发现,菊粉能显著提高肉仔鸡血清T-SOD和GSH-Px活性,并降低血清MDA含量[23]。Wu等[24]研究表明,菊粉能够缓解大鼠因摄食高脂无纤维饲粮导致的氧化应激。大量研究发现,多种植物精油(如牛至精油、百里香精油和丁香精油等)都具有较强的抗氧化活性[25-28]。Wei等[29]研究发现,饲粮添加牛至精油能够显著提高大鼠空肠黏膜超氧化物歧化酶和GSH-Px活性,显著降低空肠黏膜活性氧(ROS)和MDA含量,有效缓解敌草快(diquat)引起的大鼠肠道氧化损伤。本研究中,复合纤维和植物精油联合添加显著缓解大肠杆菌攻毒仔猪血清和空肠黏膜MDA含量的升高,并显著提高血清T-AOC,这反映了复合纤维和植物精油联合添加能够改善仔猪抗氧化能力,具有增强清除多余自由基的潜能。

3.3 复合纤维和植物精油联合添加对大肠杆菌攻毒仔猪血清免疫指标的影响

当仔猪遭受外源致病菌侵袭后,机体免疫系统被激活,释放大量炎症细胞因子(如IL-6、IL-1β和TNF-α)[30],引起机体发生严重的炎症发应[31-33]。本研究发现,与对照组相比,攻毒对照组仔猪血清IL-6、IL-1β和TNF-α等促炎细胞因子含量有升高趋势或显著升高,血清IgA和IL-4含量显著降低,说明大肠杆菌感染引起了仔猪机体发生强烈的炎症反应。前人研究表明,纤维能够降低人体血液中IL-1β基因的表达量,从而缓解脂多糖(LPS)诱发的炎症反应[34]。Ocaña-Fuentes等[35]发现,牛至油可显著降低应激状态下人单核巨噬细胞THP-1合成TNF-α、IL-1β和IL-6,缓解动脉粥样硬化诱发的炎症反应。本研究发现,与攻毒对照组相比,复合纤维和植物精油联合添加能显著缓解大肠杆菌攻毒仔猪血清IgA和IL-4含量的降低,说明复合纤维和植物精油联合添加在大肠杆菌攻毒条件下能增强仔猪机体的免疫功能,降低攻毒引起的炎症反应,这可能也是本试验中复合纤维和植物精油联合添加缓解大肠杆菌攻毒仔猪生长性能降低的原因之一。

3.4 复合纤维和植物精油联合添加对大肠杆菌攻毒仔猪肠道免疫指标的影响

肠道是机体与外界饮食抗原和各种微生物持续接触最广泛的部位,是机体防御的最前线、最大的免疫器官。当仔猪遭受大肠杆菌侵袭后,肠道黏膜中分泌型免疫球蛋白A(sIgA)和IL-10含量显著降低,黏膜中IL-6、IL-1β和TNF-α含量显著提高,导致肠道屏障发生炎症损伤[13, 36-37]。本研究发现,与对照组相比,攻毒对照组仔猪空肠黏膜中IL-6 mRNA相对表达量显著提高,而饲粮联合添加复合纤维和植物精油能显著缓解空肠黏膜中IL-6 mRNA相对表达量的升高,但抗生素组空肠黏膜中IL-1β mRNA相对表达量则显著提高。可见,联合添加复合纤维和植物精油能够改善大肠杆菌攻毒导致的仔猪肠道炎症损伤,而抗生素则会加剧这种炎症损伤。

Toll样受体(Toll-like receptor,TLR)是机体内一类重要的模式识别受体,在肠道免疫调节中发挥着重要作用。当大肠杆菌入侵后,TLR与病原相关分子模式(如LPS)相结合,激活下游信号通路,诱导促炎因子合成和释放,引发炎症反应[38]。本研究发现,与对照组相比,攻毒对照组仔猪空肠黏膜NF-κB p65和IRAK1 mRNA相对表达量显著提高,且空肠黏膜TLR4 mRNA相对表达量有提高的趋势,这与Pu等[13]的结果基本一致。而与攻毒对照组相比,复合纤维和植物精油联合添加能够显著缓解仔猪空肠黏膜TLR4NF-κB p65 mRNA相对表达量的提高,而抗生素则显著提高CD14和MyD88 mRNA相对表达量,该结果与上述炎症因子的释放相一致。可见,大肠杆菌攻毒后,复合纤维和植物精油联合添加可通过抑制TLR4/核转录因子-κB(NF-κB)信号通路激活来降低炎症因子IL-6的释放,从而缓解仔猪肠道的炎症损伤;而抗生素则会激活该通路,使得炎症因子IL-1β释放增加,加剧肠道炎症损伤。

4 结论

饲粮联合添加复合纤维和植物精油可显著抑制大肠杆菌诱导的仔猪氧化应激和炎症反应,改善仔猪生长性能,且作用效果优于抗生素。其中,复合纤维和植物精油联合添加缓解大肠杆菌引起的仔猪肠道炎症损伤的机制,与其抑制TLR4/NF-κB信号通路降低炎症因子的释放有关。

参考文献
[1]
KNUDSEN K E B, HEDEMANN M S, LÆRKE H N. The role of carbohydrates in intestinal health of pigs[J]. Animal Feed Science and Technology, 2012, 173(1/2): 41-53.
[2]
WENK C. The role of dietary fibre in the digestive physiology of the pig[J]. Animal Feed Science and Technology, 2001, 90(1/2): 21-33.
[3]
ZENG Z K, ZHANG S, WANG H L, et al. Essential oil and aromatic plants as feed additives in non-ruminant nutrition: a review[J]. Journal of Animal Science and Biotechnology, 2015, 6(1): 7. DOI:10.1186/s40104-015-0004-5
[4]
ZHAI H X, LIU H, WANG S K, et al. Potential of essential oils for poultry and pigs[J]. Animal Nutrition, 2018, 4(2): 179-186. DOI:10.1016/j.aninu.2018.01.005
[5]
OWUSU-ASIEDU A, PATIENCE J F, LAARVELD B, et al. Effects of guar gum and cellulose on digesta passage rate, ileal microbial populations, energy and protein digestibility, and performance of grower pigs[J]. Journal of Animal Science, 2006, 84(4): 843-852. DOI:10.2527/2006.844843x
[6]
刘猛. 植物精油仔猪生产性能、肠道微生物及免疫性能的影响[D]. 硕士学位论文. 郑州: 河南农业大学, 2011.
LIU M. Effects of plant essential oil on growth performance, intestinal microflora and immunization performance in piglets[D]. Master's Thesis. Zhengzhou: He'nan Agricultural University, 2011. (in Chinese)
[7]
张嘉琦, 张会艳, 赵青余, 等. 植物精油对畜禽肠道健康、免疫调节和肉品质的研究进展[J]. 动物营养学报, 2021, 33(5): 2439-2451.
ZHANG J Q, ZHANG H Y, ZHAO Q Y, et al. Research progress of plant essential oil on intestinal health, immune regulation and meat quality of livestock and poultry[J]. Chinese Journal of Animal Nutrition, 2021, 33(5): 2439-2451 (in Chinese).
[8]
CHEN T T, CHEN D W, TIAN G, et al. Effects of soluble and insoluble dietary fiber supplementation on growth performance, nutrient digestibility, intestinal microbe and barrier function in weaning piglet[J]. Animal Feed Science and Technology, 2020, 260: 114335. DOI:10.1016/j.anifeedsci.2019.114335
[9]
贾淋雁. 饲粮添加铜和植物精油对猪流行性腹泻病毒攻毒仔猪生长性能和免疫功能的影响[D]. 硕士学位论文. 雅安: 四川农业大学, 2019.
JIA L Y. Effect of dietary copper and plant essential oils supplementation on growth performance and immune function of weaned piglets challenged with porcine epidemic diarrhea virus[D]. Master's Thesis. Ya'an: Sichuan Agricultural University, 2019. (in Chinese)
[10]
蒲俊宁. 苯甲酸、凝结芽孢杆菌和牛至油对断奶仔猪生长性能和肠道健康的影响[D]. 硕士学位论文. 成都: 四川农业大学, 2017.
PU J N. Effects of benzoic acid, Bacillus coagulans and oregano oil on growth performance and gut health in weaned piglets[D]. Master's Thesis. Chengdu: Sichuan Agricultural University, 2017. (in Chinese)
[11]
JIANG X R, AGAZZI A, AWATI A, et al. Influence of a blend of essential oils and an enzyme combination on growth performance, microbial counts, ileum microscopic anatomy and the expression of inflammatory mediators in weaned piglets following an Escherichia coli infection[J]. Animal Feed Science and Technology, 2015, 209: 219-229. DOI:10.1016/j.anifeedsci.2015.08.010
[12]
DIAO H, ZHENG P, YU B, et al. Effects of benzoic acid and thymol on growth performance and gut characteristics of weaned piglets[J]. Asian-Australasian Journal of Animal Sciences, 2015, 28(6): 827-839. DOI:10.5713/ajas.14.0704
[13]
PU J N, CHEN D W, TIAN G, et al. Protective effects of benzoic acid, Bacillus coagulans, and oregano oil on intestinal injury caused by enterotoxigenic Escherichia coli in weaned piglets[J]. BioMed Research International, 2018, 2018: 1829632.
[14]
FU R Q, LIANG C, CHEN D W, et al. Effects of dietary Bacillus coagulans and yeast hydrolysate supplementation on growth performance, immune response and intestinal barrier function in weaned piglets[J]. Journal of Animal Physiology and Animal Nutrition, 2021, 105(5): 898-907. DOI:10.1111/jpn.13529
[15]
LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-Delta Delta CT method[J]. Methods, 2001, 25(4): 402-408. DOI:10.1006/meth.2001.1262
[16]
MOLIST F, MANZANILLA E G, PÉREZ J F, et al. Coarse, but not finely ground, dietary fibre increases intestinal Firmicutes: Bacteroidetes ratio and reduces diarrhoea induced by experimental infection in piglets[J]. British Journal of Nutrition, 2012, 108(1): 9-15. DOI:10.1017/S0007114511005216
[17]
TIAN Q Y, PIAO X S. Essential oil blend could decrease diarrhea prevalence by improving antioxidative capability for weaned pigs[J]. Animals, 2019, 9(10): 847. DOI:10.3390/ani9100847
[18]
ALALI W Q, HOFACRE C L, MATHIS G F, et al. Effect of essential oil compound on shedding and colonization of Salmonella enterica serovar Heidelberg in broilers[J]. Poultry Science, 2013, 92(3): 836-841. DOI:10.3382/ps.2012-02783
[19]
陈祥宇, 朱亚昊, 刘萌, 等. 复合植物提取物对蛋鸡生产性能、蛋品质、免疫功能和抗氧化能力的影响[J]. 动物营养学报, 2021, 33(6): 3271-3279.
CHEN X Y, ZHU Y H, LIU M, et al. Effects of compound plant extracts on performance, egg quality, immune function and antioxidant ability of laying hens[J]. Chinese Journal of Animal Nutrition, 2021, 33(6): 3271-3279 (in Chinese).
[20]
JIANG X R, LI X L, AWATI A, et al. Effect of an essential oils blend on growth performance, and selected parameters of oxidative stress and antioxidant defence of Escherichia coli challenged piglets[J]. Journal of Animal and Feed Sciences, 2017, 26(1): 38-43.
[21]
ZHANG Q, PIAO X L, PIAO X S, et al. Preventive effect of Coptis chinensis and berberine on intestinal injury in rats challenged with lipopolysaccharides[J]. Food and Chemical Toxicology, 2011, 49(1): 61-69. DOI:10.1016/j.fct.2010.09.032
[22]
BATRA S, KUMAR R, KAPOOR A K, et al. Alterations in antioxidant status during neonatal sepsis[J]. Annals of Tropical Paediatrics, 2000, 20(1): 27-33. DOI:10.1080/02724930092039
[23]
魏轶男. 菊粉对肉仔鸡生长性能、免疫功能及抗氧化性能的影响[D]. 硕士学位论文. 杨凌: 西北农林科技大学, 2013.
WEI Y N. Effects of inulin on growth performance, immune organs indices and antioxidantion of broilers[D]. Master's Thesis. Yangling: Northwest A & F University, 2013. (in Chinese)
[24]
WU W T, CHEN H L. Konjac glucomannan and inulin systematically modulate antioxidant defense in rats fed a high-fat fiber-free diet[J]. Journal of Agricultural and Food Chemistry, 2011, 59(17): 9194-9200. DOI:10.1021/jf202060p
[25]
BOZIN B, MIMICA-DUKIC N, SIMIN N, et al. Characterization of the volatile composition of essential oils of some lamiaceae spices and the antimicrobial and antioxidant activities of the entire oils[J]. Journal of Agricultural and Food Chemistry, 2006, 54(5): 1822-1828. DOI:10.1021/jf051922u
[26]
TEIXEIRA B, MARQUES A, RAMOS C, et al. Chemical composition and antibacterial and antioxidant properties of commercial essential oils[J]. Industrial Crops and Products, 2013, 43: 587-595. DOI:10.1016/j.indcrop.2012.07.069
[27]
BOUNATIROU S, SMITI S, MIGUEL M G, et al. Chemical composition, antioxidant and antibacterial activities of the essential oils isolated from Tunisian Thymus capitatus Hoff. et Link[J]. Food Chemistry, 2007, 105(1): 146-155. DOI:10.1016/j.foodchem.2007.03.059
[28]
WEI A, SHIBAMOTO T. Antioxidant/lipoxygenase inhibitory activities and chemical compositions of selected essential oils[J]. Journal of Agricultural and Food Chemistry, 2010, 58(12): 7218-7225. DOI:10.1021/jf101077s
[29]
WEI H K, CHEN G, WANG R J, et al. Oregano essential oil decreased susceptibility to oxidative stress-induced dysfunction of intestinal epithelial barrier in rats[J]. Journal of Functional Foods, 2015, 18(Part B): 1191-1199.
[30]
任继平. 芽孢杆菌制剂对大肠杆菌感染仔猪免疫应答及肠道菌群影响[D]. 博士学位论文. 北京: 中国农业大学, 2014.
REN J P. Effects of Bacillus on immune responses and gut microbial diversity of piglets infected by Escherichia coli[D]. Ph. D. Thesis. Beijing: China Agricultural University, 2014. (in Chinese)
[31]
XU C L, YAN S Q, GUO Y, et al. Lactobacillus casei ATCC 393 alleviates enterotoxigenic Escherichia coli K88-induced intestinal barrier dysfunction via TLRs/mast cells pathway[J]. Life Sciences, 2020, 244: 117281. DOI:10.1016/j.lfs.2020.117281
[32]
REN C X, ZHOU Q Q, GUAN W T, et al. Immune response of piglets receiving mixture of formic and propionic acid alone or with either capric acid or Bacillus licheniformis after Escherichia coli challenge[J]. BioMed Research International, 2019, 2019: 6416187.
[33]
LI X Q, ZHU Y H, ZHANG H F, et al. Risks associated with high-dose Lactobacillus rhamnosus in an Escherichia coli model of piglet diarrhoea: intestinal microbiota and immune imbalances[J]. PLoS One, 2012, 7(7): e40666. DOI:10.1371/journal.pone.0040666
[34]
LECERF J M, DÉPEINT F, CLERC E, et al. Xylo-oligosaccharide (XOS) in combination with inulin modulates both the intestinal environment and immune status in healthy subjects, while XOS alone only shows prebiotic properties[J]. British Journal of Nutrition, 2012, 108(10): 1847-1858. DOI:10.1017/S0007114511007252
[35]
OCAÑA-FUENTES A, ARRANZ-GUTIÉRREZ E, SEÑORANS F J, et al. Supercritical fluid extraction of oregano (Origanum vulgare) essentials oils: anti-inflammatory properties based on cytokine response on THP-1 macrophages[J]. Food and Chemical Toxicology, 2010, 48(6): 1568-1575. DOI:10.1016/j.fct.2010.03.026
[36]
CHE L A, XU Q, WU C, et al. Effects of dietary live yeast supplementation on growth performance, diarrhoea severity, intestinal permeability and immunological parameters of weaned piglets challenged with enterotoxigenic Escherichia coli K88[J]. British Journal of Nutrition, 2017, 118(11): 949-958. DOI:10.1017/S0007114517003051
[37]
LI H H, LI Y P, ZHU Q, et al. Dietary supplementation with Clostridium butyricum helps to improve the intestinal barrier function of weaned piglets challenged with enterotoxigenic Escherichia coli K88[J]. Journal of Applied Microbiology, 2018, 125(4): 964-975. DOI:10.1111/jam.13936
[38]
KAISHO T, AKIRA S. Toll-like receptor function and signaling[J]. The Journal of Allergy and Clinical Immunology, 2006, 117(5): 979-987. DOI:10.1016/j.jaci.2006.02.023