动物营养学报    2022, Vol. 34 Issue (4): 2476-2484    PDF    
过瘤胃脂肪对产后肉母牛生长性能、血清指标及繁殖性能的影响
王建东1 , 唐玉林2 *, 侯鹏霞1 , 康晓冬1 , 于洋1 , 梁小军1     
1. 宁夏农林科学院动物科学研究所, 银川 750002;
2. 宁夏大学农学院, 银川 750021
摘要: 本试验旨在探究饲粮中添加过瘤胃脂肪对肉母牛生长性能、血清指标及繁殖性能的影响。试验选用体况评分5~6分、胎次2胎、产后1周内的安格斯母牛40头, 随机分为4组, 每组10头, 第1组饲喂基础饲粮, 第2、3、4组分别在基础饲粮中添加150、200、250 g/头的过瘤胃脂肪, 集中饲喂60 d, 自由饮水。结果表明: 1)产后肉母牛初始体重和体况各组之间无显著差异(P > 0.05), 终末体重第3、4组较第1组有显著增加(P<0.05), 终末体况第4组较第1组显著增加(P<0.05)。2)血清总蛋白(TP)和白蛋白(ALB)含量各组之间无显著差异(P > 0.05);血清尿素氮(UN)含量第4组较第1组显著升高(P<0.05), 血清葡萄糖(GLU)和甘油三酯(TG)含量第4组较第1、2组极显著升高(P<0.01);血清胰岛素(INS)含量第4组较第1、2组显著升高(P<0.05);血清胰岛素样生长因子结合蛋白-2(IGFBP-2)含量第4组极显著低于第1组(P<0.01), 第3组显著低于第1组(P<0.05);血清胰岛素样生长因子结合蛋白-4(IGFBP-4)含量第4组极显著高于第1组(P<0.05), 第3组显著高于第1组(P<0.05);血清抗苗勒管激素(AMH)含量第4组极显著低于其他3个组(P<0.01), 血清雌激素(E2)含量第4组显著低于第1组(P<0.05);血清抑制素B(INHB)含量第3、4组显著低于第1组(P<0.05)。3)妊娠率第1、2组高于第3、4组, 但差异不显著(P > 0.05);产后第1次发情时间第4组极显著高于其他各组(P<0.01), 第3组显著高于第1组(P<0.05);产后第1次配种天数第4组极显著高于第1、2组(P<0.01), 第3组显著高于第1组(P<0.05)。综上所述, 在本试验条件下, 产后体况评分为5~6分的安格斯母牛饲粮中添加过瘤胃脂肪导致其体况评分增加, 血清相关指标发生改变, 母牛繁殖性能下降, 且随着饲粮中过瘤胃脂肪添加量的增加, 影响越显著。
关键词: 过瘤胃脂肪    产后母牛    体况评分    血清指标    繁殖性能    
Effects of Rumen Bypass Fat on Growth Performance, Serum Indexes and Reproductive Performance of Postpartum Beef Cows
WANG Jiandong1 , TANG Yulin2 *, HOU Pengxia1 , KANG Xiaodong1 , YU Yang1 , LIANG Xiaojun1     
1. Institute of Animal Science, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, China;
2. College of Agriculture, Ningxia University, Yinchuan 750021, China
Abstract: The purpose of this experiment was to explore the effects of adding rumen bypass fat to the diet on the growth performance, serum indexes and reproductive performance of postpartum beef cows. The test selected 40 Angus cows with body condition scores 5 to 6, two times of parity, and all Angus cows within 1 week after delivery, randomly divided into 4 groups of 10 heads each. The group 1 was fed a basal diet, and groups 2, 3 and 4 were supplemented with 150, 200 and 250 g/head rumen bypass fat in the basal diet, concentrated feeding for 60 days, drinking water freely. The results showed as follows: 1) the initial body weight and body condition of postpartum beef cows were not significantly different between groups (P > 0.05). The final body weight of groups 3 was increased significantly compared with the group 1 (P < 0.05), and the final body condition of the group 4 was significantly increased compared with the group 1 (P < 0.05). 2) Total protein (TP) and albumin (ALB) contents in serum had no significant difference between groups (P < 0.05), urea nitrogen (UN) content of group 4 was significantly higher than that of group 1 (P < 0.05), glucose (GLU) and triglycerides (TG) contents of group 4 were significantly higher than those of groups 1 and 2 (P < 0.01). Serum insulin (INS) content of group 4 was significantly higher than that of groups 1 and 2 (P < 0.05), bovine insulin-like growth factor binding protein-2 (IGFBP-2) content of group 4 was significantly lower than that of group 1 (P < 0.01), group 3 was significantly lower than group 1 (P < 0.05), bovine insulin-like growth factor binding protein-4 (IGFBP-4) content of group 4 was significantly higher than that of group 1 (P < 0.05), and the group 3 was significantly higher than group 1(P < 0.05). The content of anti-mullerian hormone (AMH) of group 4 was significantly lower than that of the other 3 groups (P < 0.01), the content of estrogen (E2) in serum of group 4 was significantly lower than that of group 1 (P < 0.05), the content of inhibin B (INHB) of groups 3 and 4 was significantly lower than that of group 1 (P < 0.05), the content of progesterone (P4) in serum was not significantly different among groups (P > 0.05). 3) The pregnancy rate of groups 1 was higher than that of groups 3 and 4, but the difference was not significant (P > 0.05), the first estrus time after delivery of group 4 was significantly higher than that of groups 1, 2 and 3 (P < 0.01), the group 3 was significantly higher than group 1 (P < 0.05), the first mating days after childbirth of group 4 was significantly higher than that of groups 1 and 2 (P < 0.01), the group 3 was significantly higher than group 1 (P < 0.05). In summary, under the conditions of this experiment, adding rumen fat to the diet of Angus cows with a postpartum body condition score of 5 to 6 will result in a significant increase in their body condition score, a significant change in serum indicators, and a significant decrease in the reproductive performance of the cows. As the amount of rumen bypass fat in the diet increases, the impact is more significant.
Key words: rumen bypass fat    postpartum cow    body condition score    serum indexes    reproductive performance    

当前我国在肉牛养殖上出现小牛与育肥牛之间价格倒挂和母牛产能不足的现象(存栏量少和繁殖效率低),因此如何提高繁殖率,已成为制约肉牛产业蓬勃发展的重要问题。过瘤胃脂肪(RPF)是指通过使用物理和化学等技术方法将脂肪保护起来,使其在瘤胃内不易被分解、吸收,避免其对瘤胃内菌群产生影响[1],达到在小肠消化、吸收和被机体利用的目的。研究表明,过瘤胃脂肪具有提高生产性能[2-3]、改善乳和肉品质[4-6]、缓解热应激[7]等功能。目前,过瘤胃脂肪在繁殖性能上的研究主要集中在奶牛上,通过改善产后奶牛能量负平衡状态达到提高繁殖性能的目的[8]。前人研究报道表明,饲粮中添加过瘤胃脂肪能显著降低产后高产奶牛血液中非酯化脂肪酸(NEFA)和β-羟基丁酸(BHBA)的含量,能够有效缓解产后奶牛能量负平衡,加快产后机体恢复速度,进而达到提高繁殖性能的目的[9]。此外,在饲粮中添加过瘤胃脂肪能提高奶牛产后促卵泡素、孕酮、雌激素等生殖激素的含量,并缩短产后配种时间[10]。目前国内对添加过瘤胃脂肪的研究大多集中在产后奶牛上,关于其对产后肉母牛繁殖性能的影响还鲜见报道。因此,本试验旨在研究不同添加量过瘤胃脂肪对产后肉母牛生长性能、血清指标及繁殖性能的影响,以期为过瘤胃脂肪在提高产后肉母牛繁殖性能上的合理利用提供科学的理论依据。

1 材料与方法 1.1 试验动物、试验材料与试验设计

过瘤胃脂肪购买于Britz公司,用棕榈脂肪粉为原料制成,脂肪含量99.9%,游离脂肪酸含量0.1%,水分及杂质含量0.03%,脂肪酸组成:C14 ∶ 0及以下、C16 ∶ 0、C18 ∶ 0、C18 ∶ 1及以上含量分别为1.21%、76.73%、4.81%、17.25%。

试验选用40头体况相近(体况评分5~6分)、胎次2胎、产后1周内的安格斯母牛,随机分为4组,每组10头牛。对照组(第1组)饲喂基础饲粮,试验组在基础饲粮中分别添加150(第2组)、200(第3组)、250 g/头(第4组)的过瘤胃脂肪,共饲喂60 d。

1.2 试验饲粮及饲养管理

试验于2021年3月17日至2021年5月17日在宁夏某牛场进行。试验肉牛分别在4个牛舍进行饲养,内有运动场、水槽等,日饲喂2次,集中饲喂,自由饮水。基础饲粮组成及营养水平见表 1

表 1 基础饲粮组成及营养水平(干物质基础) Table 1 Composition and nutrient levels of the basal diet (DM basis) 
1.3 样品采集及指标测定

试验期间每周采集饲粮样品和剩余饲粮,经粉碎、过筛、混匀后用四分法制样。测定干物质(DM)、粗蛋白质(CP)、粗脂肪(EE)、中性洗涤纤维(NDF)和酸性洗涤纤维(ADF)的含量。饲粮样品中水分含量用恒温(105 ℃)干燥法(GB/T 6435—2014)测定;CP含量用凯氏定氮法(GB 5009.5—2010)测定;EE含量用索氏抽提法(GB 5009.6—2010)测定;NDF和ADF含量采用Van Soest方法测定。

试验前、后空腹称重,取平均值作为试验牛体重,在试验前、后由本场体况评分师对所有试验牛用9分制进行体况评分(BCS),同时进行体尺测量,根据胸围和体斜长估测体重。

在试验期间记录下首次发情时间,并计算产犊时间到发情时间间隔的平均值。

在试验前期及后期结束时进行尾根静脉采血,在促凝管中以3 000 r/min离心20 min,抽取上层血清并分装于0.5 mL的离心管中,用于测定血清中的生化、激素指标。

血清生化指标检测用爱德士(IDEXX)Vet Test全自动生物化学分析仪,检测血清中总蛋白(TP)、白蛋白(ALB)、葡萄糖(GLU)、尿素氮(UN)含量。

血清激素指标检测使用人胰岛素放射免疫分析药盒(生产批号20200520)、牛胰岛素样生长因子结合蛋白-2(IGFBP-2)酶联免疫吸附测定(ELISA)检测试剂盒(生产批号E20200514-77090A)、牛胰岛素样生长因子结合蛋白-4(IGFBP-4) ELISA检测试剂盒(生产批号E20200514-77090A)进行检测。

血清生殖激素指标送检湖北武汉云克隆科技股份有限公司检测中心,分别利用抗苗勒管激素(AMH)检测试剂盒(生产批号L210524856)、抑制素B(INHB)检测试剂盒(生产批号L210524868)、雌二醇(E2)检测试剂盒(生产批号L210402124)、孕酮(P4)检测试剂盒(生产批号L210707479)进行检测。

1.4 统计分析

使用SPSS 25.0对试验结果进行单因素方差分析(one-way ANOVA),P<0.05为差异显著,P<0.01为差异极显著,分析结果使用平均值±标准差表示。

2 结果 2.1 饲粮添加过瘤胃脂肪对肉母牛生长性能的影响

表 2可知,产后肉母牛初始体重和体况各组之间无显著差异(P>0.05),终末体重第3、4组较第1组有显著增加(P<0.05),终末体况第4组较第1组显著增加(P<0.05)。

表 2 过瘤胃脂肪对肉母牛生长性能的影响 Table 2 Effects of rumen bypass fat on growth performance of beef cows
2.2 饲粮添加过瘤胃脂肪对肉母牛血清生化指标的影响

表 3可知,第2、3和4组随着饲粮中过瘤胃脂肪添加量的增加,各指标含量也升高,但血清TP、ALB含量均差异不显著(P>0.05),血清UN含量第4组较第1组显著升高(P<0.05);血清GLU和TG含量第4组较第1、2组极显著升高(P<0.01)。

表 3 过瘤胃脂肪对肉母牛血清生化指标的影响 Table 3 Effects of rumen bypass fat on serum biochemical indexes of beef cows
2.3 饲粮添加过瘤胃脂肪对肉母牛血清激素含量的影响

表 4可知,血清胰岛素含量第4组较第1、2组显著升高(P<0.05),IGFBP-2含量第4组极显著低于第1组(P<0.01),第3组显著低于第1组(P<0.05);血清IGFBP-4含量第4组显著高于第1组(P<0.05),第3组显著高于第1组(P<0.05)。

表 4 过瘤胃脂肪对肉母牛血清激素含量的影响 Table 4 Effects of rumen bypass fat on serum hormone contents of beef cows
2.4 饲粮添加过瘤胃脂肪对肉母牛血清生殖激素含量的影响

表 5可知,随着过瘤胃脂肪添加量的增加,4种血清生殖激素含量均在下降,且都低于第1组。血清AMH含量第4组极显著低于其他3个组(P<0.01);血清E2含量第4组显著低于第1组(P<0.05);血清INHB含量第3、4组显著低于第1组(P<0.05);血清P4含量4个组间差异不显著(P>0.05)。

表 5 过瘤胃脂肪对肉母牛血清生殖激素含量的影响 Table 5 Effects of rumen bypass fat on serum reproductive hormone contents of beef cows
2.5 饲粮添加过瘤胃脂肪对肉母牛繁殖性能的影响

表 6可以看出,配种妊娠率第1、2组高于第3、4组,但差异不显著(P>0.05),第4组产后第1次发情时间极显著高于第1、2和3组(P<0.01),第3组显著高于第1组(P<0.05)。产后第1次配种天数第4组极显著高于第1、2组(P<0.01),第3组显著高于1组(P<0.05)。

表 6 过瘤胃脂肪对肉母牛繁殖性能的影响 Table 6 Effects of rumen bypass fat on reproductive performance of beef cows
3 讨论 3.1 饲粮添加过瘤胃脂肪对肉母牛生长性能的影响

研究表明,饲粮中添加适量过瘤胃脂肪可明显提高反刍动物平均日增重,且添加量与平均日增重呈正相关。吴树峰[6]研究表明,饲粮中添加过瘤胃脂肪可降低肉牛采食量,增加平均日增重。许鹏等[12]通过在饲粮中添加饱和过瘤胃脂肪,发现其对产后奶牛体重下降有一定遏制作用但影响不显著,而在体况评分方面添加饱和过瘤胃脂肪组显著高于对照组。杨金波等[13]也证实饲粮中添加过瘤胃脂肪能显著增加低、中产奶牛体况,促进膘情恢复,且发生变肥现象明显。肉牛产后产奶量远低于奶牛,能量需求也较低,而本试验选用体况评分5~6分的产后肉母牛,在其饲粮中添加过瘤胃脂肪,可能由于摄入能量过高,显著提高了产后母牛的体重和体况评分。

3.2 饲粮添加过瘤胃脂肪对肉母牛血清生化指标的影响

血清生化指标可反映机体功能及营养代谢情况。血清TP主要由ALB和球蛋白构成,具有维持血管内胶体渗透压、酸碱度及运输功能。有研究表明,高脂饮食所致的肥胖会导致机体内低密度脂蛋白含量显著升高[14]。本试验中,第2、3和4组血清TP和ALB含量均高于第1组,可能是由于过瘤胃脂肪被小肠吸收进血后需要更多的脂蛋白去转运,进而导致机体合成更多的ALB,这与曹名玉等[15]研究结果相似。

UN是机体内蛋白质分解代谢的主要代谢物之一,可反映机体蛋白质代谢水平,同时也是反映饲粮中蛋白质利用率的指标之一[16]。有研究表明,血清UN含量增加会减缓母牛产后生殖机能的恢复,出现卵巢静止、发情时间延长等繁殖问题[17]。本试验中,第2、3和4组血清UN的含量均高于第1组,且随着过瘤胃脂肪添加量的增加而升高。这可能与TG蓄积在肾脏组织造成母牛肾功能出现损伤,导致UN随尿液排出量减少,进而导致其在机体内含量升高。

GLU是机体各组织细胞新陈代谢所需能量的主要来源,本试验中,第4组血清GLU的含量极显著高于第1组,这可能与脂肪酸糖异生作用和INS敏感性降低有关。有研究表明,GLU含量增加会导致卵泡数量增加并刺激INS分泌,降低E2的含量[18-20]

TG主要由肠黏膜上皮细胞和肝脏合成,能够直接反映机体对脂肪的利用率, TG含量高表明机体对脂肪的利用率低[21],而长期处于此状态则易导致肝脏中TG蓄积进而导致肝脏脂肪变性,肝脏代谢机能减退。有研究表明,长期从食物中获取的过量脂肪酸合成TG后蓄积在脂肪细胞中,会导致TG蓄积过多在多个组织中发挥毒性作用,并可造成卵母细胞损伤[22]。在本试验中,第4组血清TG含量极显著高于第1、2组,这可能与摄入过量脂肪酸有关。

3.3 饲粮添加过瘤胃脂肪对肉母牛血清激素含量的影响

INS是胰腺产生的一种多肽类激素,主要作用为促进血糖转化为糖原、脂肪和蛋白质等营养物质,诱导促进乳蛋白和乳脂肪相关基因表达[23-24]。有研究表明,在动物出现肥胖和体脂代谢异常等现象时,会导致机体胰岛素敏感性降低和组织慢性炎症发生[25]。除此之外,胰岛素在体内还可抑制卵巢E2的分泌。Peluso等[26]使用INS灌注培养未成熟的大鼠卵巢,证明INS能够刺激有丝分裂并抑制E2分泌。

IGFBP在机体内与胰岛素样生长因子(IGFs)结合以无活性复合物的形式存在,IGFBP-2与胰岛素样生长因子-Ⅱ(IGF-Ⅱ)亲和力较高,而IGFBP-4则与胰岛素样生长因子-Ⅰ(IGF-Ⅰ)和IGF-Ⅱ都有较高的亲和力[27]。有研究表明,IGFBP在大多数情况下都会抑制IGF的作用[28],而IGF-Ⅰ具有促进机体生长、发育和代谢的作用,主要由肝脏合成[29]。卵泡颗粒细胞中也有IGF-Ⅰ的结合位点,IGF-Ⅰ与E2、LH有协同作用,IGF-Ⅰ可促进颗粒细胞和内膜细胞的增殖分化,并增加了大卵泡内膜细胞E2的分泌,进而减少卵泡闭锁和增加可排卵量[30-31]。Russo等[32]研究发现,IGFBP-2具有调节代谢及肥胖的作用,INS可降低其在肝脏内的表达,并且其与肥胖呈负相关,这与本试验结果相符。

3.4 饲粮添加过瘤胃脂肪对肉母牛血清生殖激素含量的影响

AMH和INHB是反映机体卵巢储备功能的重要指标,由窦前卵泡和小窦卵泡分泌[33];E2和P4则是由卵巢合成和分泌,具有促进乳腺和腺泡发育、启动和维持泌乳的作用。有研究表明,通过改变饲粮中能量来源,调控体内营养物质浓度、生殖激素含量及相关基因表达等方面影响家畜卵泡发育[34]。饲粮中添加的脂肪成分和使用时间不同,对卵泡发育的影响也不同,短期摄入有利于提高奶牛繁殖性能和生产性能,但长期摄入高脂肪对家畜卵泡发育起负面影响[35-36]。本试验结果显示,添加过瘤胃脂肪组较第1组血清生殖激素含量均降低,这可能是由于过瘤胃脂肪导致母肉牛出现肥胖,而肥胖可导致机体卵巢机能下降,使得血清AMH、INHB、E2和P4等生殖激素含量下降。

3.5 饲粮添加过瘤胃脂肪对肉母牛繁殖性能的影响

当饲粮中能量过高,就会造成脂肪在肉牛体内沉积过多,致使肉母牛的体况评分增加,发生肥胖,进而造成脂肪浸润卵巢等生殖器官,影响卵泡发育及相关生殖激素的分泌,造成繁殖性能下降。康晓龙[37]通过研究不同能量水平饲粮对母羊繁殖性能的影响,发现随着饲粮中能量水平提高,FSH和LH的分泌量逐渐降低,进而影响卵巢恢复和排卵。另有研究表明,卵泡液中饱和脂肪酸含量过高对卵母细胞发育具有不利影响[38-39]。Yang等[40]通过将小鼠卵母细胞暴露于不同脂质含量的卵泡液中,发现添加来自肥胖患者的高甘油三酯和游离脂肪酸的人类卵泡液对小鼠卵母细胞的成熟有负面影响。血清和卵泡液组成之间有显著相关性,血清代谢变化将反映在卵泡液中[41-42]。这可能是本试验第2、3和4组配种率较第1组有所降低、发情和配种时间有所延长的原因。

4 结论

研究表明,本试验条件下,产后体况评分为5~6分的安格斯母牛饲粮中添加过瘤胃脂肪会导致其体况评分增加,血清相关指标改变,母牛繁殖性能下降,且随着饲粮中过瘤胃脂肪的添加量增加,影响越显著。

参考文献
[1]
龚龑, 张彬, 张翼. 过瘤胃技术在奶牛生产中的应用与研究进展[J]. 中国奶牛, 2015(17): 15-20.
GONG Y, ZHANG B, ZHANG Y. Research progress and application of rumen protected technology in dairy cattle[J]. China Dairy Cattle, 2015(17): 15-20 (in Chinese). DOI:10.3969/j.issn.1004-4264.2015.17.004
[2]
MANRIQUEZ D, CHEN L, MELENDEZ P, et al. The effect of an organic rumen-protected fat supplement on performance, metabolic status, and health of dairy cows[J]. BMC Veterinary Research, 2019, 15(1): 450. DOI:10.1186/s12917-019-2199-8
[3]
FIORENTINI G, CARVALHO I P C, MESSANA J D, et al. Effect of lipid sources with different fatty acid profiles on the intake, performance, and methane emissions of feedlot Nellore steers[J]. Journal of Animal Science, 2014, 92(4): 1613-1620. DOI:10.2527/jas.2013-6868
[4]
赵朝阳, 常桂芳, 杜震宇, 等. 反刍动物饲用脂肪产品开发分析[J]. 广东饲料, 2015, 24(5): 34-35.
ZHAO C Y, CHANG G F, DU Z Y, et al. Development and analysis of fat products for ruminants[J]. Guangdong Feed, 2015, 24(5): 34-35 (in Chinese). DOI:10.3969/j.issn.1005-8613.2015.05.011
[5]
刘凯. 甜菜碱和过瘤胃脂肪对育肥羊生产性能和肌肉脂肪酸组成的影响[D]. 硕士学位论文. 兰州: 兰州大学, 2016: 29-42.
LIU K. Effects of betaine and rumen protected fat on the performance and the muscle fatty acids composition of finishing sheep[D]. Master's Thesis. Lanzhou: Lanzhou University, 2016: 29-42. (in Chinese)
[6]
吴树峰. 过瘤胃脂肪对奶牛、肉牛生产性能及乳肉品质的影响[D]. 硕士学位论文. 晋中: 山西农业大学, 2017: 18-31.
WU S F. Effect of rumen protected fat on dairy cow and beef cattle production performance and milk & meat quality[D]. Master's Thesis. Jinzhong: Shanxi Agricultural University, 2017: 18-31. (in Chinese)
[7]
王哲奇, 徐元庆, 石璐璐, 等. 热应激对反刍动物采食和瘤胃功能的影响[J]. 动物营养学报, 2019, 31(8): 3448-3455.
WANG Z Q, XU Y Q, SHI L L, et al. Effects of heat stress on feed intake and rumen function of ruminants[J]. Chinese Journal of Animal Nutrition, 2019, 31(8): 3448-3455 (in Chinese).
[8]
宋晶晶, 郭璐, 付石军, 等. 过瘤胃脂肪在反刍动物中的应用研究进展[J]. 中国饲料, 2021(5): 47-51.
SONG J J, GUO L, FU S J, et al. Advances in the application of rumen protected fat in ruminants[J]. China Feed, 2021(5): 47-51 (in Chinese).
[9]
淡新刚, 韩元, 史远刚. 添加不同浓度过瘤胃脂肪对奶牛产后MUN、NEFA、BHBA及繁殖的影响[J]. 广东农业科学, 2014, 41(19): 118-121.
DAN X G, HAN Y, SHI Y G. Effects of adding different concentrations of undegradable fatty on MUN, NEFA, BHBA and reproduction in postpartum cows[J]. Guangdong Agricultural Sciences, 2014, 41(19): 118-121 (in Chinese). DOI:10.3969/j.issn.1004-874X.2014.19.027
[10]
蔡瑞琪. 添加过瘤胃脂肪对奶牛产后生产性能、血液生化指标及激素的影响[D]. 硕士学位论文. 银川: 宁夏大学, 2016: 21-28.
CAI R Q. The influence of adding rumen bypass fat on production performance, biochemical indexs and hormones of Holstein dairy cows[D]. Master's Thesis. Yinchuan: Ningxia University, 2016: 21-28. (in Chinese)
[11]
中华人民共和国农业部. 肉牛饲养标准: NY/T 815—2004[S]. 北京: 中国农业出版社, 2004.
Ministry of Agriculture of the PRC. Feeding standard of beef cattle: NY/T 815—2004[S]. Beijing: China Agriculture Press, 2004. (in Chinese)
[12]
许鹏, 杨致玲, 吴树峰, 等. 饲粮添加不同过瘤胃脂肪源对奶牛生产性能及牛奶中脂肪酸组成的影响[J]. 动物营养学报, 2021, 33(5): 2727-2737.
XU P, YANG Z L, WU S F, et al. Effects of dietary different rumen protected fat sources on performance and milk fatty acid composition of dairy cattle[J]. Chinese Journal of Animal Nutrition, 2021, 33(5): 2727-2737 (in Chinese).
[13]
杨金波, 李非. 过瘤胃脂肪对奶牛体况及生产性能的影响[J]. 中国奶牛, 2002(6): 19-21.
YANG J B, LI F. Results of supplemental bypass fat on body condition and production of dairy cattle[J]. China Dairy Cattle, 2002(6): 19-21 (in Chinese). DOI:10.3969/j.issn.1004-4264.2002.06.010
[14]
郭彩霞, 韩丽, 乔进平, 等. 翅果油对高脂饮食小鼠的降脂减肥作用[J]. 食品工业科技, 2020, 41(5): 293-298.
GUO C X, HAN L, QIAO J P, et al. The prevention effect of Elaeagnus mollis oil on high-fat diet induced obesity in mice[J]. Science and Technology of Food Industry, 2020, 41(5): 293-298 (in Chinese).
[15]
曹名玉, 杨致玲, 谭亚楠, 等. 脂肪添加水平及不同脂肪源添加比例对荷斯坦牛养分表观消化率及血清生化指标的影响[J]. 动物营养学报, 201, 33(3): 1523-1533.
CAO M Y, YANG Z L, TAN Y N, et al. Effects of dietary fat supplemental levels and dietary fat sources on nutrient apparent digestibility and serum biochemical indices of Holstein cattle[J]. Chinese Journal of Animal Nutrition, 201, 33(3): 1523-1533 (in Chinese).
[16]
李改英, 廉红霞, 孙宇, 等. 青贮紫花苜蓿对奶牛生产性能、尿素氮和血液生化指标的影响[J]. 草业科学, 2015, 32(8): 1329-1336.
LI G Y, LIAN H X, SUN Y, et al. Effects of alfalfa silage on production performance, urea nitrogen and blood biochemical index in dairy cow[J]. Pratacultural Science, 2015, 32(8): 1329-1336 (in Chinese).
[17]
黄文明, 王之盛, 王恬, 等. 牛奶尿素氮含量与奶牛胎次、泌乳天数、产奶量和乳成分的关系[J]. 中国奶牛, 2009(12): 10-14.
HUANG W M, WANG Z S, WANG T, et al. Relationship between urea nitrogen content in milk and parities, days of lactation, milk yield and milk composition of dairy cows[J]. China Dairy Cows, 2009(12): 10-14 (in Chinese). DOI:10.3969/j.issn.1004-4264.2009.12.007
[18]
SCARAMUZZI R J, CAMPBELL B K, DOWNING J A, et al. A review of the effects of supplementary nutrition in the ewe on the concentrations of reproductive and metabolic hormones and the mechanisms that regulate folliculogenesis and ovulation rate[J]. Reproduction, Nutrition, Development, 2006, 46(4): 339-354. DOI:10.1051/rnd:2006016
[19]
SCARAMUZZI R J, ZOUAÏDI N, MENASSOL J B, et al. The effects of intravenous, glucose versus saline on ovarian follicles and their levels of some mediators of insulin signalling[J]. Reproductive Biology and Endocrinology, 2015, 13: 6. DOI:10.1186/1477-7827-13-6
[20]
GALLET C, DUPONT J, CAMPBELL B K, et al. The infusion of glucose in ewes during the luteal phase increases the number of follicles but reduces oestradiol production and some correlates of metabolic function in the large follicles[J]. Animal Reproduction Science, 2011, 127(3/4): 154-163.
[21]
SØRENSEN T I, VIRTUE S, VIDAL-PUIG A. Obesity as a clinical and public health problem: is there a need for a new definition based on lipotoxicity effects?[J]. Biochimica et Biophysica Acta, 2010, 1801(3): 400-404. DOI:10.1016/j.bbalip.2009.12.011
[22]
杨保奎, 刘信宝, 沈益新, 等. 不同青贮饲料对肉牛生长性能及血清生化指标的影响[J]. 畜牧与兽医, 2016, 48(11): 5-9.
YANG B K, LIU X B, SHEN Y X, et al. Effects of different silages on growth performance and serum biochemical indicators in the beef cattle[J]. Animal Husbandry & Veterinary Medicine, 2016, 48(11): 5-9 (in Chinese).
[23]
AKERS R M. Major advances associated with hormone and growth factor regulation of mammary growth and lactation in dairy cows[J]. Journal of Dairy Science, 2006, 89(4): 1222-1234. DOI:10.3168/jds.S0022-0302(06)72191-9
[24]
GUO Z X, CHENG X O, FENG X, et al. The mTORC1/4EBP1/PPARγ axis mediates insulin-induced lipogenesis by regulating lipogenic gene expression in bovine mammary epithelial cells[J]. Journal of Agricultural and Food Chemistry, 2019, 67(21): 6007-6018. DOI:10.1021/acs.jafc.9b01411
[25]
YANG X F, QIU Y Q, WANG L, et al. A high-fat diet increases body fat mass and up-regulates expression of genes related to adipogenesis and inflammation in a genetically lean pig[J]. Journal of Zhejiang University.Science.B, 2018, 19(11): 884-894. DOI:10.1631/jzus.B1700507
[26]
PELUSO J J, DELIDOW B C, LYNCH J, et al. Follicle-stimulating hormone and insulin regulation of 17 beta-estradiol secretion and granulosa cell proliferation within immature rat ovaries maintained in perifusion culture[J]. Endocrinology, 1991, 128(1): 191-196. DOI:10.1210/endo-128-1-191
[27]
BACH L A. IGF-binding proteins[J]. Journal of Molecular Endocrinology, 2018, 61(1): T11-T28.
[28]
SITAR T, POPOWICZ G M, SIWANOWICZ I, et al. Structural basis for the inhibition of insulin-like growth factors by insulin-like growth factor-binding proteins[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(35): 13028-13033. DOI:10.1073/pnas.0605652103
[29]
张幸彦. 茶多酚、甜菜碱及其复合物对母猪繁殖性能的影响和血液指标的影响[D]. 硕士学位论文. 兰州: 甘肃农业大学, 2015.
ZHANG X Y. Effects of tea polyphenols, betaine and their compounds on reproductive performance and blood indexes of sows[D]. Master's Thesis. Lanzhou: Gansu Agricultural University, 2015. (in Chinese)
[30]
RAMIS G, EVANGELISTA J N B, QUEREDA J J, et al. Use of betaine in gilts and sows during lactation: effects on milk quality, reproductive parameters, and piglet performance[J]. Journal of Swine Health and Production, 2011, 19(4): 226-232.
[31]
周东胜, 吴德, 卓勇, 等. 能量水平和来源对后备母猪血液代谢产物、激素分泌及卵泡液成分的影响[J]. 畜牧兽医学报, 2009, 40(5): 683-690.
ZHOU D S, WU D, ZHUO Y, et al. Effects of dietary energy level and source on blood metabolites, hormone secretion and follicular fluid composition in gilts[J]. Acta Veterinaria et Zootechnica Sinica, 2009, 40(5): 683-690 (in Chinese). DOI:10.3321/j.issn:0366-6964.2009.05.013
[32]
RUSSO V C, AZAR W J, YAU S W, et al. IGFBP-2:the dark horse in metabolism and cancer[J]. Cytokine & Growth Factor Reviews, 2015, 26(3): 329-346.
[33]
李莹, 杨晓庆, 杨晓葵. 抗苗勒管激素和抑制素B预测卵巢储备功能的临床研究[J]. 实用妇产科杂志, 2014, 30(1): 26-29.
LI Y, YANG X Q, YANG X K. Clinical value of the anti-mullerian hormone and inhibin B in evaluating ovarian reserve[J]. Journal of Practical Obstetrics and Gynecology, 2014, 30(1): 26-29 (in Chinese).
[34]
于淼瑛. 不同日粮能量水平对初情期前母猪卵巢及子宫LH受体和FSH受体mRNA表达的影响[D]. 硕士学位论文. 长春: 吉林大学, 2006.
YU M Y. Effects of different dietary energy levels on LH receptor and FSH receptor mRNA expression in ovary and uterus of preestrus sows[D]. Master's Thesis. Changchun: Jilin University, 2006. (in Chinese)
[35]
SILVESTRE F T, CARVALHO T S M, FRANCISCO N, et al. Effects of differential supplementation of fatty acids during the peripartum and breeding periods of Holstein cows: Ⅰ.Uterine and metabolic responses, reproduction, and lactation[J]. Journal of Dairy Science, 2011, 94(1): 189-204. DOI:10.3168/jds.2010-3370
[36]
AARDEMA H, GADELLA B M, VAN DE LEST C H A, et al. Free fatty acid levels in fluid of dominant follicles at the preferred insemination time in dairy cows are not affected by early postpartum fatty acid stress[J]. Journal of Dairy Science, 2015, 98(4): 2322-2336. DOI:10.3168/jds.2014-7970
[37]
康晓龙. 不同能量和蛋白水平日粮对母羊繁殖性能的影响[D]. 硕士学位论文. 兰州: 甘肃农业大学, 2007.
KANG X L. Effects of different energy and protein diet on reproductive performance for ewe[D]. Master's Thesis. Lanzhou: Gansu Agricultural University, 2007. (in Chinese)
[38]
VAN HOECK V, BOLS P E J, BINELLI M, et al. Reduced oocyte and embryo quality in response to elevated non-esterified fatty acid concentrations: a possible pathway to subfertility?[J]. Animal Reproduction Science, 2014, 149(1/2): 19-29.
[39]
ODLE A K, AKHTER N, SYED M M, et al. Leptin regulation of gonadotrope gonadotropin-releasing hormone receptors as a metabolic checkpoint and gateway to reproductive competence[J]. Frontiers in Endocrinology, 2017, 8: 367.
[40]
YANG X, WU L L, CHURA L R, et al. Exposure to lipid-rich follicular fluid is associated with endoplasmic reticulum stress and impaired oocyte maturation in cumulus-oocyte complexes[J]. Fertility and Sterility, 2012, 97(6): 1438-1443. DOI:10.1016/j.fertnstert.2012.02.034
[41]
LEROY J L M R, VANHOLDER T, DELANGHE J R, et al. Metabolite and ionic composition of follicular fluid from different-sized follicles and their relationship to serum concentrations in dairy cows[J]. Animal Reproduction Science, 2004, 80(3/4): 201-211.
[42]
JUNGHEIM E S, MACONES G A, ODEM R R, et al. Associations between free fatty acids, cumulus oocyte complex morphology and ovarian function during in vitro fertilization[J]. Fertility and Sterility, 2011, 95(6): 1970-1974. DOI:10.1016/j.fertnstert.2011.01.154