动物营养学报    2022, Vol. 34 Issue (5): 3194-3207    PDF    
饲料蛋白质水平对三倍体虹鳟肌肉组织特性、蛋白质周转和肌肉生长相关基因表达的影响
李小花1,2 , 田海宁2 , 李长忠2 , 马睿1 , 孟玉琼2     
1. 青海大学省部共建三江源生态与高原农牧业国家重点实验室, 西宁 810016;
2. 青海大学生态环境工程学院, 西宁 810016
摘要: 本研究旨在探讨饲料蛋白质水平对三倍体虹鳟肌肉组织特性、蛋白质周转和肌肉生长相关基因表达的影响。配制3种等脂等能饲料,蛋白质水平分别为35.4%(低蛋白质组)、45.8%(中蛋白质组)和52.4%(高蛋白质组)。将1 200尾初始体重为(232.8±0.1) g的三倍体虹鳟随机分为3组,每组4个重复,每个重复放养100尾鱼,进行80 d的养殖试验。结果表明:1)低蛋白质组的肌纤维密度和肌纤维数显著高于中、高蛋白质组(P < 0.05);各组间肌纤维直径(D)≤20 μm的肌纤维比例无显著差异(P>0.05);120 μm < D≤160 μm和D>160 μm的肌纤维比例在低蛋白质组最低,显著低于其他2组(P < 0.05)。2)随着饲料蛋白质水平的升高,生长激素受体(GHR)、胰岛素样生长因子Ⅰ(IGFⅠ)和胰岛素样生长因子受体Ⅰ(IGFRⅠ)基因相对表达量呈现先上升后下降的趋势,组间差异显著(P < 0.05),在中蛋白质组达到最大值;肌分化因子(Myod)、生肌因子5(Myf5)、肌原调节因子4(Mrf4)和肌细胞生成素(Myog)基因相对表达量显著增加(P < 0.05)。3)蛋白质合成途径中,中、高蛋白质组蛋白激酶B(AKT)磷酸化与非磷酸化蛋白比值(p-AKT/AKT)显著高于低蛋白质组(P < 0.05)。随着饲料蛋白质水平的升高,雷帕霉素靶蛋白(TOR)和真核翻译起始因子4E结合蛋白1(4Ebp1)磷酸化与非磷酸化蛋白比值(p-TOR/TOR、p-4Ebp1/4Ebp1)呈现先上升后下降的趋势,各组间差异显著(P < 0.05),在中蛋白质组达到最大值;对蛋白质降解途径而言,自噬相关蛋白12l(Atg12l)基因相对表达量随着饲料蛋白质水平的升高逐渐增加(P < 0.05)。钙依赖性蛋白酶2(Capn2)基因相对表达量在高蛋白质组显著高于其他2组(P < 0.05),同时钙蛋白酶抑制蛋白短亚型(Cast-s)和钙蛋白酶抑制蛋白长亚型(Cast-l)基因相对表达量呈现先上升后下降的趋势,组间差异显著(P < 0.05),其中在中蛋白质组达到最大值。肌肉萎缩F-box蛋白25(Fbx25)基因相对表达量呈现先下降后上升的趋势,其中中蛋白质组显著低于低蛋白质组(P < 0.05)。综上所述,当饲料蛋白质水平增加到45.8%时,能促进肌纤维的增大,但对肌纤维增生无显著影响;饲料蛋白质水平通过调控肌源性调节因子和生长激素-胰岛素样生长因子通路进而调控肌纤维增大;当饲料蛋白质水平增加到45.8%时,可促进肌肉蛋白质合成代谢;肌肉蛋白质各分解途径在不同饲料蛋白质水平组存在差异。
关键词: 蛋白质    三倍体虹鳟    肌肉组织特性    蛋白质周转    肌肉生长    
Effects of Dietary Protein Levels on Muscle Tissue Characteristics, Protein Turnover and Muscle Growth-Related Genes Expressions in Triploid Rainbow Trout
LI Xiaohua1,2 , TIAN Haining2 , LI Changzhong2 , MA Rui1 , MENG Yuqiong2     
1. Provincial and Ministry Jointly Build the State Key Laboratory of Sanjiangyuan Ecology and Plateau Agriculture, Qinghai University, Xining 810016, China;
2. College of Ecological Environmental Engineering, Qinghai University, Xining 810016, China
Abstract: The study was aimed to explore the effects of dietary protein levels on muscle tissue characteristics, protein turnover and muscle growth-related genes expressions in triploid rainbow trout. Three isolipid and isoenergetic diets were formulated to contain 35.4% (low protein group), 45.8% (medium protein group) and 52.4% (high protein group) protein levels. A total of 1 200 triploid rainbow trout with an initial body weight of (232.8±0.1) g were randomly divided into 3 groups with 4 replicates per group and 100 fish per replicate. The experiment lasted for 80 days. The results showed as follows: 1) compared to the medium and high-protein groups, the muscle fiber density and number were significantly increased in the low protein group (P < 0.05). No difference was observed in the proportion of muscle fibers with a muscle fiber diameter (D)≤20 μm among all groups (P>0.05). The proportion of muscle fibers with 120 μm < D≤160 μm and D>160 μm was the lowest in the low protein group (P < 0.05). 2) With the increase of dietary protein levels, the growth hormone receptor (GHR), insulin-like growth factor Ⅰ (IGFⅠ) and insulin-like growth factor receptor Ⅰ (IGFRⅠ) gene relative expression levels increased and decreased thereafter, there were significantly different among groups (P < 0.05), and reached the maximum in medium protein group. The myogenic differentiation antigen (Myod), myogenic regulatory factor 4 (Mrf4), myodifferentiation factor 5 (Myf5) and myogenin (Myog) gene relative expression levels of muscle increased with the increase of dietary protein levels (P < 0.05). 3) In the protein synthesis pathway, the ratio of phosphorylated to total protein (p-AKT/AKT) of protein kinase B (AKT) in medium and high protein groups was significantly higher than that in low protein group (P < 0.05). With the dietary protein levels increasing, the ratio of phosphorylated to total protein (p-TOR/TOR and p-4Ebp1/4Ebp1) of target rapamycin (TOR) and eukaryotic translation initiation factor 4E-binding protein 1 (4Ebp1) increased firstly and then decreased, there were significantly difference among groups (P < 0.05), and reached the maximum in medium protein group. For the protein degradation pathway, with the dietary protein levels increasing, the autophagy related protein 12l (Atg12l) gene relative expression levels of muscle increased with the increase of dietary protein levels (P < 0.05). The calpains 2 (Capn2) gene relative expression level in the high protein group was significantly higher than that in the low and medium protein groups (P < 0.05); at the same time, the short isoforms of calpastatin (Cast-s) and long isoforms of calpastatin (Cast-l) gene relative expression levels of muscle increased then decreased thereafter with the increase of dietary protein levels (P < 0.05). The muscle atrophy F-box protein 25 (Fbx25) gene relative expression level was firstly decreased and then increased, and medium protein group was significantly lower than low protein group (P < 0.05). In summary, when the dietary protein level increase to 45.8%, it can promote the increase of muscle fiber, but has no effect on the proliferation of muscle fiber. Dietary protein level regulates muscle fiber enlargement by regulating myogenic regulatory factor and growth hormone-insulin-like growth factor pathways. When dietary protein level increases to 45.8%, muscle protein metabolism can be promoted. The decomposing pathways of muscle protein are different in different dietary protein level groups.
Key words: protein    triploid rainbow trout    muscle tissue characteristics    protein turnover    muscle growth    

蛋白质是水产动物饲料中必需的核心营养物质,是细胞、组织和机体的重要组成部分,为鱼体提供生长和代谢所需的能量,是决定鱼类生长的关键因素[1]。当饲料中蛋白质水平过低时,会影响鱼类的生长[2];当饲料中蛋白质水平过高时,鱼类会通过氧化脱氨基作用把过量的蛋白质分解代谢用于能量消耗,同时还会增加饲料成本,不利于鱼类的生长[3]

鱼类的生长实质上是最大限度地促使肌肉组织的快速生长发育,达到速生快长[4]。鱼肌肉生长是一个动态过程,涉及肌纤维的增生和现有肌纤维的增大[5],增生和增大对肌肉质量增加的相对贡献可以影响肌纤维组织形态结构,其中肌纤维直径和肌纤维密度是描述肌纤维组织形态结构的2个主要特征[6-7]。同时,肌肉生长是在生长激素-胰岛素样生长因子(GH-IGFs)、肌源性调节因子(MRFs)等一系列因子的控制下进行的[8]。GH-IGFs包括生长激素受体(GHR)、胰岛素样生长因子(IGF)、胰岛素样生长因子受体(IGFR)和胰岛素生长因子结合蛋白(IGFBP)等,在鱼肌肉的生长和功能成熟中起着关键作用[9]。MRFs包括肌分化因子(Myod)、生肌因子5(Myf5)、肌原调节因子4(Mrf4)和肌细胞生成素(Myog),在成肌细胞增殖和成肌分化中起关键作用[8]。在鲑鳟鱼上研究表明,肌肉中GHRIGFIGFBPMyodMrf4基因的表达水平会受到饲料蛋白质水平的调控[10-11]

肌肉蛋白质是鱼肉组成的重要因素[12]。肌肉生长与肌肉蛋白质沉积有关,肌肉蛋白质沉积与肌肉蛋白质周转(包括蛋白质合成和蛋白质分解代谢过程)密切相关[13]。研究表明,胰岛素样生长因子Ⅰ(IGFⅠ)可引起磷脂酰肌醇3-激酶(PI3K)-p85活化,活化后的p85将信号传递给催化亚基PI3K-p110,从而激活PI3K,进而磷酸化蛋白激酶B(AKT-Ser437),激活雷帕霉素靶蛋白(TOR)[14],活化后的TOR可磷酸化翻译调控因子真核翻译起始因子4E结合蛋白1(4Ebp1)和核糖体蛋白S6激酶1(S6k1)来促进体内蛋白质的合成[15]。已有研究表明,饲料蛋白质可激活TOR信号通路,调节肌肉组织中TOR和4Ebp1基因的表达,最终刺激蛋白质合成[16]。另外,肌肉蛋白质沉积是蛋白质合成和蛋白质降解之间平衡的结果。蛋白质分解代谢主要由自噬/溶酶体途径、钙蛋白酶系统和泛肽降解途径三大系统来调控[17]。已有研究表明,饲料蛋白质水平会影响肌肉钙蛋白酶系统和自噬/溶酶体途径[18-19]

虹鳟(Oncorhynchus mykiss)隶属于鲑科(Salmonidae)、大麻哈鱼属(Oncorhynchus),属于冷水性鱼类[20]。三倍体虹鳟通常是通过运用温度、压力等物化手段形成细胞内具有3套染色体的虹鳟[21],可将性腺发育的全部能量用于躯体生长,因此具有生长速度快、饲料利用高、肉品质好等优点[22],现已成为世界最为广泛的养殖鱼类之一。因此,本研究在前期三倍体虹鳟蛋白质需要量研究[12]的基础上,从肌肉组织特性、蛋白质周转、肌肉生长相关信号通路3个层次研究饲料蛋白质水平对三倍体虹鳟生长的潜在机制,为营养调控鱼类的生长提供理论基础。

1 材料与方法 1.1 试验动物、饲料及养殖管理

本试验所用三倍体虹鳟来自青海民泽龙羊峡生态水殖有限公司。按照之前报道[12]的方法配制3种等脂等能饲料,并测定各饲料水分、蛋白质、脂肪及能量水平。3种饲料蛋白质水平分别为35.4%(低蛋白质组)、45.8%(中蛋白质组)和52.4%(高蛋白质组),其中根据前期研究结果,45.8%蛋白质水平为三倍体虹鳟蛋白质需要量[12]。试验饲料组成及营养水平见表 1

表 1 试验饲料组成及营养水平(干物质基础) Table 1 Composition and nutrient levels of experimental diets (DM basis) 

将1 200尾初始体重为(232.8±0.1) g的三倍体虹鳟随机分配到12个网箱(3 m×3 m×6 m),每个网箱100尾。每个网箱随机投喂1种饲料,每种饲料有4个养殖重复(n=4),在青海省龙羊峡水库饲养80 d。在此期间,水温在8~16 ℃,溶解氧含量保持在7 mg/L以上。

1.2 样品采集

养殖试验结束后,将试验鱼禁食3 d,分别从每个网箱随机选择3尾鱼,用丁香酚(1:10 000)麻醉(中国上海试剂公司),抽血后剖取鱼肉片,在背部取2 cm×1 cm×1 cm大小的肌肉组织块放于速冻管后放置到液氮中,每条鱼取4个备份,置于-80 ℃超低温冰箱中保存备用。

1.3 指标测定 1.3.1 肌肉组织切片和形态的测定

从-80 ℃超低温冰箱中取出肌肉样品,进行包埋(分清肌肉横纵方向)、切片(厚度是6 μm)、苏木精-伊红染色和封片(中性树脂)。用显微镜(Nikon, DS-Ri2)观察并拍照,每个肌肉组织样品采集10张100、200和400倍照片,采用图像分析软件Image-J测量肌纤维直径和肌纤维数量[5]

1.3.2 相关基因表达的测定

采用天根RNA提取试剂盒(DP171221)提取三倍体虹鳟肌肉组织样品总RNA,分别用琼脂糖凝胶电泳和分光光度计分析总RNA的质量和浓度,质检合格后按照TaKaRa RNA反转录试剂盒[PrimeScriptTM RT Master Mix(Perfect Real Time)]反转成cDNA。参照虹鳟鱼的相关cDNA序列,设计相关基因的特异性引物(表 2),引物均由上海生工生物工程技术服务有限公司合成。然后以β-肌动蛋白(β-actin)作为内参基因,每个样品进行3次技术重复,使用实时荧光定量PCR仪(LightCycler 480 Roche)进行荧光定量PCR分析,并使用2-ΔΔCt方法定量目标基因相对表达量。

表 2 相关基因的引物序列 Table 2 Primer sequences of related genes
1.3.3 相关蛋白表达的测定

采用全蛋白提取试剂盒(凯基生物KGP2 500)提取三倍体虹鳟肌肉组织样品总蛋白,用酶标仪(Varioskan Lux3 020)和BCA蛋白浓度试剂盒(北京索莱宝PC0020)测定总蛋白浓度。本研究中使用的主要抗体AKT(1:1 000;总和磷酸化Ser473)、TOR(1:1 000;总和磷酸化Ser2 448)、4Ebp1(1:1 000;总和磷酸化Thr37/46)、β-actin(1:1 000)均作为内参蛋白,每个样品进行3次技术重复,使用Wes试剂盒(Protein Simple SM-W004)和Wes全自动蛋白质印迹定量分析系统(WS-2 724)进行全自动Wes分析,分析条带灰度值,以目的条带/内参条带比值表示目的蛋白相对表达量,计算磷酸化蛋白(p-)/总蛋白比值。

1.4 数据统计与分析

所有的试验数据采用SPSS 22.0软件进行单因素方差分析(one-way ANOVA),用Tukey检验进行多重比较,试验结果用平均值±标准误(mean±SE)表示。以P < 0.05表示差异显著。使用Excel 2010绘图。

2 结果与分析 2.1 饲料蛋白质水平对三倍体虹鳟骨骼肌组织形态学的影响

肌纤维生长特征如表 3图 1所示,结果表明,低蛋白质组的肌纤维密度和肌纤维数显著高于中、高蛋白质组(P < 0.05);低蛋白质组的肌纤维直径(D)平均数、中位数、最大值和最小值显著低于其他2组(P < 0.05);各组肌D≤20 μm的白色肌纤维比例无显著差异(P>0.05);低蛋白质组20 μm < D≤40 μm和40 μm < D≤80 μm的白色肌纤维比例高于中、高蛋白质组(P < 0.05);80 μm < D≤120 μm的白色肌纤维比例在中蛋白质组最高,显著高于其他2组(P < 0.05);120 μm < D≤160 μm和D>160 μm的白色肌纤维比例在低蛋白质组最低,显著低于其他2组(P < 0.05)。

表 3 饲料蛋白水平对三倍体虹鳟肌纤维形态参数的影响 Table 3 Effects of dietary protein levels on muscle fiber morphological parameters of triploid rainbow trout (n=4)
图中A、B和C代表饲料蛋白质水平(35.4%、45.8%和52.4%);1表示放大200倍;2表示放大400倍。 A, B and C in the figure represents the dietary protein levels (35.4%, 45.8% and 52.4%); 1 means 200 times magnification; 2 means 400 times magnification. 图 1 饲喂不同饲料蛋白质水平饲料的三倍体虹鳟肌纤维组织切片观察 Fig. 1 Histological observation of muscle fiber structure of triploid rainbow trout fed diets with different protein levels
2.2 饲料蛋白质水平对三倍体虹鳟肌肉生长相关基因的影响 2.2.1 饲料蛋白质水平对三倍体虹鳟肌肉MRFs家族基因表达的影响

图 2可知,随着饲料蛋白质水平的增加,肌肉MyodMyf5、Mrf4和Myog基因相对表达量呈现增加的趋势,其中低蛋白质组基因相对表达量显著低于高蛋白质组(P < 0.05);而中蛋白质组和高蛋白质组之间无显著差异(P>0.05)。

Myod:肌分化因子myodifferentiation factor;Myf5:生肌因子5 myogenic factor 5;Mrf4:肌原调节因子4 myogenic regulatory factor 4;Myog:肌细胞生成素myogenin。数据柱标注不同小写字母表示差异显著(P < 0.05)。下图同。Value columns with different small letters mean significant difference (P < 0.05). The same as below. 图 2 饲料蛋白质水平对三倍体虹鳟肌肉MRFs家族基因表达的影响 Fig. 2 Effects of dietary protein levels on expression of MRFs family genes in muscle of triploid rainbow trout (n=4)
2.2.2 饲料蛋白质水平对三倍体虹鳟肌肉GH-IGFs家族基因表达的影响

图 3可知,饲料蛋白质水平对肌肉IGFRⅡ和IGFBP1基因相对表达量无显著影响(P>0.05)。随着饲料蛋白质水平的升高,GHRIGFⅠ和IGFRⅠ基因相对表达量呈现先上升后下降的趋势,在中蛋白质组达到最大值;而IGFⅡ基因相对表达量呈现下降的趋势,其中低蛋白质组显著高于高蛋白质组(P < 0.05)。

GHR:生长激素受体growth hormone receptor;IGFⅠ:胰岛素样生长因子Ⅰ insulin-like growth factor Ⅰ; IGFⅡ:胰岛素样生长因子Ⅱ insulin-like growth factor Ⅱ;IGFRⅠ:胰岛素样生长因子受体Ⅰ insulin-like growth factor Ⅰ receptor;IGFRⅡ:胰岛素样生长因子受体Ⅱ insulin-like growth factor Ⅱ receptor;IGFBP1:胰岛素生长因子结合蛋白1 insulin-like growth factor binding protein 1。 图 3 饲料蛋白质水平对三倍体虹鳟肌肉生长激素-胰岛素样生长因子家族基因表达的影响 Fig. 3 Effects of dietary protein levels on expression of GH-IGFs family genes in muscle of triploid rainbow trout (n=4)
2.3 饲料蛋白质水平对三倍体虹鳟肌肉蛋白质周转的影响 2.3.1 饲料蛋白质水平对三倍体虹鳟肌肉蛋白质合成途径的影响

图 4可知,中、高蛋白质组肌肉中p-AKT/AKT显著高于低蛋白质组(P < 0.05)。随着饲料蛋白质水平的升高,肌肉中p-TOR/TOR和p-4Ebp1/4Ebp1呈现先上升后下降的趋势,在中蛋白质组达到最大值,显著高于其他2组(P < 0.05)。

AKT:蛋白激酶B protein kinase B;TOR:雷帕霉素靶蛋白target of rapamycin;4Ebp1:真核翻译起始因子4E结合蛋白1 eukaryotic translation initiation factor 4E-binding protein 1;β-actin:β-肌动蛋白。 图 4 饲料蛋白质水平对三倍体虹鳟肌肉中蛋白质合成相关蛋白表达的影响 Fig. 4 Effects of dietary protein levels on expression of protein related to protein synthesis in muscle of triploid rainbow trout (n=4)
2.3.2 饲料蛋白质水平对三倍体虹鳟肌肉蛋白质降解途径相关基因表达的影响 2.3.2.1 饲料蛋白质水平对三倍体虹鳟肌肉蛋白质自噬/溶酶体降解途径相关基因表达的影响

图 5可知,饲料蛋白质水平对肌肉微管自噬相关蛋白轻链3β(LC3β)和自噬相关蛋白4b(Atg4b)基因相对表达量无显著影响(P>0.05);中蛋白质组肌肉γ-氨基丁酸受体相关蛋白1(Gabarapl 1)基因相对表达量显著高于低、高蛋白质组(P < 0.05);随着饲料蛋白质水平的升高,自噬相关蛋白12l(Atg12l)基因相对表达量逐渐增加,组间差异显著(P < 0.05);中、高蛋白质组肌肉中组织蛋白酶L(Cathepsins L)基因相对表达量显著高于低蛋白质组(P < 0.05)。

LC3β:微管自噬相关蛋白轻链3β microtubule associated protein light chain 3 beta;Gabarapl1:γ-氨基丁酸受体相关蛋白1 gamma-aminobutyric acid receptor-associated protein 1;Atg4b:自噬相关蛋白4b autophagy-related protein 4b;Atg12l:自噬相关蛋白12l autophagy-related protein 12l;Cathepsins L:组织蛋白酶L cathepsin L。 图 5 饲料蛋白质水平对三倍体虹鳟肌肉蛋白质自噬/溶酶体降解途径相关基因表达的影响 Fig. 5 Effects of dietary protein levels on expression of genes related to autophagy/lysosomal degradation pathway in muscle of triploid rainbow trout (n=4)
2.3.2.2 饲料蛋白质水平对三倍体虹鳟肌肉蛋白质钙调蛋白酶降解途径相关基因表达的影响

图 6可知,饲料蛋白质水平对肌肉钙依赖性蛋白酶1(Capn1)基因相对表达量无显著影响(P>0.05);肌肉钙依赖性蛋白酶2(Capn2)基因相对表达量在高蛋白质组显著高于其他2组(P < 0.05);随着饲料蛋白质水平的增加,肌肉钙蛋白酶抑制蛋白短亚型(Cast-s)和钙蛋白酶抑制蛋白长亚型(Cast-l)基因相对表达量呈现先上升后下降的趋势,其中在中蛋白质组达到最大值,显著高于其他高蛋白质组(P < 0.05)。

Capn1:钙依赖性蛋白酶1 calcium-dependent protease 1;Capn2:钙依赖性蛋白酶2 calcium-dependent protease 2;Cast-l:钙蛋白酶抑制蛋白长亚型long isoforms of calpastatin;Cast-s:钙蛋白酶抑制蛋白短亚型short isoforms of calpastatin。 图 6 饲料蛋白质水平对三倍体虹鳟肌肉蛋白质钙调蛋白酶降解途径相关基因表达的影响 Fig. 6 Effects of dietary protein levels on expression of genes related to protein calpains degradation pathway in muscle of triploid rainbow trout (n=4)
2.3.2.3 饲料蛋白质水平对三倍体虹鳟肌肉蛋白质泛肽降解途径相关基因表达的影响

图 7可知,饲料蛋白质水平对肌肉特异性环指蛋白1(Murf1)和萎缩F-box蛋白32(Fbx32)基因相对表达量无显著影响(P>0.05);随着饲料蛋白质水平的增加,肌肉萎缩F-box蛋白25(Fbx25)基因相对表达量呈现先下降后上升的趋势,其中中蛋白质组显著低于低蛋白质组(P < 0.05)。

Murf1:肌肉特异性环指蛋白1 muscle specific ring finger protein 1;Fbx32:肌肉萎缩F-box蛋白32 muscle atrophy protein F-box32;Fbx25:肌肉萎缩F-box蛋白25 muscle atrophy protein F-box25。 图 7 饲料蛋白质水平对三倍体虹鳟肌肉蛋白质泛肽降解途径相关基因表达的影响 Fig. 7 Effects of dietary protein levels on expression of genes related to ubiquitin degradation pathway in muscle of triploid rainbow trout (n=4)
3 讨论

肌纤维组织形态结构包括肌纤维直径和肌纤维密度等[6-7]。前期研究表明,饲料蛋白质水平能够影响蜀宣花牛、金头鲷和大菱鲆肌纤维的密度和直径[23-26]。本研究通过对三倍体虹鳟骨骼肌的组织学观察,发现45.8%以上饲料蛋白质水平能促进三倍体虹鳟肌纤维增大,从而导致同一显微镜视野下肌纤维密度降低。这与程贵兰等[27]在麒麟鸡、Saavedra等[28]在大西洋白姑鱼(Argyrosomus regius)的研究结果一致。

鱼类肌肉生长是一个动态过程,包括2个机制:肌纤维的增大和增生[5]。肌纤维的增大是从胚胎后期开始一直到肌纤维达到功能需要的最大直径,而肌纤维的增生涉及到增加肌纤维的数量来补充新的纤维[29]。因此,肌纤维的特性可以作为衡量细胞增大或增生的指标。骨骼肌生长发育过程中,如果存在大量D<20 μm的肌纤维,代表肌纤维数增加的生长方式较活跃[30-31],如果存在D>120 μm的肌纤维,则代表肌肉对肌纤维的募集能力消失,肌肉纤维生长主要以增大为主,肌纤维数不再增加[32-33]。本研究结果表明,饲料蛋白质水平对三倍体虹鳟肌纤维增生无显著影响,而较高饲料蛋白质水平(45.8%以上)能促进鱼体肌纤维增大。

鱼类骨骼肌的生长受一系列信号通路的调控,如GH-IGFs和MRFs[34-35]。前期在斑马鱼、金头鲷和虹鳟研究表明,IGFs通过调节肌肉蛋白质沉积、肌细胞增生和肥大在促进肌肉生长中发挥重要作用[36-37]。GH-IGFs生长轴是鱼类生长发育的重要调控系统,该系统包括GH、GHR、IGF、IGFBP和IGFR等[38-40]。一般认为,该系统的调控机理为:由垂体分泌的GH通过与靶细胞GHR结合,启动细胞内的信号传导机制,促进IGF的表达与合成;IGF通过血液循环到达机体的局部组织,作为胞外配体通过与细胞膜上的受体结合,促进组织细胞分裂、分化和生长[41]。马骏等[10]在大西洋鲑(Salmo salar)中研究发现,饲料蛋白质水平可显著影响肌肉中GHRIGFⅠ基因表达水平。与其结果类似,本研究也发现肌肉GHRIGFⅠ和IGFRⅠ基因相对表达量在45.8%饲料蛋白质水平组最高,这也与本课题组之前研究结果一致:随着饲料蛋白质水平从31.6%增加到45.8%,三倍体虹鳟生长速度明显提高;而当饲料蛋白质水平大于45.8%以后生长速度不再增加[12]。然而在本研究中IGFⅡ基因相对表达量随着饲料蛋白质水平的增加呈现显著下降的趋势,可能与受到IGFⅠ的负反馈调节有关,类似的结果也发现于Sterle等[42]在猪上的研究。肌肉中特异性表达的MRFs家族成员有4个:MyodMyogMyf5和Mrf4。Myod和Myf5是肌卫星细胞分化发育成为肌细胞必需的,而Myog和Mrf4则通过招募肌球蛋白等结构蛋白在肌纤维分化中发挥作用。饮食中常量营养物质的变化,包括蛋白质来源和氨基酸补充,会影响MRFs的水平[43]。在虹鳟上的前期研究表明,饲料蛋白质水平或氨基酸水平与肌肉MRFs家族基因表达成正相关[11, 44]。类似的结果在本研究中同样发现。然而在本研究中,饲料蛋白质水平促进了MRFs家族基因的表达,但没有促进肌纤维增生。这可能的原因与IGF能诱导MRFs相关基因表达有关[45],潜在机制仍需进一步研究。

肌肉蛋白质沉积与肌肉蛋白质周转(包括蛋白质合成和蛋白质分解代谢过程)密切相关[13]。研究表明,在机体内蛋白质合成代谢依赖于TOR途径[46]。TOR通路可汇聚和整合多种细胞刺激信号(如生长因子、营养因子、能量等)来调控蛋白质代谢及许多重要生理过程[47]。IGFⅠ可以通过IGFⅠR-PI3K-AKT途径促进肌肉生长[48]。原因与该途径磷酸化TOR后使其活化,进而磷酸化翻译调控因子4Ebp1和S6k1来促进体内蛋白质的合成有关[15]。已有研究表明,饲料蛋白质能够提高TOR信号通路相关基因的表达水平,促进蛋白质的合成代谢[49]。在本研究中,当饲料蛋白质水平从35.4%增加到45.8%时,AKT、TOR和4Ebp1的磷酸化水平显著提高,这与Li等[50]在猪背肌上的研究结果一致。然而,当饲料蛋白质水平从45.8%增加到52.4%,TOR和4Ebp1的磷酸化水平降低,这与过高饲料蛋白质水平抑制GH-IGFs家族相关基因表达结果一致,使得肌肉乃至鱼体生长不再进一步增加。蛋白质分解代谢主要由自噬/溶酶体途径、钙蛋白酶系统和泛肽降解途径三大系统来调控[17]。自噬/溶酶体途径是一个进化的保守过程,可将降解长寿命的蛋白质和消除多余或受损的细胞结构[51]。自噬过程需要大量自噬相关因子(LC3β、Gabarapl1、Atg12l、Atg4b)参与,被证明在控制骨骼肌质量方面发挥重要作用[52]。在虹鳟中研究发现,肌肉蛋白质自噬降解相关基因(LC3βGabarapl1、Atg12lAtg4b)受饲料蛋白质和碳水化合物水平的影响[18-19]。在本研究中,45.8%及以上饲料蛋白质水平能上调Gabarapl1、Atg12lCathepsin L基因相对表达量,促进三倍体虹鳟肌肉蛋白质降解。钙蛋白酶系统是一种广泛分布于哺乳动物组织中高度复杂和高度调控的蛋白质降解系统[53]。钙蛋白酶家族是一类细胞内的半胱氨酸蛋白水解酶,共有16个成员:钙蛋白酶1-钙蛋白酶15(CAPN1-CAPN15)和钙蛋白酶调节亚基2(CAPNS2)。骨骼肌中主要表达Capn1、Capn2及内源性钙蛋白酶抑制剂(Cast)。饲料蛋白质水平与肌肉钙蛋白酶降解途径在陆生动物中的研究结果存在争议,王耀梅等[54]在绵羊上的研究发现,一些肉品质相关基因表达量随饲料蛋白质水平的升高分别升高和降低;而马丽娜等[55]在滩羊肌肉组织中发现,Capn1和Capn2基因在高饲料蛋白质水平组中表达上调。本研究中,52.4%饲料蛋白质水平显著上调肌肉Capn2基因相对表达量,进而激活钙蛋白酶降解途径,可能与过高蛋白质水平抑制了Cast有关。泛肽降解途径是一种具有选择性的和高度特异性的蛋白质降解途径,实现这一目标主要依赖于能特异性识别特定蛋白质底物的连接酶E3[56]。目前骨骼肌所特有的E3主要有:肌肉萎缩F-box蛋白(MAFbx或Fbx)和Murf1。在本研究中,虽然肌肉Murf1基因相对表达量无显著变化,但Fbx25基因相对表达量在低蛋白质组最高,Li等[50]研究发现,能量状态限制可以通过增加E3连接酶(Murf1和MAFbx)的基因表达水平促进蛋白降解。Baptista等[57]也表明增加氨基酸水平可以抑制Fbx的表达。鉴于此,当饲料蛋白质水平无法满足鱼体需要时,鱼体启动泛肽降解途径选择性得降解蛋白质提供能量。

4 结论

① 当饲料蛋白质水平达到三倍体虹鳟蛋白质需要量45.8%时,能促进肌纤维的增大,对肌纤维增生无显著影响;进一步提高饲料蛋白质水平对肌纤维生长无显著影响。

② 饲料蛋白质水平通过调控MRFs和GH-IGFs通路进而调控肌纤维增大。

③ 当饲料蛋白质水平增加到45.8%时,可促进肌肉蛋白质合成代谢;然而进一步提高饲料蛋白质水平会抑制该作用。

④ 肌肉蛋白质各分解途径在不同饲料蛋白质水平时存在差异。当投喂过低蛋白质水平(35.4%)饲料时,三倍体虹鳟会启动泛肽降解途径选择性得降解蛋白质提供能量;当投喂的饲料其蛋白质水平超过45.8%时,肌肉蛋白质降解以自噬溶酶体途径为主;当投喂过高蛋白质水平(52.4%)饲料,鱼体还会启动钙调蛋白酶降解途径。

参考文献
[1]
孙德文, 詹勇, 许梓荣. 日粮营养素对水产动物免疫机能的影响[J]. 饲料研究, 2003(2): 45-46.
SUN D W, ZHAN Y, XU Z R. Effects of dietary nutrients on immune function of aquatic animals[J]. Feed Research, 2003(2): 45-46 (in Chinese). DOI:10.3969/j.issn.1002-2813.2003.02.026
[2]
GAO Y J, LU S D, WU M J, et al. Effects of dietary protein levels on growth, feed utilization and expression of growth related genes of juvenile giant grouper (Epinephelus lanceolatus)[J]. Aquaculture, 2019, 504: 369-374. DOI:10.1016/j.aquaculture.2019.02.023
[3]
LIU G X, WANG L, YU H X, et al. Effects of dietary protein levels on growth performance, digestibility, anti-oxidative responses and expressions of growth-related genes in triploid rainbow trout Oncorhynchus mykiss farmed in seawater[J]. Aquaculture Nutrition, 2021, 27(4): 998-1008. DOI:10.1111/anu.13241
[4]
石军, 褚武英, 张建社. 鱼类肌肉生长分化与基因表达调控[J]. 水生生物学报, 2013, 37(6): 1145-1152.
SHI J, CHU W Y, ZHANG J S. Muscle growth, differentiation and gene expression regulation in fish[J]. Acta Hydrobiologica Sinica, 2013, 37(6): 1145-1152 (in Chinese).
[5]
KNUTSEN H R, OTTESEN O H, PALIHAWADANA A M, et al. Muscle growth and changes in chemical composition of spotted wolffish juveniles (Anarhichas minor) fed diets with and without microalgae (Scenedesmus obliquus)[J]. Aquaculture Reports, 2019, 13: 100175. DOI:10.1016/j.aqrep.2018.11.001
[6]
CHOI Y M, KIM B C. Muscle fiber characteristics, myofibrillar protein isoforms, and meat quality[J]. Livestock Science, 2009, 122(2/3): 105-118.
[7]
JOHNSTON I A, ALDERSON R, SANDHAM C, et al. Muscle fibre density in relation to the colour and texture of smoked Atlantic salmon (Salmo salar L.)[J]. Aquaculture, 2000, 189(3/4): 335-349.
[8]
JIANG Q, YAN M Y, ZHAO Y, et al. Dietary isoleucine improved flesh quality, muscle antioxidant capacity, and muscle growth associated with AKT/TOR/S6K1 and AKT/FOXO3a signaling in hybrid bagrid catfish (Pelteobagrus vachelli♀×Leiocassis longirostris ♂)[J]. Journal of Animal Science and Biotechnology, 2021, 12(1): 53. DOI:10.1186/s40104-021-00572-4
[9]
ZHAO Y, JIANG Q, ZHOU X Q, et al. Effect of dietary threonine on growth performance and muscle growth, protein synthesis and antioxidant-related signalling pathways of hybrid catfish Pelteobagrus vachelli♀×Leiocassis longirostris ♂[J]. British Journal of Nutrition, 2020, 123(2): 121-134. DOI:10.1017/S0007114519002599
[10]
马骏, 柳阳, 李勇, 等. 脂肪和蛋白质营养对工业化养殖大西洋鲑相关代谢酶和生长基因表达的影响[J]. 中国水产科学, 2017, 24(4): 669-680.
MA J, LIU Y, LI Y, et al. Effects of dietary fat and protein nutrition on fat metabolic enzymes and growth-associated gene expression of Atlantic salmon (Salmo salar) in the recirculating aquaculture system[J]. Journal of Fishery Sciences of China, 2017, 24(4): 669-680 (in Chinese).
[11]
ALAMI-DURANTE H, CLUZEAUD M, BAZIN D, et al. Muscle growth mechanisms in response to isoenergetic changes in dietary non-protein energy source at low and high protein levels in juvenile rainbow trout[J]. Comparative Biochemistry and Physiology.Part A, Molecular & Integrative Physiology, 2019, 230: 91-99.
[12]
MA R, LIU X H, MENG Y Q, et al. Protein nutrition on sub-adult triploid rainbow trout (1): dietary requirement and effect on anti-oxidative capacity, protein digestion and absorption[J]. Aquaculture, 2019, 507: 428-434. DOI:10.1016/j.aquaculture.2019.03.069
[13]
CLEVELAND B M, WEBER G M. Effects of insulin-like growth factor-Ⅰ, insulin, and leucine on protein turnover and ubiquitin ligase expression in rainbow trout primary myocytes[J]. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 2010, 298(2): R341-R350. DOI:10.1152/ajpregu.00516.2009
[14]
MANJARÍN R, COLUMBUS D A, SURYAWAN A, et al. Leucine supplementation of a chronically restricted protein and energy diet enhances mTOR pathway activation but not muscle protein synthesis in neonatal pigs[J]. Amino Acids, 2016, 48(1): 257-267. DOI:10.1007/s00726-015-2078-y
[15]
DUAN P, HU C H, QUAN C, et al. 4-nonylphenol induces autophagy and attenuates mTOR-p70S6K/4EBP1 signaling by modulating AMPK activation in Sertoli cells[J]. Toxicology Letters, 2017, 267: 21-31. DOI:10.1016/j.toxlet.2016.12.015
[16]
MA S L, LI X X, SUN L, et al. Effects of dietary protein levels on growth performance, serum indexes, PI3K/AKT/mTOR/S6K signalling and intestinal microbiota of abalone Haliotis discus hannai[J]. Aquaculture Nutrition, 2021, 27(4): 941-952. DOI:10.1111/anu.13230
[17]
NEMOVA N N, LYSENKO L A, KANTSEROVA N P. Degradation of skeletal muscle protein during growth and development of salmonid fish[J]. Russian Journal of Developmental Biology, 2016, 47(4): 161-172. DOI:10.1134/S1062360416040068
[18]
SEILIEZ I, PANSERAT S, LANSARD M, et al. Dietary carbohydrate-to-protein ratio affects TOR signaling and metabolism-related gene expression in the liver and muscle of rainbow trout after a single meal[J]. American Journal of Physiology.Regulatory, Integrative and Comparative Physiology, 2011, 300(3): E733-R743. DOI:10.1152/ajpregu.00579.2010
[19]
SEILIEZ I, GABILLARD J C, RIFLADE M, et al. Amino acids downregulate the expression of several autophagy-related genes in rainbow trout myoblasts[J]. Autophagy, 2012, 8(3): 364-375. DOI:10.4161/auto.18863
[20]
朱龙, 袁聪, 朱成科, 等. 二倍体和三倍体虹鳟肌肉营养成分比较及分析[J]. 营养学报, 2018, 40(2): 206-208.
ZHU L, YUAN C, ZHU C K, et al. Comparison of nutritional compositions in muscles of diploid and triploid rainbow trouts (Oncorhynchus mykiss)[J]. Acta Nutrimenta Sinica, 2018, 40(2): 206-208 (in Chinese). DOI:10.3969/j.issn.0512-7955.2018.02.023
[21]
SALIMIAN S, KEYVANSHOKOOH S, SALATI A P, et al. Effects of triploidy induction on physiological and immunological characteristics of rainbow trout (Oncorhynchus mykiss) at early developmental stages (fertilized eggs, eyed eggs and fry)[J]. Animal Reproduction Science, 2016, 165: 31-37. DOI:10.1016/j.anireprosci.2015.12.002
[22]
王雪薇, 谢意军, 薛淑群, 等. 二、三倍体虹鳟肌肉组织结构及营养成分的比较[J]. 水产科学, 2017, 36(5): 569-576.
WANG X W, XIE Y J, XUE S Q, et al. Comparison of microstructure and nutrient in muscles between diploid and triploid rainbow trout Oncorhynchus mykiss[J]. Fisheries Science, 2017, 36(5): 569-576 (in Chinese).
[23]
MATOS E, GONÇALVES A, BANDARRA N, et al. Plant proteins and vegetable oil do not have detrimental effects on post-mortem muscle instrumental texture, sensory properties and nutritional value of gilthead seabream[J]. Aquaculture, 2012, 358/359: 205-212. DOI:10.1016/j.aquaculture.2012.07.009
[24]
李本相, 卫育良, 梁萌青, 等. 水解鱼蛋白对大菱鲆生长、体组成及肌纤维组织形态结构的影响[J]. 渔业科学进展, 2019, 40(5): 155-165.
LI B X, WEI Y L, LIANG M Q, et al. The effects of fish protein hydrolysate on the growth, body composition and morphological structure of muscle fiber of turbot (Scophthalmus maximus L.)[J]. Progress in Fishery Sciences, 2019, 40(5): 155-165 (in Chinese).
[25]
王巍, 甘佳, 付茂忠, 等. 日粮能量和蛋白质水平对蜀宣花牛肉品质的影响[J]. 黑龙江畜牧兽医, 2020(7): 54-57.
WANG W, GAN J, FU M Z, et al. Effects of dietary energy and protein levels on the meat quality of Shuxuan cattle[J]. Heilongjiang Animal Science and Veterinary Medicine, 2020(7): 54-57 (in Chinese).
[26]
王丹, 唐金虎. 饲粮蛋白水平对肥育猪不同部位肌纤维发育增生的影响[J]. 饲料工业, 2008, 29(21): 16-19.
WANG D, TANG J H. Effect of diet protein level on muscle fiber hypertrophy of different part in the finishing pigs[J]. Feed Industry, 2008, 29(21): 16-19 (in Chinese). DOI:10.3969/j.issn.1001-991X.2008.21.005
[27]
程贵兰, 梁诲弈, AWUDZA A H, 等. 饲粮的不同蛋白质水平对12周龄麒麟鸡肌肉品质和肌肉营养成分的影响[J]. 饲料工业, 2019, 40(13): 29-33.
CHENG G L, LIANG H Y, AWUDZA A H, et al. Effects of dietary protein levels on muscle quality and nutritional composition of muscle of 12-week-old Frizzle chicken[J]. Feed Industry, 2019, 40(13): 29-33 (in Chinese).
[28]
SAAVEDRA M, PEREIRA T G, CANDEIAS-MENDES A, et al. Effect of increased dietary protein level in meagre (Argyrosomus regius) juvenile growth and muscle cellularity[J]. Aquaculture Nutrition, 2018, 24(3): 1153-1159. DOI:10.1111/anu.12654
[29]
尹丽卿, 苏琳, 靳烨. 肌纤维特性与鱼肉品质的关系及其调控技术的研究进展[J]. 食品工业, 2015, 36(2): 231-234.
YIN L Q, SU L, JIN Y. Relationship between fish muscle fiber characteristics and meat quality and its regulation technology[J]. The Food Industry, 2015, 36(2): 231-234 (in Chinese).
[30]
DE ALMEIDA F L A, CARVALHO R F, PINHAL D, et al. Differential expression of myogenic regulatory factor MyoD in pacu skeletal muscle (Piaractus mesopotamicus Holmberg 1887:Serrasalminae, Characidae, Teleostei) during juvenile and adult growth phases[J]. Micron, 2008, 39(8): 1306-1311. DOI:10.1016/j.micron.2008.02.011
[31]
ROWLERSON A, VEGGETTI A. 5-cellular mechanisms of post-embryonic muscle growth in aquaculture species[J]. Fish Physiology, 2001, 18: 103-140.
[32]
FERNANDEZ D A, CALVO J, FRANKLIN C E, et al. Muscle fibre types and size distribution in sub-antarctic notothenioid fishes[J]. Journal of Fish Biology, 2000, 56(6): 1295-1311. DOI:10.1111/j.1095-8649.2000.tb02144.x
[33]
ALAMI-DURANTE H, WRUTNIAK-CABELLO C, KAUSHIK S J, et al. Skeletal muscle cellularity and expression of myogenic regulatory factors and myosin heavy chains in rainbow trout (Oncorhynchus mykiss): effects of changes in dietary plant protein sources and amino acid profiles[J]. Comparative Biochemistry and Physiology.Part A: Molecular & Integrative Physiology, 2010, 156(4): 561-568.
[34]
JOHNSTON I A, LEE H T, MACQUEEN D J, et al. Embryonic temperature affects muscle fibre recruitment in adult zebrafish: genome-wide changes in gene and microRNA expression associated with the transition from hyperplastic to hypertrophic growth phenotypes[J]. The Journal of Experimental Biology, 2009, 212(Pt 12): 1781-1793.
[35]
AGUIAR A F, VECHETTI-JÚNIOR I J, ALVES DE SOUZA R W, et al. Myogenin, MyoD and IGF-Ⅰ regulate muscle mass but not fiber-type conversion during resistance training in rats[J]. International Journal of Sports Medicine, 2013, 34(4): 293-301.
[36]
AZIZI S, NEMATOLLAHI M A, MOJAZI AMIRI B, et al. IGF-Ⅰ and IGF-Ⅱ effects on local IGF system and signaling pathways in gilthead sea bream (Sparus aurata) cultured myocytes[J]. General and Comparative Endocrinology, 2016, 232: 7-16.
[37]
CODINA M, MONTSERRAT N, GARCÍA DE LA SERRANA D, et al. Role of insulin and IGFs in fish muscle development and quality[J]. Archives Animal Breeding, 2006, 49(Special Issue): 33-38.
[38]
FUENTES E N, BJÖRNSSON B T, VALDÉS J A, et al. IGF-Ⅰ/PI3K/Akt and IGF-I/MAPK/ERK pathways in vivo in skeletal muscle are regulated by nutrition and contribute to somatic growth in the fine flounder[J]. American Journal of Physiology.Regulatory, Integrative and Comparative Physiology, 2011, 300(6): R1532-R1542.
[39]
VÉLEZ E J, LUTFI E, JIMÉNEZ-AMILBURU V, et al. IGF-Ⅰ and amino acids effects through TOR signaling on proliferation and differentiation of gilthead sea bream cultured myocytes[J]. General and Comparative Endocrinology, 2014, 205: 296-304.
[40]
YANG S Y, LIU Z, YAN Z Z, et al. Improvement of skeletal muscle growth by GH/IGF growth-axis contributes to growth performance in commercial fleshy sturgeon[J]. Aquaculture, 2021, 543: 736929.
[41]
苗田田, 赵金良. 外源生长激素注射对尼罗罗非鱼GH-IGFs生长轴通路因子及MyoD基因表达的影响[J]. 水产科技情报, 2018, 45(4): 186-191.
MIAO T T, ZHAO J L. Effects of growth hormone injection on expression of the GH/IGF-axis growth-related genes and MyoD genes in Nile tilapia, Oreochromis niloticus[J]. Fisheries Science & Technology Information, 2018, 45(4): 186-191 (in Chinese).
[42]
STERLE J A, CANTLEY T C, LAMBERSON W R, et al. Effects of recombinant porcine somatotropin on placental size, fetal growth, and IGF-Ⅰ and IGF-Ⅱ concentrations in pigs[J]. Journal of Animal Science, 1995, 73(10): 2980-2985.
[43]
ALAMI-DURANTE H, MÉDALE F, CLUZEAUD M, et al. Skeletal muscle growth dynamics and expression of related genes in white and red muscles of rainbow trout fed diets with graded levels of a mixture of plant protein sources as substitutes for fishmeal[J]. Aquaculture, 2010, 303(1/2/3/4): 50-58.
[44]
ALAMI-DURANTE H, BAZIN D, CLUZEAUD M, et al. Effect of dietary methionine level on muscle growth mechanisms in juvenile rainbow trout (Oncorhynchus mykiss)[J]. Aquaculture, 2018, 483: 273-285.
[45]
VÉLEZ E J, LUTFI E, AZIZI S, et al. Understanding fish muscle growth regulation to optimize aquaculture production[J]. Aquaculture, 2017, 467: 28-40.
[46]
SAXTON R A, SABATINI D M. mTOR signaling in growth, metabolism, and disease[J]. Cell, 2017, 168(6): 960-976.
[47]
LI H D, TIAN X L, ZHAO K, et al. Effect of Clostridium butyricum in different forms on growth performance, disease resistance, expression of genes involved in immune responses and mTOR signaling pathway of Litopenaeus vannamai[J]. Fish & Shellfish Immunology, 2019, 87: 13-21.
[48]
TADASHI Y, PATRICE D. Mechanisms of IGF-1-mediated regulation of skeletal muscle hypertrophy and atrophy[J]. Cells, 2020, 9(9): 2-25.
[49]
张静静, 郑旭, 李玥, 等. 低蛋白质饲粮添加蛋白酶对肉仔鸡生长性能、肝脏生长基因及雷帕霉素靶蛋白信号通路基因表达的影响[J]. 动物营养学报, 2021, 33(9): 5332-5344.
ZHANG J J, ZHENG X, LI Y, et al. Effects of protease supplementation in low protein diet on growth performance, liver growth gene and target of rapamycin signaling pathway gene expression of broilers[J]. Chinese Journal of Animal Nutrition, 2021, 33(9): 5332-5344 (in Chinese).
[50]
LI Y H, LI F N, WU L, et al. Effects of dietary protein restriction on muscle fiber characteristics and mTORC1 pathway in the skeletal muscle of growing-finishing pigs[J]. Journal of Animal Science and Biotechnology, 2016, 7(1): 47.
[51]
BALMORI-CEDEÑO J, LIU J T, MISK E, et al. Autophagy-related genes in rainbow trout Oncorhynchus mykiss (Walbaum) gill epithelial cells and their role in nutrient restriction[J]. Journal of Fish Diseases, 2019, 42(4): 549-558.
[52]
SEILIEZ I, GUTIERREZ J, SALMERÓN C, et al. An in vivo and in vitro assessment of autophagy-related gene expression in muscle of rainbow trout (Oncorhynchus mykiss)[J]. Comparative Biochemistry and Physiology.Part B: Biochemistry and Molecular Biology, 2010, 157(3): 258-266.
[53]
潘红梅. 牦牛CAPN3基因克隆、多态性及胴体和肉质性状关联分析[D]. 硕士学位论文. 兰州: 甘肃农业大学, 2013.
PAN H M. Cloning and polymorphisms analysis of CAPN3 gene and their associations with carcass and meat quality traits in yak[D]. Master's Thesis. Lanzhou: Gansu Agricultural University, 2013. (in Chinese)
[54]
王耀梅, 田孟芳, 孙家乐, 等. 不同蛋白质水平精料对色瓦绵羊生产性能及生长速度、肉品质相关基因表达的影响[J]. 黑龙江畜牧兽医, 2021(16): 92-98.
WANG Y M, TIAN M F, FSUN J L, et al. Effects of different protein levels level concentrate on production performance, growth speed and meat quality related gene expression of Sewa sheep[J]. Heilongjiang Animal Science and Veterinary Medicine, 2021(16): 92-98 (in Chinese).
[55]
马丽娜, 王锦, 赵正伟, 等. 滩羊肌肉组织钙蛋白酶系统基因表达及其与嫩度的相关分析[J]. 上海畜牧兽医通讯, 2020(3): 2-4.
MA L N, WANG J, ZHAO Z W, et al. Gene expression of calprotease system in muscle tissue of Tan sheep and its correlation with tenderness[J]. Shanghai Journal of Animal Husbandry and Veterinary Medicine, 2020(3): 2-4 (in Chinese).
[56]
董慧琳, 聂红明, 梅昭荷, 等. 泛素蛋白酶体途径的应用研究进展[J]. 中国医药导报, 2019, 16(29): 25-30.
DONG H L, NIE H M, MEI Z H, et al. Research progress of the application of ubiquitin proteasome pathway[J]. China Medical Herald, 2019, 16(29): 25-30 (in Chinese).
[57]
BAPTISTA I L, SILVA W J, ARTIOLI G G, et al. Leucine and HMB differentially modulate proteasome system in skeletal muscle under different sarcopenic conditions[J]. PLoS One, 2013, 8(10): e76752.