动物营养学报    2022, Vol. 34 Issue (5): 2773-2780    PDF    
白藜芦醇缓解家禽热应激作用机制与应用研究进展
邓菊婴 , 胡睿智 , 肖定福 , 贺建华     
湖南农业大学动物科学技术学院, 长沙 410128
摘要: 热应激一直是家禽生产受到影响的重要因素之一。白藜芦醇是一类天然的植物抗毒素, 属于非黄酮类多酚化合物, 近年因其具有抗氧化、抗菌和免疫调节作用而备受关注。本文总结了热应激对家禽造成的影响, 从白藜芦醇能增强能量代谢、改善线粒体功能障碍和缓解机体氧化应激方面重点阐述了白藜芦醇缓解家禽热应激的潜在作用机制, 并进一步综述了白藜芦醇在热应激家禽生产中的应用。
关键词: 白藜芦醇    热应激    家禽    氧化应激    
Research Progress on Mechanism and Application of Resveratrol in Alleviating Heat Stress in Poultry
DENG Juying , HU Ruizhi , XIAO Dingfu , HE Jianhua     
College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
Abstract: Heat stress has always been one of the important factors affecting poultry production. Resveratrol is a kind of natural plant antitoxin, belonging to non-flavonoid polyphenol compounds, which has attracted much attention in recent years because of its antioxidant, antibacterial and immunomodulatory effects. In this paper, the effects of heat stress on poultry were summarized, and the potential mechanism of resveratrol in alleviating heat stress in poultry was mainly expounded from two aspects: enhancing energy metabolism, improving mitochondrial dysfunction and alleviating oxidative stress, and the application of resveratrol in heat stress poultry production was further reviewed.
Key words: resveratrol    heat stress    poultry    oxidative stress    

家禽热应激是指当环境温度高于家禽的热中性区(16~25 ℃)上限时,机体表现出的一系列非特异性免疫应答反应。热应激下,家禽的生理机能、生产性能都会受影响[1-3],表现为:采食减少、饲料利用率下降,进而导致能量代谢障碍,引起线粒体应激、氧化应激[4]。此外,家禽肉品质与蛋品质也会受到影响[5-6]

白藜芦醇,又名为3, 5, 4’-三羟基芪(resveratrol,RSV),是一种天然多酚化合物,具有抗糖化、抗氧化、抗炎、抗癌和免疫调节等作用[7]。白藜芦醇存在顺式、反式2种结构,反式结构具有更高的稳定性和生物活性[8]。白藜芦醇具有亲脂性,能够被机体快速吸收。白藜芦醇摄入体内后,可以在肝脏、肾脏、脑、心脏、肺脏、睾丸和肠等各种器官中积累[9]。本文综述了白藜芦醇缓解家禽热应激的作用机制及其在热应激家禽生产中的应用,有利于日后家禽抗应激添加剂产品的开发。

1 白藜芦醇缓解家禽热应激的作用机制

由于家禽被覆羽毛,无汗腺,仅能通过煽动翅膀和增加呼吸等途径散热,热应激下的代谢耗能增加,引起机体能量失衡,使得线粒体功能负荷,进而导致氧化应激[4-5]。在热应激初级阶段家禽能量消耗高达200%[10];而采食量与饲料利用率却大大降低,能量供给不足[11-12];同时,脂肪动员减少,蛋白质分解转化为糖类增加,机体供能由有氧代谢转化为糖酵解,能量供给效率降低[13-15]。在热应激下机体能量难以维持平衡,线粒体产能增加,造成线粒体膜电位升高、线粒体内氧气浓度升高、电子正向传输增强,导致线粒体氧化应激[16]。而白藜芦醇能通过激活能量代谢相关基因,增强机体能量代谢,增强线粒体功能,缓解线粒体功能障碍,减少机体过氧化的发生;通过增加抗氧化相关基因的表达,增加机体抗氧化能力,降低机体氧化损伤,最终缓解机体热应激[17-18]

1.1 白藜芦醇增强能量代谢,改善线粒体功能障碍

白藜芦醇能通过沉默信息调节因子1(SIRT1)-过氧化物酶体增殖物激活受体γ共激活因子-1α(PGC-1α)信号通路,诱导线粒体转录因子A(TFAM)等的表达,调节线粒体功能[19]。PGC-1α蛋白水平通常与线粒体数量成正比[20-21]。SIRT1作为一种烟酰胺腺嘌呤二核苷酸依赖性脱乙酰酶,能够参与基因转录、能量平衡和氧化应激等多种生理功能的调控,与基因组稳定性维持、细胞凋亡和自噬等密切相关[22]。SIRT1处于各种代谢信号通路的枢纽位置,白藜芦醇能通过激活SIRT1,调控机体能量代谢,缓解线粒体功能障碍。AMP活化蛋白激酶(AMPK)是调节生物能量代谢过程中的重要分子。白藜芦醇通过激活SIRT1来诱导AMPK的上游基因即肿瘤抑制激酶1(LKB1)表达,从而增强AMPK的磷酸化,增加能量代谢[23]。此外,Price等[17]研究报道,大剂量的白藜芦醇可以不依赖SIRT1的方式激活AMPK而发挥作用。

1.2 白藜芦醇缓解机体氧化应激 1.2.1 热应激引起氧化应激原因

热应激导致的线粒体损伤是机体氧化应激发生的直接原因。氧化应激代表的是一种体内氧化作用与抗氧化作用失衡的状态,具体表现在机体产生过多的自由基或抗氧化系统破坏[24]。自由基可分为活性氧(ROS)和活性氮物质(RNS)。机体内的ROS主要有超氧阴离子(O2-·)、过氧化氢(H2O2)和羟自由基(OH·)等[25-26]。ROS的产生发生在线粒体电子传递链的特定部位,主要位于复合物Ⅰ和复合物Ⅲ中[27]。还原黄素蛋白与氧反应发生的自氧化作用是电子传递链中O2-·生成的主要方式,而在热应激情况下,复合物中相关酶发生热变性以及黄素自氧化速率以温度依赖性增加,使得ROS激增[28]。此外,高温还下调了家禽线粒体内膜解偶联蛋白的表达,阻碍解偶联蛋白的轻度解偶联,升高膜电位,增加ROS产生[29]。热应激情况下,过渡金属离子的过量产生,也会因为增加芬顿反应[H2O2+Fe2+→OH·+(OH)-+Fe3+]生成OH·,使得ROS增多[30]

机体内的抗氧化系统可分为酶抗氧化系统和非酶抗氧化系统。酶抗氧化系统主要是指:超氧化物歧化酶(SOD),其能将高活性O2-·转化为低活性的H2O2;过氧化氢酶(CAT),其能将H2O2还原成H2O[24, 31];谷胱甘肽过氧化物酶(GSH-Px),硒半胱氨酸是其活性中心,能还原H2O2和多种有机氢过氧化物[32]。急性热应激时,ROS突然增多,使得机体迅速上调SODCAT和谷胱甘肽等抗氧化剂的表达[33]。但持续性应激使得CAT、SOD、GSH-Px等抗氧化酶消耗增多,活性降低,从而降低ROS的清除效率,而机体内的氧化应激标志物丙二醛(MDA)含量也明显增多[15, 34]。非酶抗氧化系统有维生素E、维生素C、谷胱甘肽、类胡萝卜素等,这些物质能通过直接还原自由基阻碍其氧化过程等的方式增强机体的抗氧化能力[35-36]。热应激造成的家禽采食量下降,减少了家禽对非酶抗氧化物质的摄取,间接导致了机体氧化应激的产生[37]

1.2.2 白藜芦醇缓解氧化应激

白藜芦醇含有3个酚羟基,酚羟基能够与机体内的自由基结合,能直接清除ROS/RNS,实现抗氧化功能[38]。且研究表明,白藜芦醇对超氧阴离子自由基具有剂量依赖式的清除效果,当白藜芦醇的质量浓度为1.2 mg/mL时,其对超氧阴离子自由基的清除率达到最大,为(54.13±3.105)%,虽然白藜芦醇对超氧阴离子自由基的直接清除效果不及维生素C[(86.58±2.975)%],但也表现出了一定的直接抗氧化效果[39]

白藜芦醇还能通过提高机体抗氧化酶表达,提高机体的抗氧化能力。大量研究表明,在饲粮中添加白藜芦醇,机体内的GSH-Px、SOD、CAT等活性都显著升高,MDA含量会显著降低,能有效地预防热应激对家禽造成的氧化损伤[40-42]。白藜芦醇主要通过激活核因子红细胞2相关因子2(Nrf2),使抗氧化酶的表达增强。一般情况下,在细胞质中Nrf2与Kelch样环氧氯丙烷相关蛋白1(Keap1)结合,这时处于未激活状态;而白藜芦醇处理细胞后,会使得Nrf2与Keap1分离,并且易位到细胞核,发挥上调抗氧化防御酶1(NQO1)和血红素加氧酶1(HO1)的基因表达的作用,从而增强抗氧化酶的表达[18, 43];此外,白藜芦醇还能通过激活SIRT1/叉头转录因子1(FoxO1)信号通路缓解机体的氧化损伤[44]。FoxO1是一种能穿梭于细胞核内外的核转录因子,其在各种组织和器官中广泛表达并参与能量代谢的调节,在介导SIRT1诱导的锰超氧化物歧化酶(MnSOD)上调中发挥重要作用[45]。白藜芦醇对热应激家禽的缓解作用机制如图 1所示。

RSV:白藜芦醇resveratrol;AMPK:AMP活化蛋白激酶AMP-activated protein kinase;SIRT1:沉默信息调节因子1 silent information regulator 1;PGC-1α:过氧化物酶体增殖物激活受体γ共激活因子-1α peroxisome proliferator-activated receptor gamma coactivator 1-alpha;FoxO1:叉头转录因子1 forkhead box-O1;Nrf2:核因子红细胞2相关因子2 nuclear factor E2-related factor 2;SOD:超氧化物歧化酶superoxide dismutase;GSH-Px:谷胱甘肽过氧化物酶glutathione peroxidase;CAT:过氧化氢酶catalase。 图 1 白藜芦醇对热应激家禽的缓解作用 Fig. 1 Alleviating effects of resveratrol on heat stress in poultry
2 白藜芦醇在热应激家禽生产中的应用

白藜芦醇能缓解热应激引起的家禽生长性能下降、免疫系统损伤及产品品质降低。在饲粮中添加不同剂量的白藜芦醇发现,热应激情况下,乌骨鸡的采食与常温组相比显著降低,而白藜芦醇能有效缓解其采食量的减少,且采食与体重随着白藜芦醇的添加剂量呈线性增加[40]。本课题组前期研究表明,500 mg/kg的白藜芦醇能有效改善热应激情况下黄羽肉鸡的胸腺、脾脏和法氏囊的生长指数下降,增加血清中补体3(C3)的水平,降低炎性细胞因子如白细胞介素和肿瘤坏死因子的表达[46]。白藜芦醇还能减轻免疫器官中,热休克蛋白(Hsp)如Hsp27、Hsp70和Hsp90 mRNA的过表达[40]

热应激会直接减少家禽采食量,而采食量的降低使得家禽产肉量与产蛋量下降[47-48]。高温刺激家禽头部体温调节中枢(下丘脑),影响食欲相关激素的表达,如促进食欲的神经肽Y(NPY)下降,直接影响采食[49-50]。研究显示,家禽在环境温度为21~30 ℃的情况下,每升1 ℃,其采食量降低约1.5%;在32~38 ℃的情况下,每升1 ℃,其采食量就降低约4.6%[51]。此外,热应激导致胃肠蠕动能力减弱,肠道完整性受到损伤,影响食物消化吸收,间接影响采食[52]。而家禽处于热应激状态时,其喘息、饮水等行为的增加也减少了采食行为的发生[53]。而肠道功能的改善也有利于增加采食,Liu等[54]研究表明,白藜芦醇能通过调节热休克蛋白的表达、上皮生长因子和转录因子来改善肠道形态和减轻空肠黏膜损伤。Zhang等[55]还指出,白藜芦醇通过改变热应激家禽肠道菌群的分布而改善肉鸡肠道屏障功能。

热应激会影响畜产品品质(表 1)。对肉鸡而言,其产肉量、pH、嫩度、系水力及肉色均会受到影响,PSE(浅色、柔软、渗出)肉更容易出现[56-57]。且宰后的冷却加工也不能完全消除宰前热应激对肉品质的损坏[58]。对蛋禽而言,热应激会降低日本鹌鹑产蛋率,降低蛋品质[59]。慢性热应激影响蛋鸡的产蛋重、蛋壳厚度、蛋黄指数及哈氏单位[60]。白藜芦醇可以改善热应激家禽产品品质。对于蛋禽而言,首先,研究表明200或400 mg/kg的白藜芦醇能显著改善热应激引起的日本鹌鹑产蛋率下降问题[61];其次,白藜芦醇具有提高蛋的哈氏单位、蛋白高度,降低蛋黄中MDA和胆固醇含量的作用,且随着白藜芦醇添加水平的增加作用程度增加[41, 62]。Reis等[63]研究表明,在热应激情况下,饲粮中添加含有白藜芦醇的葡萄渣粉能降低蛋黄指数、蛋黄和蛋白pH、缓解蛋黄中单不饱和脂肪酸的减少。对于肉禽而言,一方面,白藜芦醇能提高热应激下肉禽的产肉率。本课题组前期研究表明,与热应激组相比,饲粮中添加400 mg/kg白藜芦醇显著增加了乌骨鸡的全净膛率和腿肌率[64];且饲粮中添加350或500 mg/kg白藜芦醇能增加黄羽肉鸡半净膛率、全净膛率和腿肌率[65]。另一方面,白藜芦醇能缓解热应激导致的肉品质降低。许多研究表明,白藜芦醇能通过降低肌肉糖酵解代谢(降低乳酸含量)和提高肌肉的抗氧化能力,来降低肌肉的滴水损失和肌肉亮度(L*),升高肌肉pH24 h[66-67]。热应激情况下,400 mg/kg白藜芦醇显著升高了科宝肉鸡胸肌的红度(a*)、pH24 h,显著降低了其滴水损失和L*[42]

表 1 热应激对畜产品品质的影响 Table 1 Effects of heat stress on animal product quality
3 小结

热应激严重影响家禽生长性能和其肉蛋品质,使其采食量和饲料利用率下降、产肉率和产蛋率降低及肉和蛋品质下降。热应激对家禽造成的影响主要是因为诱导了机体氧化应激,而白藜芦醇,能通过调节AMPKSIRT1等基因的表达,增强能量代谢和提高线粒体功能以减少ROS产生;通过调节Nrf2、FoxO1等基因的表达提高机体抗氧化能力以清除ROS和减少机体的氧化损伤,最终缓解其热应激和提高家禽生产性能。但白藜芦醇的生物利用率较低,且在不同家禽中的作用添加剂量不同。在日后生产过程在,关于如何提高白藜芦醇的生物利用率及饲粮中白藜芦醇最适的添加量的确定还需进一步研究。

参考文献
[1]
MEHAISEN G M K, IBRAHIM R M, DESOKY A A, et al. The importance of propolis in alleviating the negative physiological effects of heat stress in quail chicks[J]. PLoS One, 2017, 12(10): e0186907. DOI:10.1371/journal.pone.0186907
[2]
EL-KHOLY M S, EL-HINDAWY M M, ALAGAWANY M, et al. Use of acetylsalicylic acid as an allostatic modulator in the diets of growing Japanese quails exposed to heat stress[J]. Journal of Thermal Biology, 2018, 74: 6-13. DOI:10.1016/j.jtherbio.2018.02.011
[3]
MA X Y, LIN Y C, ZHANG H X, et al. Heat stress impairs the nutritional metabolism and reduces the productivity of egg-laying ducks[J]. Animal Reproduction Science, 2014, 145(3/4): 182-190.
[4]
SHAKERI M, COTTRELL J J, WILKINSON S, et al. Betaine and antioxidants improve growth performance, breast muscle development and ameliorate thermoregulatory responses to cyclic heat exposure in broiler chickens[J]. Animals, 2018, 8(10): 162. DOI:10.3390/ani8100162
[5]
CARVALHO DOS SANTOS T, STEPHEN GATES R, DE FÁTIMA FERREIRA TINÔCO I, et al. Meat quality traits of European quails reared under different conditions of temperature and air velocity[J]. Poultry Science, 2020, 99(2): 848-856. DOI:10.1016/j.psj.2019.10.037
[6]
BARRETT N W, ROWLAND K, SCHMIDT C J, et al. Effects of acute and chronic heat stress on the performance, egg quality, body temperature, and blood gas parameters of laying hens[J]. Poultry Science, 2019, 98(12): 6684-6692. DOI:10.3382/ps/pez541
[7]
GALINIAK S, AEBISHER D, BARTUSIK-AEBISHER D. Health benefits of resveratrol administration[J]. Acta Biochimica Polonica, 2019, 66(1): 13-21.
[8]
TOKUŞOGLU O, UNAL M K, YEMIŞF. Determination of the phytoalexin resveratrol (3, 5, 4'-trihydroxystilbene) in peanuts and pistachios by high-performance liquid chromatographic diode array (HPLC-DAD) and gas chromatography-mass spectrometry (GC-MS)[J]. Journal of Agricultural and Food Chemistry, 2005, 53(12): 5003-5009. DOI:10.1021/jf050496+
[9]
VITRAC X, DESMOULIÈRE A, BROUILLAUD B, et al. Distribution of [14C]-trans-resveratrol, a cancer chemopreventive polyphenol, in mouse tissues after oral administration[J]. Life Sciences, 2003, 72(20): 2219-2233. DOI:10.1016/S0024-3205(03)00096-1
[10]
YANG L, TAN G Y, FU Y Q, et al. Effects of acute heat stress and subsequent stress removal on function of hepatic mitochondrial respiration, ROS production and lipid peroxidation in broiler chickens[J]. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 2010, 151(2): 204-208.
[11]
GREENE E S, CAUBLE R, KADHIM H, et al. Protective effects of the phytogenic feed additive"comfort"on growth performance via modulation of hypothalamic feeding- and drinking-related neuropeptides in cyclic heat-stressed broilers[J]. Domestic Animal Endocrinology, 2021, 74: 106487. DOI:10.1016/j.domaniend.2020.106487
[12]
VAN DE VEN T M F N, MCKECHNIE A E, CUNNINGHAM S J. The costs of keeping cool: behavioural trade-offs between foraging and thermoregulation are associated with significant mass losses in an arid-zone bird[J]. Oecologia, 2019, 191(1): 205-215. DOI:10.1007/s00442-019-04486-x
[13]
SAJJANAR B, SIENGDEE P, TRAKOOLJUL N, et al. Cross-talk between energy metabolism and epigenetics during temperature stress response in C2C12 myoblasts[J]. International Journal of Hyperthermia, 2019, 36(1): 776-784.
[14]
MA B B, ZHANG L, LI J L, et al. Heat stress alters muscle protein and amino acid metabolism and accelerates liver gluconeogenesis for energy supply in broilers[J]. Poultry Science, 2021, 100(1): 215-223. DOI:10.1016/j.psj.2020.09.090
[15]
LU Z, HE X F, MA B B, et al. Chronic heat stress impairs the quality of breast-muscle meat in broilers by affecting redox status and energy-substance metabolism[J]. Journal of Agricultural and Food Chemistry, 2017, 65(51): 11251-11258. DOI:10.1021/acs.jafc.7b04428
[16]
AKBARIAN A, MICHIELS J, DEGROOTE J, et al. Association between heat stress and oxidative stress in poultry; mitochondrial dysfunction and dietary interventions with phytochemicals[J]. Journal of Animal Science and Biotechnology, 2016, 7: 37. DOI:10.1186/s40104-016-0097-5
[17]
PRICE N L, GOMES A P, LING A J Y, et al. SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function[J]. Cell Metabolism, 2012, 15(5): 675-690. DOI:10.1016/j.cmet.2012.04.003
[18]
ZHANG C, CHEN K K, ZHAO X H, et al. Protective effects of resveratrol against high ambient temperature-induced spleen dysplasia in broilers through modulating splenic redox status and apoptosis[J]. Journal of the Science of Food and Agriculture, 2018, 98(14): 5409-5417. DOI:10.1002/jsfa.9084
[19]
MA S, FENG J, ZHANG R, et al. SIRT1 activation by resveratrol alleviates cardiac dysfunction via mitochondrial regulation in diabetic cardiomyopathy mice[J]. Oxidative Medicine and Cellular Longevity, 2017, 2017: 4602715.
[20]
李琳琳, 曹正宇, 田野. PGC-1α的生理作用与临床疾病[J]. 医学综述, 2018, 24(13): 2532-2536, 2542.
LI L L, CAO Z Y, TIAN Y. Physiological function of peroxisome proliferator receptor-γ coactivator 1α and related clinical diseases[J]. Medical Recapitulate, 2018, 24(13): 2532-2536, 2542 (in Chinese). DOI:10.3969/j.issn.1006-2084.2018.13.008
[21]
张虎, 梁计陵, 钱帅伟, 等. 白藜芦醇对线粒体质量调控研究进展[J]. 生物学杂志, 2020, 37(6): 99-103.
ZHANG H, LIANG J L, QIAN S W, et al. Research progress of resveratrol in mitochondrial quality control[J]. Journal of Biology, 2020, 37(6): 99-103 (in Chinese). DOI:10.3969/j.issn.2095-1736.2020.06.099
[22]
MENG X F, TAN J, LI M M, et al. Sirt1:role under the condition of ischemia/hypoxia[J]. Cellular and Molecular Neurobiology, 2017, 37(1): 17-28. DOI:10.1007/s10571-016-0355-2
[23]
HUANG Y, LU J, ZHAN L, et al. Resveratrol-induced Sirt1 phosphorylation by LKB1 mediates mitochondrial metabolism[J]. Journal of Biological Chemistry, 2021, 297(2): 100929. DOI:10.1016/j.jbc.2021.100929
[24]
HE L, HE T, FARRAR S, et al. Antioxidants maintain cellular redox homeostasis by elimination of reactive oxygen species[J]. Cellular Physiology and Biochemistry, 2017, 44(2): 532-553. DOI:10.1159/000485089
[25]
GONCALVES R L S, WATSON M A, WONG H S, et al. The use of site-specific suppressors to measure the relative contributions of different mitochondrial sites to skeletal muscle superoxide and hydrogen peroxide production[J]. Redox Biology, 2020, 28: 101341. DOI:10.1016/j.redox.2019.101341
[26]
WONG H S, BENOIT B, BRAND M D. Mitochondrial and cytosolic sources of hydrogen peroxide in resting C2C12 myoblasts[J]. Free Radical Biology & Medicine, 2019, 130: 140-150.
[27]
QUIJANO C, TRUJILLO M, CASTRO L, et al. Interplay between oxidant species and energy metabolism[J]. Redox Biology, 2016, 8: 28-42. DOI:10.1016/j.redox.2015.11.010
[28]
MESSNER K R, IMLAY J A. The identification of primary sites of superoxide and hydrogen peroxide formation in the aerobic respiratory chain and sulfite reductase complex of Escherichia coli[J]. Journal of Biological Chemistry, 1999, 274(15): 10119-10128. DOI:10.1074/jbc.274.15.10119
[29]
KIKUSATO M, TOYOMIZU M. Crucial role of membrane potential in heat stress-induced overproduction of reactive oxygen species in avian skeletal muscle mitochondria[J]. PLoS One, 2013, 8(5): e64412. DOI:10.1371/journal.pone.0064412
[30]
LIOCHEV S I, FRIDOVICH I. Superoxide and iron: partners in crime[J]. IUBMB Life, 1999, 48(2): 157-161. DOI:10.1080/713803492
[31]
NAGAMI H, YOSHIMOTO N, UMAKOSHI H, et al. Liposome-assisted activity of superoxide dismutase under oxidative stress[J]. Journal of Bioscience and Bioengineering, 2005, 99(4): 423-428. DOI:10.1263/jbb.99.423
[32]
ZACHARA B A. Mammalian selenoproteins[J]. Journal of Trace Elements and Electrolytes in Health and Disease, 1992, 6(3): 137-151.
[33]
CHEN Y P, CHENG Y F, WEN C, et al. Protective effects of dietary mannan oligosaccharide on heat stress-induced hepatic damage in broilers[J]. Environmental Science and Pollution Research International, 2020, 27(23): 29000-29008. DOI:10.1007/s11356-020-09212-2
[34]
FERNÁNDEZ-SÁNCHEZ A, MADRIGAL-SANTILLÁN E, BAUTISTA M, et al. Inflammation, oxidative stress, and obesity[J]. International Journal of Molecular Sciences, 2011, 12(5): 3117-3132. DOI:10.3390/ijms12053117
[35]
CAO Y, LI Y S, LI Z J, et al. Dietary zinc may attenuate heat-induced testicular oxidative stress in mice via up-regulation of Cu-Zn SOD[J]. Genetics and Molecular Research, 2015, 14(4): 16616-16626. DOI:10.4238/2015.December.11.9
[36]
ALBOKHADAIM I F, ALTHNAIAN T A, EL-BAHR S M. Gene expression of heat shoc kproteins/factors (HSP60, HSP70, HSP90, HSF-1, HSF-3) and antioxidant enzyme activities in heat stressed broilers treated with vitamin C[J]. Polish Journal of Veterinary Sciences, 2019, 22(3): 565-572.
[37]
MOSLEH N, SHOMALI T, NEMATOLLAHI F, et al. Effect of different periods of chronic heat stress with or without vitamin C supplementation on bone and selected serum parameters of broiler chickens[J]. Avian Pathology, 2018, 47(2): 197-205. DOI:10.1080/03079457.2017.1401212
[38]
MATHEW S, ABRAHAM T E, ZAKARIA Z A. Reactivity of phenolic compounds towards free radicals under in vitro conditions[J]. Journal of Food Science and Technology, 2015, 52(9): 5790-5798. DOI:10.1007/s13197-014-1704-0
[39]
王虹玲, 吴优, 于子箫, 等. 酿酒葡萄皮渣中白藜芦醇的提取及抗氧化、抗肿瘤活性研究[J]. 中国酿造, 2018, 37(7): 112-116.
WANG H L, WU Y, YU Z X, et al. Extraction, antioxidant and antitumor activity of resveratrol from wine grape pomace[J]. China Brewing, 2018, 37(7): 112-116 (in Chinese).
[40]
LIU L L, HE J H, XIE H B, et al. Resveratrol induces antioxidant and heat shock protein mRNA expression in response to heat stress in black-boned chickens[J]. Poultry Science, 2014, 93(1): 54-62. DOI:10.3382/ps.2013-03423
[41]
FENG Z H, GONG J G, ZHAO G X, et al. Effects of dietary supplementation of resveratrol on performance, egg quality, yolk cholesterol and antioxidant enzyme activity of laying hens[J]. British Poultry Science, 2017, 58(5): 544-549. DOI:10.1080/00071668.2017.1349295
[42]
ZHANG C, ZHAO X H, WANG L, et al. Resveratrol beneficially affects meat quality of heat-stressed broilers which is associated with changes in muscle antioxidant status[J]. Animal Science Journal, 2017, 88(10): 1569-1574. DOI:10.1111/asj.12812
[43]
XIA N, DAIBER A, FÖRSTERMANN U, et al. Antioxidant effects of resveratrol in the cardiovascular system[J]. British Journal of Pharmacology, 2017, 174(12): 1633-1646. DOI:10.1111/bph.13492
[44]
JIANG Y X, LUO W Q, WANG B, et al. Resveratrol promotes osteogenesis via activating SIRT1/FoxO1 pathway in osteoporosis mice[J]. Life Sciences, 2020, 246: 117422. DOI:10.1016/j.lfs.2020.117422
[45]
HSU C P, ZHAI P Y, YAMAMOTO T, et al. Silent information regulator 1 protects the heart from ischemia/reperfusion[J]. Circulation, 2010, 122(21): 2170-2182. DOI:10.1161/CIRCULATIONAHA.110.958033
[46]
HE S P, YU Q F, HE Y J, et al. Dietary resveratrol supplementation inhibits heat stress-induced high-activated innate immunity and inflammatory response in spleen of yellow-feather broilers[J]. Poultry Science, 2019, 98(12): 6378-6387. DOI:10.3382/ps/pez471
[47]
SHAKERI M, COTTRELL J J, WILKINSON S, et al. Growth performance and characterization of meat quality of broiler chickens supplemented with betaine and antioxidants under cyclic heat stress[J]. Antioxidants, 2019, 8(9): 336. DOI:10.3390/antiox8090336
[48]
LI G M, LIU L P, YIN B, et al. Heat stress decreases egg production of laying hens by inducing apoptosis of follicular cells via activating the FasL/Fas and TNF-α systems[J]. Poultry Science, 2020, 99(11): 6084-6093. DOI:10.1016/j.psj.2020.07.024
[49]
YOUSEFVAND S, HAMIDI F, ZENDEHDEL M, et al. Interaction of neuropeptide Y receptors (NPY1, NPY2 and NPY5) with somatostatin on somatostatin-induced feeding behaviour in neonatal chicken[J]. British Poultry Science, 2019, 60(1): 71-78. DOI:10.1080/00071668.2018.1547359
[50]
HE X F, LU Z, MA B B, et al. Chronic heat stress alters hypothalamus integrity, the serum indexes and attenuates expressions of hypothalamic appetite genes in broilers[J]. Journal of Thermal Biology, 2019, 81: 110-117. DOI:10.1016/j.jtherbio.2019.02.025
[51]
PAYNE C G. Practical aspects of environmental temperature for laying hens[J]. World's Poultry Science Journal, 1966, 22(2): 126-139. DOI:10.1079/WPS19660020
[52]
VARASTEH S, BRABER S, AKBARI P, et al. Differences in susceptibility to heat stress along the chicken intestine and the protective effects of galacto-oligosaccharides[J]. PLoS One, 2015, 10(9): e0138975. DOI:10.1371/journal.pone.0138975
[53]
贾莉, 丁金雪, 李为民, 等. 延胡索酸对急性热应激肉鸡采食量、饮水量及行为学的影响[J]. 黑龙江畜牧兽医, 2019(20): 42-45.
JIA L, DING J X, LI W M, et al. Effects of fumaric acid on feed intake, drinking water and behavior of acute heat stress broilers[J]. Heilongjiang Animal Science and Veterinary Medicine, 2019(20): 42-45 (in Chinese).
[54]
LIU L L, FU C X, YAN M L, et al. Resveratrol modulates intestinal morphology and HSP70/90, NF-κB and EGF expression in the jejunal mucosa of black-boned chickens on exposure to circular heat stress[J]. Food & Function, 2016, 7(3): 1329-1338.
[55]
ZHANG C, ZHAO X H, YANG L, et al. Resveratrol alleviates heat stress-induced impairment of intestinal morphology, microflora, and barrier integrity in broilers[J]. Poultry Science, 2017, 96(12): 4325-4332. DOI:10.3382/ps/pex266
[56]
MA B B, HE X F, LU Z, et al. Chronic heat stress affects muscle hypertrophy, muscle protein synthesis and uptake of amino acid in broilers via insulin like growth factor-mammalian target of rapamycin signal pathway[J]. Poultry Science, 2018, 97(12): 4150-4158. DOI:10.3382/ps/pey291
[57]
HASHIZAWA Y, KUBOTA M, KADOWAKI M, et al. Effect of dietary vitamin E on broiler meat qualities, color, water-holding capacity and shear force value, under heat stress conditions[J]. Animal Science Journal, 2013, 84(11): 732-736. DOI:10.1111/asj.12079
[58]
WANG R H, LIANG R R, LIN H, et al. Effect of acute heat stress and slaughter processing on poultry meat quality and postmortem carbohydrate metabolism[J]. Poultry Science, 2017, 96(3): 738-746. DOI:10.3382/ps/pew329
[59]
MEHAISEN G M K, DESOKY A A, SAKR O G, et al. Propolis alleviates the negative effects of heat stress on egg production, egg quality, physiological and immunological aspects of laying Japanese quail[J]. PLoS One, 2019, 14(4): e0214839. DOI:10.1371/journal.pone.0214839
[60]
KIM J H, LEE H K, YANG T S, et al. Effect of different sources and inclusion levels of dietary fat on productive performance and egg quality in laying hens raised under hot environmental conditions[J]. Asian-Australasian Journal of Animal Sciences, 2019, 32(9): 1407-1413. DOI:10.5713/ajas.19.0063
[61]
SAHIN K, ORHAN C, AKDEMIR F, et al. Resveratrol protects quail hepatocytes against heat stress: modulation of the Nrf2 transcription factor and heat shock proteins[J]. Journal of Animal Physiology and Animal Nutrition, 2012, 96(1): 66-74. DOI:10.1111/j.1439-0396.2010.01123.x
[62]
冯志华, 龚建刚, 赵国先, 等. 白藜芦醇对蛋鸡生产性能和蛋黄胆固醇含量的影响[C]//中国畜牧兽医学会动物营养学分会第十二次动物营养学术研讨会论文集. 武汉: 中国畜牧兽医学会, 2016: 339.
FENG Z H, GONG J G, ZHAO G X, et al. Effects of resveratrol on performance and yolk cholesterol content of laying hens[C]//Proceedings of the 12th Animal Nutrition Symposium of Animal Nutrition Branch of Chinese Animal Husbandry and Veterinary Society. Wuhan: Chinese Association of Animal Science and Veterinary Medicine, 2016: 339. (in Chinese)
[63]
REIS J H, GEBERT R R, BARRETA M, et al. Addition of grape pomace flour in the diet on laying hens in heat stress: impacts on health and performance as well as the fatty acid profile and total antioxidant capacity in the egg[J]. Journal of Thermal Biology, 2019, 80: 141-149. DOI:10.1016/j.jtherbio.2019.01.003
[64]
刘丽莉. 白藜芦醇对乌骨鸡热应激损伤的修复机制研究[D]. 博士学位论文. 长沙: 湖南农业大学, 2014.
LIU L L. Research on the repair mechanisms of resveratrol to heat stress-induced damages in black-boned chicken[D]. Ph. D. Thesis. Changsha: Hunan Agricultural University, 2014. (in Chinese)
[65]
何邵平. 白藜芦醇对热应激黄羽肉鸡免疫功能调控及分子机制研究[D]. 博士学位论文. 长沙: 湖南农业大学, 2019.
HE S P. Research on the regulation and molecular mechanism of resveratrol on immune function of yellow-feather broilers under heat stress[D]. Ph. D. Thesis. Changsha: Hunan Agricultural University, 2019. (in Chinese)
[66]
ZHANG C, WANG L, ZHAO X H, et al. Dietary resveratrol supplementation prevents transport-stress-impaired meat quality of broilers through maintaining muscle energy metabolism and antioxidant status[J]. Poultry Science, 2017, 96(7): 2219-2225. DOI:10.3382/ps/pex004
[67]
ZHANG C, YANG L, ZHAO X H, et al. Effect of dietary resveratrol supplementation on meat quality, muscle antioxidative capacity and mitochondrial biogenesis of broilers[J]. Journal of the Science of Food and Agriculture, 2018, 98(3): 1216-1221. DOI:10.1002/jsfa.8576
[68]
BAGHBAN KANANI P, DANESHYAR M, ALIAKBARLU J, et al. Effect of dietary turmeric and cinnamon powders on meat quality and lipid peroxidation of broiler chicken under heat stress condition[J]. Veterinary Research Forum, 2017, 8(2): 163-169.
[69]
A AL-SAGAN A, KHALIL S, HUSSEIN E O S, et al. Effects of fennel seed powder supplementation on growth performance, carcass characteristics, meat quality, and economic efficiency of broilers under thermoneutral and chronic heat stress conditions[J]. Animals, 2020, 10(2): 206. DOI:10.3390/ani10020206