动物营养学报    2022, Vol. 34 Issue (5): 2781-2789    PDF    
胚期给养调控肉仔鸡肌纤维发育和肉品质的研究进展
王源昊 , 武书庚 , 齐广海 , 张海军     
中国农业科学院饲料研究所, 农业部饲料生物技术重点实验室, 生物饲料开发国家工程研究中心, 北京 100081
摘要: 肉仔鸡是饲养周期短、肌肉产量高的养殖动物。肉仔鸡肌纤维形成和发育的关键阶段是胚胎期, 胚胎期肌纤维发育对最终肌肉产量和肉品质具有重要影响。肉仔鸡孵化后期代谢旺盛, 胚蛋内营养相对不足, 时常发生胚胎肌肉蛋白质分解供能的情况, 进而损害出壳后肌纤维发育和最终的肉品质。在孵化期为肉仔鸡胚胎提供合适的营养物质, 可以调节胚期能量代谢和肌肉发育, 具有调控出壳后肌纤维发育和上市日龄肉仔鸡肉品质的作用。本文结合肉仔鸡胚期肌纤维发育的特点, 阐述了出壳前后营养物质缺乏影响肌纤维发育的代谢基础, 重点综述了胚期营养对肌纤维发育和肉品质的调控作用, 并对胚期营养调控肉品质的研究进行展望, 旨在讨论超早期营养干预对肉仔鸡肌纤维发育和肉品质的调控作用, 为后续研究和生产应用提供参考和借鉴。
关键词: 肉仔鸡    胚期给养    肌纤维发育    肉品质    
Recent Advances on Regulation of in Ovo Feeding on Muscle Fiber Development and Meat Quality of Broiler Chickens
WANG Yuanhao , WU Shugeng , QI Guanghai , ZHANG Haijun     
Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, National Engineering Research Center of Biological Feed, Institute of Feed Research of Chinese Academy of Agricultural Sciences, Beijing 100081, China
Abstract: Broiler chickens are farm animals which are characterized by short raising period and high muscle yield. Embryogenic stage is the key stage of muscle fiber formation and development in broiler chickens, and the muscle fiber development in embryogenic stage determine the final meat product and quality. In the late incubation phase, the vigorous metabolism and insufficient nutrition reserve may lead to embryonic muscle protein degradation for energy supply, which would damage the development of muscle fibers in the post hatch and final meat quality. Early exposure to suitable nutrients in the incubation phase may regulate embryonic energy metabolism and benefit the muscle development, also has the function of regulating the fiber development post hatch and the meat quality of the broiler chicken at the market age. This paper described the metabolism basis of muscle fiber development affected by the shortage of nutrient reserve in the pre and post hatch phase based on the characteristics of embryonic muscle development, and focused on the regulation of in ovo feeding on muscle development and meat quality, in addition, the future direction of study on embryonic nutrition regulation meat quality were also discussed. This paper aimed to review the regulatory function of ultra-early nutritional intervention muscle fiber development and meat quality in broilers, has with the aim to provide a theoretical foundation for future study.
Key words: broiler    in ovo feeding    muscle fiber development    meat quality    

鸡肉是低脂肪、高蛋白、富含功能肽的优质禽肉[1-2],不受宗教文化等饮食习惯限制,是世界范围内人们喜爱的日常肉类。随着居民生活水平的不断提高,消费者对鸡肉的需求从数量向质量发生转变,更加关注肉品质。肉品质的调控以往主要采用饲养期持续或宰前短期优饲等方式。近年来,一种新的营养途径——胚期给养(in ovo feeding,IOF)调控肉品质日益引起行业的重视。

肉仔鸡的肌纤维发育起始于胚胎期,胚胎孵化后期普遍存在营养物质供给不足的问题,极易发生肌肉蛋白质分解供能情况。此外,由于孵化和饲养分开,雏鸡出壳后延期开食情况比较普遍,会进一步加剧肌肉蛋白质储备消耗的风险,从而损害肌纤维发育和降低最终的肉品质。胚期给养是为发育中的胚胎提供营养物质的一种有效途径,可对出壳后的肉仔鸡产生良好的终身效应[3-4]。肉仔鸡骨骼肌由多核肌纤维组成,肌纤维的数量在孵化后期快速增加,出壳前已基本确定,出壳后肌纤维的数量变化不大,但出壳后肌肉的生长主要取决于胚期肌纤维数量的增加和肌细胞核积累[5]。研究表明,通过胚期给养为胚胎补充营养物质,可增加胚胎和雏鸡能量供应[6],降低孵化后期胚内肌肉蛋白质储备消耗[7],促进肌纤维生长,具有调控肌纤维发育和改善肉品质的潜力。本文结合胚期肌纤维发育生理特点和出壳前后肌肉蛋白质分解供能、胚期营养对肌纤维发育和肉品质的调控作用等方面进行综述,为胚期给养调控肉仔鸡肌纤维发育和肉品质的研究提供借鉴和参考。

1 胚期肌纤维发育的生理特点

胚期是肌纤维形成的重要时期,胚期肌纤维由成肌前体细胞分化而来。成肌前体细胞增殖、分化为成肌纤维,并向肌肉形成部位移动,排列、融合后形成肌管,最后相互融合形成多核肌纤维,并与已存在的肌纤维融合形成新的肌纤维,进一步分化为骨骼肌[8]

鸡胚发育过程中,肌管的形成分为2个阶段。第1阶段在孵化第3~7天,成肌细胞形成早期肌管结构(初级纤维或肌管);第2阶段为孵化第8天以后,在初级纤维的基础上形成大量新的肌纤维,称为次级纤维[9],次级纤维占肌纤维总数的绝大部分,作为支撑骨骼肌构造和形状的支架维持肌纤维生长和发育。初级纤维在动物出生后往往形成红色肌纤维(有氧代谢型),次级纤维形成白色肌纤维(酵解代谢型),不同类型肌纤维具有不同的收缩和代谢特性。根据肌球蛋白ATP酶活性,肌纤维可以分为Ⅰ型、Ⅱa型和Ⅱb型3类,与肌纤维氧化和糖酵解代谢特征相关[10]。不同类型肌纤维之间的差异由重链肌球蛋白(MyHC)表达所决定,根据MyHC的4种亚基可把肌纤维类型分为Ⅰ型、Ⅱa、Ⅱx和Ⅱb型,其中Ⅰ型肌纤维为氧化型肌纤维,Ⅱ型肌纤维为糖酵解型肌纤维[11]。多种类型肌纤维束交织一起形成肌肉组织,不同肌纤维的相对组成决定了肌肉生长和代谢特性,与肉品质密切相关[12]

2 孵化后期营养缺乏影响肌纤维发育和肉品质

鸡胚发育后期,卵黄囊中营养物质不足以维持肌纤维发育和骨骼肌生长。卵黄囊含有约33%的脂质和不到1%的碳水化合物,游离的葡萄糖含量仅有0.3%,其中鸡胚发育所需90%的能量来源于卵黄囊脂肪氧化[13]。鸡胚发育过程中,胚胎着床、发育完成、出壳准备3个阶段所需营养底物不同。孵化第1周,鸡胚发育所需能量由葡萄糖厌氧酵解提供;第2周以脂肪酸供能为主,同时合成糖原贮存在肝脏和肌肉等部位,供胚胎最后阶段发育和破壳使用。孵化最后1周,是鸡胚出壳前肌肉发育最为关键的1周,此时鸡胚运动导致绒毛膜破裂,脂肪利用受限,无氧分解葡萄糖增加,因糖原供应不足发生肌肉蛋白质分解供能的情形,碳水化合物代谢成为胚胎发育的主要能量来源[14-15]

肉仔鸡孵化最后1周,胚胎能量利用方式发生变化,极易出现胸肌蛋白质分解供能现象。在孵化第17天鸡胚开始吞咽羊水,营养物质经过肠道消化吸收供胚胎发育[16],此时肠重增加速度远快于体重,卵黄在鸡胚腹部内化,蛋内营养物质无法满足肠道快速发育。而鸡胚胸肌具有较大的体积和糖原储存能力,占胚胎总糖原储存比例最大的胸肌会发生蛋白质分解释放内源性谷氨酰胺入血,供肠道发育需要。此时,胸肌蛋白质分解经糖异生途径生成的葡萄糖是供能的主要途径[17],也是产生氨基酸的主要来源[18-19]。出壳前后1周肌肉组织生长和发育的速率对出壳后乃至上市日龄肌肉产量[20]和肉品质具有重要影响[21]。由于孵化和饲养分开,肉仔鸡出壳后有时需要经历长达48~72 h运输,无法补给能量,会加剧肌肉蛋白质储备的消耗,导致新生雏鸡出现肌肉萎缩现象,对出壳后肌肉生长和出栏时肉品质造成损害[22-23]。研究发现,孵化最后1周能量供应不足损害肌纤维发育主要表现为肌纤维面积和直径减小[23]。25胚龄火鸡胸肌纤维面积(18.7 μm2)显著大于出壳当天(11.3 μm2)和1日龄胸肌纤维面积(8.6 μm2)[24]。同样,19胚龄肉仔鸡胸肌纤维直径(48.17 μm)大于出壳当天(40.75 μm)和3日龄胸肌纤维直径(43.68 μm),直到5日龄胸肌纤维直径(58.34 μm)才发生改变[20],可能与出壳后补充营养胸肌才恢复正常发育有关。因此,为缓解鸡胚孵化后期胚内营养物质不足损害肌纤维发育和肉品质等问题,在孵化期提供充足的营养物质对鸡胚发育十分重要。

3 胚期给养对肌纤维发育和肉品质的调控 3.1 调控肉仔鸡肌纤维发育的代谢通路

胚期给养可以调控孵化期肌细胞增殖和分化,促进肌纤维发育。肉仔鸡胚期肌纤维发育与内皮血管生长因子-A(vascular endothelial growth factor-A,VEGF-A)、纤维细胞生长因子-2(fibroblast growth factor-2,FGF-2)和纤维分化因子1(fibroblast growth differentiation factor 1,MyoD1)等生长因子密切相关。Grodzik等[25]在入孵前向肉仔鸡胚蛋气室注射0.3 mL纳米金刚石和谷氨酸,显著增强了20胚龄鸡胚肌肉中VEGF-AFGF-2和MyoD1 mRNA表达,并提高了肌肉中FGF-2蛋白表达。FGF-2通过刺激成肌细胞和卫星细胞的增殖,调节肌肉生长。肌肉发育过程中FGF-2 mRNA的高表达说明肌纤维数量增加[26]。与FGF-2作用相反,MyoD1 mRNA的表达增强可促进肌肉细胞分化并抑制肌细胞增殖。营养物质可以附着在纳米颗粒上,随血液循环被运送至全身各组织和细胞[27-29],被胚胎吸收利用。因此,附着于纳米金刚石颗粒的谷氨酸可以作为稳定的能量来源促进氨基酸合成,维持鸡胚正常生长发育。

胚期肌纤维发育依赖于肌细胞增殖和分化之间的动态平衡。FGF-2信号通路在胚胎发育早期和细胞增殖过程中具有重要作用[30]。胚期给养营养调控能够提高孵化后期FGF-2和MyoD1 mRNA的表达,有利于肌肉生长发挥遗传潜能。同样,Subramaniyan等[31]研究发现,在孵化第14天向每枚鸡胚中注射100 μg/mL L-精氨酸,显著提高了出壳当天肌原蛋白和成肌细胞蛋白的表达,促进胚期肌纤维发育。由此可见,胚期给养在为鸡胚发育提供超早期营养的同时,也可以通过调控肌细胞增殖、分化等相关基因表达促进肌纤维发育。

3.2 调控胚期肌纤维数量和形态

骨骼肌形成过程中,肌纤维数量的增加主要发生在次级肌纤维生成过程,胚期提供外源营养物质可促进孵化期肌管分化和肌肉蛋白质沉淀,调控肌纤维最终数量和形态。给肉鸭胚胎注射胰岛素生长因子-1(IGF-1)可显著提高27胚龄和2日龄腿肌纤维数量[32]。研究发现,向18胚龄肉仔鸡给养β-羟基-β-甲基丁酸(beta-hydroxy-beta-methyrate,HMB)显著增加了19胚龄成肌细胞数量[22]。肉仔鸡胚胎3胚龄气室给养金纳米颗粒和牛磺酸混合物或分别单独给养时,均可增加出壳前1天鸡胚胸肌细胞数量,最多增加43%,显著提高了细胞核数量[29],加快肌细胞融合速度,促进肌管形成。在10胚龄经由卵黄囊为每枚胚胎给养250 mmol烟酰胺核糖(nicotinamide riboside,NR),出壳当天肉仔鸡胸肌纤维密度提高了45%,显著增加了肌纤维数量[33]。此外,Xu等[34]也发现在10胚龄给养250和500 mmol NR时,出壳当天肉仔鸡胸肌纤维密度增加了34%;当NR给养量提高到1 mol时,肌纤维细胞周期蛋白D3表达量降低了约50%,胸肌纤维密度最高增加75%;细胞周期蛋白D3表达的降低能够抑制成肌细胞向肌管分化[35],从而增加鸡胚肌纤维数量。Kornasio等[22]向18胚龄肉仔鸡羊膜腔注射2.4 mg HMB,显著提高了出壳后第3和35天胸肌纤维直径,这种正面作用可持续到上市日龄。胚期给养HMB在增加肌纤维直径的同时,也可提高出壳当天和出壳后胸肌中卫星细胞有丝分裂活性,激活的卫星细胞与肌纤维融合促进肌肉蛋白质合成,使肌纤维形态朝有利于肌肉生长的方向发生变化[20]。由此可见,胚期给养适宜的营养物质可以通过刺激胚期肌管分化和促进卫星细胞活性,诱导肌纤维数量增加和肥大,调控胚期肌纤维发育。

3.3 调控肉仔鸡的肉品质

胚期给养对肉品质的调控主要体现在提高肌肉系水力、调控pH和改善肉色、增强抗氧化能力等方面[36-37]。12胚龄给养益生菌能够降低出栏时鸡胸肉黄度值,提高宰后24 h肌肉pH和系水力[38]。此外,17胚龄给养维生素C可降低肉仔鸡27和40日龄血液中丙二醛含量,提高抗氧化能力[39]。同样,15胚龄给养维生素C也可提高肉仔鸡42日龄血液总抗氧化能力[40]。Araujo等[41]在17.5胚龄羊膜腔给养角黄素,可提高出壳当天肉仔鸡肝脏过氧化氢酶活性和总蛋白含量,提高雏鸡机体抗氧化能力。胚期给养维生素E也可提高肉仔鸡肝脏和肌肉中过氧化氢酶活性和总蛋白含量[42],增强鸡肉抗氧化能力。Zhang等[36]研究发现,17.5胚龄通过羊膜腔给养N-氨甲酰谷氨酸(NCG)2 mg可降低胸肌滴水损失,提高胸肌过氧化氢酶和谷胱甘肽过氧化物酶活性,降低丙二醛含量,且肌肉系水力的提高与丙二醛含量的降低相一致。因此,肌肉系水力的改善可能与抗氧化能力提高有关。

不同肌纤维类型比例与肉品质密切相关,Ⅰ型肌纤维含量高的肌肉,肌纤维直径小,肌内脂肪含量丰富,嫩度较好。相反,Ⅱ型肌纤维含量高的肌肉,则糖原含量高,横截面积大,屠宰后肌肉pH下降速度快,终末pH和系水力低,肉色和品质可能略差[43-44]。鸡肉不同类型肌纤维增殖和发育主要发生在孵化后期和出壳后,可以通过营养手段调控不同类型肌纤维之间的比例。12胚龄气室给养乳酸链球菌处理的菊粉,35日龄时肉仔鸡胸肌Ⅰ型肌纤维数量降低了34.7%,Ⅱ型肌纤维数量增加了8.6%[45]。与以上结果不同,17.5胚龄羊膜腔给养每枚2 mg NCG显著增加了42日龄胸肌中Ⅰ型肌纤维比例,上调了肌抑制素和过氧化物酶体增殖物激活受体γ共激活因子1α基因表达,进而可能促进Ⅰ型肌纤维增殖活性,增加胸肌中Ⅰ型肌纤维数量和比例,提高肉仔鸡胸肌抗氧化能力和系水力[46]。由此可见,胚期给养具有提高机体抗氧化酶活性和调控鸡肉抗氧化能力的作用,有利于减少肌肉在储存和运输过程中的水分流失,延长鸡肉储存时间,并通过调节不同肌纤维类型的数量和比例,改善肉品质。

胚期给养也可以改善鸡肉嫩度,提高适口性。Wei等[37]指出,7胚龄注射100 μg雌马酚可降低49日龄肉仔鸡胸肌剪切力。此外,Zhang等[39]研究发现,18胚龄羊膜腔给养高浓度(36 mg/枚)维生素C可有效降低46日龄肉仔鸡胸肌剪切力。与此类似,Ferreira等[47]发现,在入孵前给每枚胚蛋注射6 μg维生素C,可以预防出壳后高温应激导致的胸肉变柴,有效改善鸡肉嫩度。本实验室研究也表明,17.5胚龄羊膜腔给养2 mg/枚NCG显著降低了42日龄肉仔鸡胸肌剪切力,提高了鸡肉嫩度[46]。嫩度与肉的质构特性和感官评价密切相关,为了提高鸡肉嫩度和适口性,胚期给养营养物质的适宜种类和剂量值得进一步研究。

3.4 降低木质肉发生

胸肉木质化是当前肉鸡产业面临的重要肉品质问题,胚期给养具有降低肉仔鸡胸肉木质化发生率的良好潜力。Tejeda等[48]研究发现,在相同孵化和饲养条件下,雄性肉仔鸡胸肌中严重木质肉发病率约为雌性的3倍,通过减缓肌肉炎症反应可降低肉仔鸡木质肉发生率,胚期给养维生素及其活性中间体对降低肉仔鸡木质肉有积极作用。给18胚龄肉仔鸡鸡胚注射每枚2.4 μg 25-羟基维生素D3(25-OHD3)显著下调了39日龄肉仔鸡血浆中炎症因子α-1-酸性糖蛋白水平,减轻鸡肉炎症反应,肉仔鸡胸肌木质肉发病率显著降低[4]。Fatemi等[49]研究发现,胚期给养25-OHD3也减轻了41和46日龄肉仔鸡胸肌木质肉严重程度。该结果可能与胚期给养营养物质被鸡胚肠道吸收利用有关,由于25-OHD3半衰期长,在肌肉组织中存留时间更高,从而有助于减轻肌肉炎症和降低木质肉发生。通过胚期给养减轻肉仔鸡肌肉炎症,降低木质肉发生率的结果尚需要更多研究验证。

肉仔鸡肌纤维发育起始于胚胎期,胚胎期的营养调控对出壳后肌纤维发育和肉品质可产生持续和深远的影响[45],胚期给养作为促进胚胎发育的适宜外源营养补充方法,对肉仔鸡肌纤维发育的作用比出壳后的饲喂可能更加便捷有效[50]表 1详细汇总了胚期给养不同营养物质对肉仔鸡肌纤维发育和肉品质的调控作用。

表 1 胚期给养不同营养物质对肉仔鸡肌纤维发育和肉品质的调控作用 Table 1 Regulating effects of IOF different nutrients on muscle fiber development and meat quality of broiler chickens
4 展望 4.1 胚期给养调控肌纤维发育的生理学机制

胚期给养可为肉仔鸡胚胎发育提供超早期营养,改善胚内营养供给不足,促进肌纤维发育。胚期给养能够改变不同类型肌纤维的比例,但不同的研究结果[45-46]有所差异,可能与给养时间、位置和营养物质不同有关,胚期给养调控不同类型肌纤维发育的时空机制需要进一步研究。肌纤维发育不仅与形态结构有关,更是受到肌细胞增殖、分化和凋亡等各种代谢信号通路的调控。因此,深入研究胚期给养调控肉仔鸡肌纤维形成和代谢的分子机制,揭示胚期营养如何在孵化后期和出雏早期调控肌纤维的动态发育,以及这种效应如何持续至出栏期,找到胚期营养调控肌纤维发育的直接生理学证据,从而为胚期给养调控肌肉发育和肉品质从理论走向生产奠定基础。

4.2 胚期给养对肉品质的调控

胚期给养可以改善鸡肉的色度[37]和系水力[54],提高鸡肉外在品质,也可以降低肉仔鸡木质肉的严重程度和其他肉品质问题[49]。有研究表明,胚期给养调控肉品质与提高肉的抗氧化酶活性有关[36, 39],肌肉中抗氧化防御系统由抗氧化酶和非酶体系组成,单个抗氧化酶活性变化并不能完全代表机体抗氧化系统状态。因此,胚期给养如何影响机体抗氧化防御系统整体的变化而改善肉品质目前尚不清楚,值得深入探究。此外,胚期给养的营养素如何调控宰后肌肉的糖代谢,目前也知之甚少。因此,胚期给养对肉品质的确切调控作用及其相关代谢机理有待于阐明,以便为生产中更好地应用提供依据。

5 小结

孵化后期鸡胚能量及营养物质供应不足,易发生肌肉分解供能的情况,对出壳前后肌纤维发育和上市日龄的肉品质造成持久的负面影响。胚期给养可为胚胎生长发育提供可直接利用的外源营养物质,改善胚胎能量不足问题,增加卫星细胞和肌纤维数量,调控肌纤维类型比例,发挥促进肌纤维发育和改善肉品质的良好潜力。随着对肉仔鸡肌纤维发育和肉品质形成的关键营养素时空代谢机制研究的不断深入,胚期给养在调控肉品质方面将会发挥更大的作用,在促进肉鸡产业高质量发展方面扮演更重要的角色。

参考文献
[1]
CHOE J H, NAM K C, JUNG S, et al. Differences in the quality characteristics between commercial Korean native chickens and broilers[J]. Korean Journal for Food Science of Animal Resources, 2010, 30(1): 13-19. DOI:10.5851/kosfa.2010.30.1.13
[2]
FAN M D, XIAO Q F, XIE J C, et al. Aroma compounds in chicken broths of Beijing Youji and commercial broilers[J]. Journal of Agricultural and Food Chemistry, 2018, 66(39): 10242-10251. DOI:10.1021/acs.jafc.8b03297
[3]
OKE O E, OYELOLA O B, IYASERE O S, et al. In ovo injection of black cumin (Nigella sativa) extract on hatching and post hatch performance of thermally challenged broiler chickens during incubation[J]. Poultry Science, 2021, 100(3): 100831. DOI:10.1016/j.psj.2020.10.072
[4]
FATEMI S A, ALQHTANI A H, ELLIOTT K E C, et al. Improvement in the performance and inflammatory reaction of Ross 708 broilers in response to the in ovo injection of 25-hydroxyvitamin D3[J]. Poultry Science, 2021, 100(1): 138-146. DOI:10.1016/j.psj.2020.10.010
[5]
VELLEMAN S G. Muscle development in the embryo and hatchling[J]. Poultry Science, 2007, 86(5): 1050-1054. DOI:10.1093/ps/86.5.1050
[6]
YANG T, ZHAO M M, LI J L, et al. In ovo feeding of creatine pyruvate alters energy metabolism in muscle of embryos and post-hatch broilers[J]. Asian-Australasian Journal of Animal Sciences, 2019, 32(6): 834-841. DOI:10.5713/ajas.18.0588
[7]
UNI Z, FERKET P R, TAKO E, et al. In ovo feeding improves energy status of late-term chicken embryos[J]. Poultry Science, 2005, 84(5): 764-770. DOI:10.1093/ps/84.5.764
[8]
SWARTZ D R, LIM S S, FASSEL T, et al. Mechanisms of myofibril assembly[J]. Reciprocal Meat Conference Proceeding, 1994(47): 141-153.
[9]
CROW M T, STOCKDALE F E. Myosin expression and specialization among the earliest muscle fibers of the developing avian limb[J]. Developmental Biology, 1986, 113(1): 238-254. DOI:10.1016/0012-1606(86)90126-0
[10]
BROOKE M H, KAISER K K. Muscle fiber types: how many and what kind?[J]. Archives of Neurology, 1970, 23(4): 369-379. DOI:10.1001/archneur.1970.00480280083010
[11]
SCHIAFFINO S, REGGIANI C. Molecular diversity of myofibrillar proteins: gene regulation and functional significance[J]. Physiological Reviews, 1996, 76(2): 371-423. DOI:10.1152/physrev.1996.76.2.371
[12]
PARR T, MAREKO M H D, RYAN K J P, et al. The impact of growth promoters on muscle growth and the potential consequences for meat quality[J]. Meat Science, 2016, 120: 93-99. DOI:10.1016/j.meatsci.2016.04.022
[13]
NOBLE R C, COCCHI M. Lipid metabolism and the neonatal chicken[J]. Progress in Lipid Research, 1990, 29(2): 107-140. DOI:10.1016/0163-7827(90)90014-C
[14]
FEHER G. Development of the albumen sac and changes of its structure in the goose during hatching[J]. Magyar Allatorvosok Lapja, 1984, 39: 105-112.
[15]
DONALDSON W E. Carbohydrate, hatchery stressors affect poult survival[J]. Feedstuffs, 1995, 67(14): 16-17.
[16]
SIWEK M, SLAWINSKA A, STADNICKA K, et al. Prebiotics and synbiotics-in ovo delivery for improved lifespan condition in chicken[J]. BMC Veterinary Research, 2018, 14(1): 402. DOI:10.1186/s12917-018-1738-z
[17]
FREEMAN B M. The mobilization of hepatic glycogen in Gallus domesticus at the end of incubation[J]. Comparative Biochemistry and Physiology, 1969, 28(3): 1169-1176. DOI:10.1016/0010-406X(69)90557-X
[18]
HOHLWEG A, HARE T, MILAKOFSKY L, et al. Hormonal effects on amino acids and related compounds in plasma, amniotic fluid, and allantoic fluid of the chicken embryo[J]. General and Comparative Endocrinology, 1999, 114(3): 378-386. DOI:10.1006/gcen.1999.7274
[19]
LU J W, MCMURTRY J P, COON C N. Developmental changes of plasma insulin, glucagon, insulin-like growth factors, thyroid hormones, and glucose concentrations in chick embryos and hatched chicks[J]. Poultry Science, 2007, 86(4): 673-683. DOI:10.1093/ps/86.4.673
[20]
MA Y B, ZHANG F D, WANG J, et al. Effect of in ovo feeding of β-hydroxy-β-methylbutyrate on hatchability, muscle growth and performance in prenatal and posthatch broilers[J]. Journal of the Science of Food and Agriculture, 2020, 100(2): 755-763. DOI:10.1002/jsfa.10080
[21]
GRATTA F, BIROLO M, SACCHETTO R, et al. Effect of feed restriction timing on live performance, breast myopathy occurrence, and muscle fiber degeneration in 2 broiler chicken genetic lines[J]. Poultry Science, 2019, 98(11): 5465-5476. DOI:10.3382/ps/pez352
[22]
KORNASIO R, HALEVY O, KEDAR O, et al. Effect of in ovo feeding and its interaction with timing of first feed on glycogen reserves, muscle growth, and body weight[J]. Poultry Science, 2011, 90(7): 1467-1477. DOI:10.3382/ps.2010-01080
[23]
ZHAO M M, GAO T, ZHANG L, et al. In ovo feeding of creatine pyruvate alters energy reserves, satellite cell mitotic activity and myogenic gene expression of breast muscle in embryos and neonatal broilers[J]. Poultry Science, 2017, 96(9): 3314-3323. DOI:10.3382/ps/pex150
[24]
MOORE D T, FERKET P R, MOZDZIAK P E. Muscle development in the late embryonic and early post-hatch poult[J]. International Journal of Poultry Science, 2005, 4(3): 138-142. DOI:10.3923/ijps.2005.138.142
[25]
GRODZIK M, SAWOSZ F, SAWOSZ E, et al. Nano-nutrition of chicken embryos.The effect of in ovo administration of diamond nanoparticles and L-glutamine on molecular responses in chicken embryo pectoral muscles[J]. International Journal of Molecular Sciences, 2013, 14(11): 23033-23044. DOI:10.3390/ijms141123033
[26]
LIU X, MCFARLAND D C, NESTOR K E, et al. Expression of fibroblast growth factor 2 and its receptor during skeletal muscle development from turkeys with different growth rates[J]. Domestic Animal Endocrinology, 2003, 25(2): 215-229. DOI:10.1016/S0739-7240(03)00061-4
[27]
ZIELINSKA M, SAWOSZ E, GRODZIK M, et al. Effect of heparan sulfate and gold nanoparticles on muscle development during embryogenesis[J]. International Journal of Nanomedicine, 2011, 6: 3163-3172.
[28]
SAWOSZ F, PINEDA L M, HOTOWY A M, et al. Nano-nutrition of chicken embryos.The effect of silver nanoparticles and glutamine on molecular responses, and the morphology of pectoral muscle[J]. Baltic Journal of Comparative & Clinical Systems Biology, 2021, 2: 29-45.
[29]
ZIELINSKA M, SAWOSZ E, GRODZIK M, et al. Effect of taurine and gold nanoparticles on the morphological and molecular characteristics of muscle development during chicken embryogenesis[J]. Archives of Animal Nutrition, 2012, 66(1): 1-13. DOI:10.1080/1745039X.2011.644918
[30]
BIKFALVI A, KLEIN S, PINTUCCI G, et al. Biological roles of fibroblast growth factor-2[J]. Endocrine Reviews, 1997, 18(1): 26-45.
[31]
SUBRAMANIYAN S A, KANG D R, PARK J R, et al. Effect of in ovo injection of L-arginine in different chicken embryonic development stages on post-hatchability, immune response, and Myo-D and myogenin proteins[J]. Animals, 2019, 9(6): 357. DOI:10.3390/ani9060357
[32]
LIU H H, WANG J W, ZHANG R P, et al. In ovo feeding of IGF-1 to ducks influences neonatal skeletal muscle hypertrophy and muscle mass growth upon satellite cell activation[J]. Journal of Cellular Physiology, 2012, 227(4): 1465-1475. DOI:10.1002/jcp.22862
[33]
GONZALEZ J M, JACKSON A R. In ovo feeding of nicotinamide riboside affects broiler pectoralis major muscle development[J]. Translation Animal Science, 2020, 4(3): txaa126. DOI:10.1093/tas/txaa126
[34]
XU X X, JACKSON A R, GONZALEZ J M. The effects of in ovo nicotinamide riboside dose on broiler myogenesis[J]. Poultry Science, 2021, 100(3): 100926. DOI:10.1016/j.psj.2020.12.024
[35]
RAO S S, KOHTZ D S. Positive and negative regulation of D-type cyclin expression in skeletal myoblasts by basic fibroblast growth factor and transforming growth factor beta.A role for cyclin D1 in control of myoblast differentiation[J]. Journal of Biological Chemistry, 1995, 270(8): 4093-4100. DOI:10.1074/jbc.270.8.4093
[36]
ZHANG F D, WANG J, ZHANG H J, et al. Effect of amniotic injection of N-carbamylglutamate on meat quality of broilers[J]. Animals, 2020, 10(4): 576. DOI:10.3390/ani10040576
[37]
WEI X J, NI Y D, LU L Z, et al. The effect of equol injection in ovo on posthatch growth, meat quality and antioxidation in broilers[J]. Animal, 2011, 5(2): 320-327. DOI:10.1017/S1751731110001771
[38]
TAVANIELLO S, MUCCI R, STADNICKA K, et al. Effect of in ovo administration of different synbiotics on carcass and meat quality traits in broiler chickens[J]. Poultry Science, 2019, 98(1): 464-472. DOI:10.3382/ps/pey330
[39]
ZHANG H, ELLIOTT K E C, DUROJAYE O A, et al. Effects of in ovo injection of L-ascorbic acid on growth performance, carcass composition, plasma antioxidant capacity, and meat quality in broiler chickens[J]. Poultry Science, 2019, 98(9): 3617-3625. DOI:10.3382/ps/pez173
[40]
ZHU Y F, LI S Z, SUN Q Z, et al. Effect of in ovo feeding of vitamin C on antioxidation and immune function of broiler chickens[J]. Animal, 2019, 13(9): 1927-1933. DOI:10.1017/S1751731118003531
[41]
ARAUJO I C S, CAFÉ M B, MESQUITA M A, et al. Effect of a commercial product containing canthaxanthin for in ovo feeding to broiler embryos on hatchability, chick quality, oxidation status, and performance[J]. Poultry Science, 2020, 99(11): 5598-5606. DOI:10.1016/j.psj.2020.08.044
[42]
ARAÚJO I C S, CAFÉ M B, NOLETO R A, et al. Effect of vitamin E in ovo feeding to broiler embryos on hatchability, chick quality, oxidative state, and performance[J]. Poultry Science, 2019, 98(9): 3652-3661. DOI:10.3382/ps/pey439
[43]
CONG J H, ZHANG L, LI J L, et al. Effects of dietary supplementation with carnosine on growth performance, meat quality, antioxidant capacity and muscle fiber characteristics in broiler chickens[J]. Journal of the Science of Food and Agriculture, 2017, 97(11): 3733-3741. DOI:10.1002/jsfa.8236
[44]
JOO S T, KIM G D, HWANG Y H, et al. Control of fresh meat quality through manipulation of muscle fiber characteristics[J]. Meat Science, 2013, 95(4): 828-836. DOI:10.1016/j.meatsci.2013.04.044
[45]
DANKOWIAKOWSKA A, BOGUCKA J, SOBOLEWSKA A, et al. Effects of in ovo injection of prebiotics and synbiotics on the productive performance and microstructural features of the superficial pectoral muscle in broiler chickens[J]. Poultry Science, 2019, 98(10): 5157-5165. DOI:10.3382/ps/pez202
[46]
张封东. 胚蛋给养N-氨甲酰谷氨酸对肉仔鸡肉品质的影响[D]. 硕士学位论文. 北京: 中国农业科学院, 2020.
ZHANG F D. Effects of in ovo feeding of N-carbamylglutamate on meat quality of broilers[D]. Master's Thesis. Beijing: Chinese Academy of Agricultural Sciences, 2020. (in Chinese)
[47]
FERREIRA I B, MATOS J B, J r, SGAVIOLI S, et al. Vitamin C prevents the effects of high rearing temperatures on the quality of broiler thigh meat[J]. Poultry Science, 2015, 94(5): 841-851. DOI:10.3382/ps/pev058
[48]
TEJEDA O J, MELOCHE K J, STARKEY J D. Effect of incubator tray location on broiler chicken growth performance, carcass part yields, and the meat quality defects wooden breast and white striping[J]. Poultry Science, 2021, 100(2): 654-662. DOI:10.1016/j.psj.2020.10.035
[49]
FATEMI S A, ALQHTANI A, ELLIOTT K E C, et al. Effects of the in ovo injection of vitamin D3 and 25-hydroxyvitamin D3 in Ross 708 broilers subsequently fed commercial or calcium and phosphorus-restricted diets.Ⅰ.Performance, carcass characteristics, and incidence of woody breast myopathy[J]. Poultry Science, 2021, 100(8): 101220. DOI:10.1016/j.psj.2021.101220
[50]
SAEED M, BABAZADEH D, NAVEED M, et al. In ovo delivery of various biological supplements, vaccines and drugs in poultry: current knowledge[J]. Journal of the Science of Food and Agriculture, 2019, 99(8): 3727-3739. DOI:10.1002/jsfa.9593
[51]
MAIORANO G, SOBOLEWSKA A, CIANCIULLO D, et al. Influence of in ovo prebiotic and synbiotic administration on meat quality of broiler chickens[J]. Poultry Science, 2012, 91(11): 2963-2969. DOI:10.3382/ps.2012-02208
[52]
TAVANIELLO S, SLAWINSKA A, PRIORIELLO D, et al. Effect of galactooligosaccharides delivered in ovo on meat quality traits of broiler chickens exposed to heat stress[J]. Poultry Science, 2020, 99(1): 612-619. DOI:10.3382/ps/pez556
[53]
LIU P, HU Y, GROSSMANN R, et al. In ovo leptin administration accelerates post-hatch muscle growth and changes myofibre characteristics, gene expression and enzymes activity in broiler chickens[J]. Journal of Animal Physiology and Animal Nutrition, 2013, 97(5): 887-895.
[54]
MROCZEK-SOSNOWSKA N, ŁUKASIEWICZ M, WNUK A, et al. In ovo administration of copper nanoparticles and copper sulfate positively influences chicken performance[J]. Journal of the Science of Food and Agriculture, 2016, 96(9): 3058-3062. DOI:10.1002/jsfa.7477