动物营养学报    2022, Vol. 34 Issue (6): 3732-3742    PDF    
发酵稻草对安格斯牛生长性能、屠宰性能、血清生化指标及肉品质的影响
张转弟 , 张巧娥 , 王庆 , 李月 , 李云鹤     
宁夏大学农学院, 银川 750021
摘要: 本试验旨在研究发酵稻草对安格斯牛生长性能、屠宰性能、血清生化指标及肉品质的影响。选择体重[(561.23±7.09) kg]相近、体况良好、23月龄左右的安格斯阉牛30头, 随机分为3组, 每组10个重复, 每个重复1头。对照组饲粮中添加10.23%稻草, Ⅰ组饲粮中添加10.00%发酵稻草, Ⅱ组饲粮中添加20.00%发酵稻草, 3组饲粮营养水平基本一致。预试期15 d, 正试期165 d。结果表明; 1)Ⅰ组和Ⅱ组的平均日增重、平均采食量和终末腹围显著高于对照组(P<0.05), 料重比显著低于对照组(P<0.05)。与对照组相比, Ⅰ组和Ⅱ组的养殖效益分别提高了7.60%和14.94%。2)Ⅰ组和Ⅱ组的血清球蛋白和总蛋白含量显著高于对照组(P < 0.05)。3)各组之间屠宰性能指标差异不显著(P>0.05)。4)Ⅰ组和Ⅱ组的肌肉肉色黄度(b*)值和粗脂肪含量显著高于对照组(P<0.05), 肌肉剪切力显著低于对照组(P<0.05)。Ⅰ组和Ⅱ组的肌肉饱和脂肪酸(SFA)含量均低于对照组(P>0.05), 肌肉单不饱和脂肪酸(MUFA)和多不饱和脂肪酸(PUFA)含量均高于对照组(P>0.05), 肌肉必需氨基酸(EAA)、非必需氨基酸(NEAA)和总氨基酸(TAA)含量均高于对照组(P>0.05)。由此可见, 在本试验条件下, 发酵稻草可以提高安格斯牛生长性能和养殖效益, 改善肉品质, 且以添加量为20%为宜。
关键词: 发酵稻草    安格斯牛    生长性能    屠宰性能    肉品质    
Effects of Fermented Rice Straw on Growth Performance, Slaughter Performance, Serum Biochemical Indexes and Meat Quality of Angus Cattle
ZHANG Zhuandi , ZHANG Qiaoe , WANG Qing , LI Yue , LI Yunhe     
College of Agriculture, Ningxia University, Yinchuan 750021, China
Abstract: This experiment aimed to study the effects of fermented rice straw on growth performance, slaughter performance, serum biochemical indexes and meat quality of Angus cattle. Thirty about 23-month-old Angus steers with similar body weight [(561.23±7.09) kg] and good body condition were randomly divide into 3 groups with 10 replicates per group and 1 cattle per replicate. Cattle in the control group were fed a diet supplemented with 10.23% rice straw, and others in group Ⅰ and group Ⅱ were fed diets supplemented with 10% and 20% fermented rice straw, respectively, and the nutrient levels of the three groups are basically the same. The pre-feeding period was 15 days, and the normal feeding period was 165 days. The results showed as follows: 1) the average daily gain, average daily feed intake and final abdominal circumference of group Ⅰ and group Ⅱ were significantly higher than those of the control group (P < 0.05), and the feed to gain ratio was significantly lower than that of the control group (P < 0.05). Compared with the control group, the breeding benefits of group Ⅰ and group Ⅱ were increased by 7.60% and 14.94%, respectively. 2) The contents of globulin and total protein in serum of group Ⅰ and group Ⅱ were significantly higher than those of the control group (P < 0.05). 3) There were no significant differences in slaughter performance indexes among all groups (P < 0.05). 4) The meat color yellowness (b*) value and ether extract content in muscle of group Ⅰ and group Ⅱ were significantly higher than those of the control group (P < 0.05), and the muscle shear force was significantly lower than that of the control group (P < 0.05). The muscle saturated fatty acids (SFA) content of group Ⅰ and group Ⅱ was lower than that of the control group (P > 0.05), the contents of monounsaturated fatty acids (MUFA) and polyunsaturated fatty acids (PUFA) in muscle were higher than those of the control group (P > 0.05), and the contents of essential amino acids (EAA), nonessential amino acids (NEAA), and total amino acids (TAA) in muscle were higher than those of the control group (P > 0.05). In conclusion, under the condition of this experiment, fermented rice straw can improve the growth performance and breeding efficiency of Angus cattle, improve the meat quality, and the suitable addition amount is 20%.
Key words: fermented rice straw    Angus cattle    growth performance    slaughter performance    meat quality    

水稻作为全球50%以上人口最重要的粮食作物之一,全球种植面积达到1.15亿hm2,因此,稻草产量巨大,在世界各地广泛分布[1]。稻草在我国的年产量约为2.4亿t[2],提高稻草在生物燃料和畜牧生产中的应用将有助于应对能源危机和饲料短缺[3]。然而,由于稻草的木质纤维素含量高,且消化率低、适口性较差等,导致其饲用价值较低[4]。相比化学方法,微生物方法处理提高稻草质量更加环保安全[5]。微生物发酵饲料是指将植物性农副产品通过微生物的新陈代谢作用,形成一种营养丰富、适口性好的生物饲料[6]。大量研究表明,经过微生物发酵后,饲料中抗营养因子水平极显著下降[7],粗蛋白质含量显著增加,粗脂肪和粗纤维含量显著下降,饲料营养价值得到提升[8]。对于畜禽而言,微生物发酵饲料可提高动物的生长性能和免疫性能,改善肉品质。邱玉朗等[9]研究发现,饲喂秸秆与玉米浆混合微生物发酵饲料可显著提高肉羊平均日增重,显著降低料重比。仲伟光等[10]给育肥羊饲喂膨化玉米秸秆发酵饲料后,羊肉的剪切力显著降低,羊肉中亚油酸、亚麻酸和二十二碳六烯酸含量均显著提高。因此,本试验旨在研究发酵稻草对安格斯牛生长性能、屠宰性能、血清生化指标及肉品质的影响,为提高稻草的利用和发酵稻草的推广使用提供理论参考。

1 材料与方法 1.1 发酵稻草的制备

发酵所用活菌配比及发酵稻草的制备流程参考课题组成员谢建林等[11]的制备方法,制作成裹包发酵稻草,便于贮藏和饲喂。稻草和发酵稻草营养水平见表 1

表 1 稻草和发酵稻草营养水平(干物质基础) Table 1 Nutrient levels of rice straw and fermented rice straw (DM basis)  
1.2 试验设计及饲养管理

试验于2021年1—7月在宁夏犇旺生态农业有限公司进行。选择体重[(561.23±7.09) kg]相近、体况良好、23月龄左右的安格斯阉牛30头,采用完全随机分组设计的方法,随机分为3组,每组10个重复,每个重复1头,经方差分析3组间体重差异不显著(P>0.05)。对照组饲粮中添加10.23%稻草,Ⅰ组饲粮中添加10.00%发酵稻草,Ⅱ组饲粮中添加20.00%发酵稻草,3组饲粮营养水平基本一致。试验饲粮组成及营养水平见表 2。预试期15 d,正试期165 d。每天早(08:00)、晚(17:00)各饲喂1次,自由饮水。

表 2 试验饲粮组成及营养水平(干物质基础) Table 2 Composition and nutrient levels of experimental diets (DM basis) %
1.3 指标测定 1.3.1 生长性能

试验第1天和最后1天试验牛空腹12 h后称重,计算平均日增重; 记录每天的投料量及剩料量,计算平均日采食量和料重比。体尺指标的测量方法参考《牛生产学》[12],测定指标包括体高、体长、体斜长、胸围、胸围和管围。

1.3.2 血清生化指标

试验结束前1天早晨空腹使用真空采血管尾静脉处采血,静置2 h后于离心机中3 000 r/min离心20 min,分离血清后-20 ℃冰箱保存备用。血清总蛋白(TP)、白蛋白(ALB)、球蛋白(GLB)、低密度脂蛋白胆固醇(LDL-C)、高密度脂蛋白胆固醇(HDL-C)、甘油三酯(TG)、总胆固醇(TC)、葡萄糖(GLU)、尿素(UREA)含量和谷丙转氨酶(ALT)、谷草转氨酶(AST)、肌酸激酶(CK)、碱性磷酸酶(ALP)活性使用全自动血液生化仪(BS-180,深圳迈瑞生物医疗电子股份有限公司)测定,以上试剂盒均购自深圳迈瑞生物医疗电子股份有限公司。

1.3.3 屠宰性能

试验结束后第2天从每组随机挑选体重相近的试验牛各3头送往屠宰场,屠宰前禁食16~24 h,测定每头牛的宰前活重、胴体重、眼肌面积和背膘厚,计算屠宰率。

1.3.4 肉品质

屠宰时取背最长肌测定肉品质,测定指标常规肉品质、脂肪酸组成和氨基酸组成。常规肉品质测定参照刘婷等[13]方法,脂肪酸组成参照马秀花等[14]方法,氨基酸组成参照胡宇超等[15]方法。

1.4 数据统计分析

试验数据采用Excel 2019进行初步整理后,采用SAS 18.0进行单因素方差分析,并采用Duncan氏法进行多重比较。结果以“平均值±标准误”表示,P < 0.05表示差异显著。

2 结果 2.1 发酵稻草对安格斯牛生长性能的影响

表 3可以看出,Ⅰ组和Ⅱ组的平均日增重和平均采食量显著高于对照组(P<0.05),料重比显著低于对照组(P<0.05)。

表 3 发酵稻草对安格斯牛生长性能的影响 Table 3 Effects of fermented rice straw on growth performance of Angus cattle

表 4可以看出,Ⅱ组的养殖效益最高。与对照组相比,Ⅰ组和Ⅱ组的养殖效益分别提高了7.60%和14.94%。

表 4 发酵稻草对安格斯牛经济效益的影响 Table 4 Effects of fermented rice straw on economic benefits of Angus cattle

表 5可以看出,Ⅰ组和Ⅱ组的终末腹围显著高于对照组(P<0.05)。各组之间其他体尺指标差异不显著(P<0.05)。

表 5 发酵稻草对安格斯牛体尺指标的影响 Table 5 Effects of fermented rice straw on body size indexes of Angus cattle  
2.2 发酵稻草对安格斯牛血清生化指标的影响

表 6可以看出,Ⅰ组和Ⅱ组的血清球蛋白和总蛋白含量显著高于对照组(P < 0.05)。各组之间其他血清生化指标差异不显著(P>0.05)。

表 6 发酵稻草对安格斯牛血清生化指标的影响 Table 6 Effects of fermented rice straw on serum biochemical indexes of Angus cattle
2.3 发酵稻草对安格斯牛屠宰性能的影响

表 7可以看出,各组之间宰前活重、胴体重、屠宰率、背膘厚、眼肌面积差异不显著(P>0.05)。与对照组相比,Ⅰ组和Ⅱ组的屠宰率分别提高了2.33%和2.21%,背膘厚分别提高了3.13%和2.50%,眼肌面积分别提高了3.73%和2.04%。

表 7 发酵稻草对安格斯牛屠宰性能的影响 Table 7 Effects of fermented rice straw on slaughter performance of Angus cattle
2.4 发酵稻草对安格斯牛肉品质的影响

表 8可以看出,Ⅰ组和Ⅱ组的肌肉肉色黄度(b*)值显著高于对照组(P<0.05),肌肉粗脂肪含量显著高于对照组(P<0.05),肌肉剪切力显著低于对照组(P<0.05)。各组之间其他常规肉品质指标差异不显著(P>0.05)。与对照组相比,Ⅰ组和Ⅱ组的肌肉熟肉率分别提高了5.50%和8.23%。

表 8 发酵稻草对安格斯牛常规肉品质的影响 Table 8 Effects of fermented rice straw on conventional meat quality of Angus cattle

表 9可以看出,各组之间肌肉脂肪酸含量差异不显著(P>0.05)。Ⅰ组和Ⅱ组的肌肉饱和脂肪酸(SFA)含量均低于对照组,肌肉单不饱和脂肪酸(MUFA)和多不饱和脂肪酸(PUFA)含量均高于对照组。

表 9 发酵稻草对安格斯牛肌肉脂肪酸组成的影响 Table 9 Effects of fermented rice straw on muscle fatty acid composition of Angus cattle  

表 10可以看出,各组之间肌肉氨基酸含量差异不显著(P>0.05)。Ⅰ组和Ⅱ组的肌肉必需氨基酸(EAA)、非必需氨基酸(NEAA)和总氨基酸(TAA)含量均高于对照组。

表 10 发酵稻草对安格斯牛肌肉氨基酸组成的影响 Table 10 Effects of fermented rice straw on muscle amino acid composition of Angus cattle  
3 讨论 3.1 发酵稻草对安格斯牛生长性能的影响

对肉牛来说,反映生长性能的主要指标有平均日采食量、平均日增重和料重比等,提高生长性能和饲料转化率是增加经济效益的关键。本试验中,与对照组相比,Ⅰ组和Ⅱ组的平均日增重分别提高了6.84%和9.40%,平均日采食量分别提高了1.61%和2.15%,料重比分别降低了4.90%和6.67%,养殖效益分别提高了7.60%和14.94%。彭忠利等[16]利用乳酸菌、枯草芽孢杆菌和酵母菌等有益微生物发酵的玉米黄浆液、喷浆玉米纤维和酱糟等副产物饲喂山羊,提高了其平均日增重。邱玉朗等[9]研究发现,用秸秆玉米浆混合发酵饲料饲喂肉羊,其平均日增重提高了36%,料重比降低了28.68%,与本试验结果一致。体尺指标是体型外貌的量化指标,也是动物遗传育种中重要的表型性状,与一些重要经济性状有着密切关系[17]。本试验中,与对照组相比,Ⅰ组和Ⅱ组的终末腹围显著增加,其他体尺指标差异不显著,但均高于对照组。发酵稻草提高安格斯牛生长性能的原因可能是经微生物发酵降低了稻草中的粗纤维含量,改善了饲料的适口性,促进牛的采食,进而提高了生长性能。也有可能是采食的发酵稻草促进了参与发酵的乳酸杆菌和酿酒酵母等有益菌在瘤胃中定植和生长,抑制了有害菌的生长,改变了胃肠道的微生物种类、数量和发酵方式,加快了营养物质流通和降解[18]

3.2 发酵稻草对安格斯牛血清生化指标的影响

血液是机体与外界环境以及体内各组织之间物质交换的枢纽,是机体内环境的重要组成之一[19]。血清生化指标可作为畜禽繁殖和疾病预防的重要参考指标,球蛋白能够反映机体的抗病能力。本试验中,Ⅰ组和Ⅱ组的血清球蛋白和总蛋白含量显著高于对照组,说明机体的代谢活动增强[20]。余淼等[21]用发酵饲料(利用芽孢杆菌、乳酸菌和酵母菌发酵)饲喂肉牛,显著提高了血清总蛋白、白蛋白、免疫球蛋白G、免疫球蛋白A和免疫球蛋白M含量。俞文靓等[22]给荷斯坦奶犊牛饲喂玉米皮、豆粕和玉米等的混合发酵饲料,显著提高了血清球蛋白和总蛋白含量,提高了荷斯坦犊牛的免疫力和抗病能力。本试验结果与上述研究结果一致。

3.3 发酵稻草对安格斯牛屠宰性能的影响

动物的屠宰性能与胴体品质、产肉能力密切相关。背膘厚是反映脂肪沉积的重要指标,眼肌面积与产肉能力有关。本试验中,发酵稻草对安格斯牛的各项屠宰指标均无显著影响,但与对照组相比,Ⅰ组和Ⅱ组的背膘厚分别提高了3.13%和2.50%,眼肌面积分别提高了3.73%和2.04%,且Ⅰ组的宰前活重和屠宰率相对较高,可能与稻草发酵过程中产生的营养物质有关,这与王润寒[23]在肉牛的胴体重随着宰前活重的增加而增加的结论一致。

3.4 发酵稻草对安格斯牛肉品质的影响

肉色是衡量肉品质肉眼可见的指标,直接影响消费者的购买欲望。一般认为,肌肉的红度(a*)值越高,亮度(L*)和b*值越低,肉色越好[24]。本试验条件下,与对照相比组,各组之间肌肉肉色L*和a*值差异不显著,Ⅰ组和Ⅱ组的肌肉肉色b*值显著高于对照组,肌肉剪切力显著低于对照组。各组之间肌肉熟肉率、水分、粗蛋白质和粗灰分含量差异不显著,但与对照相比组,Ⅰ组和Ⅱ组的肌肉熟肉率分别提高了5.50%和8.23%。这与王莉梅等[25]在饲喂发酵土豆渣有降低小尾寒羊剪切力趋势及胡宇超等[15]在饲粮中添加100 mg/g发酵麸皮产物多糖有效降低羊肉剪切力的试验结果相似。剪切力是反映肌肉嫩度的重要指标,剪切力越低,肌肉越嫩,肉品质越好。而剪切力与肌内脂肪的含量密切相关。肖建中等[26]饲喂发酵桑叶降低了肌肉剪切力,朱凯等[27]给绵羊饲喂发酵尾菜降低了肌肉剪切力,与本试验结果一致。可能发酵稻草促进了有益微生物在瘤胃中的定植,提高了采食量,进而提高了营养物质的消化吸收,促进脂肪在肌肉中沉积,降低了剪切力。也有研究表明,发酵饲料中含有的多种有机酸可有效降低肠道pH,提高畜禽对维生素、色素以及微量元素的吸收,从而改善肉品质[28]

肌肉脂肪酸的组成与含量决定肉的风味[29],与肉的嫩度和多汁性等品质密切相关[30]。摄入过多SFA会提高人体血液中低密度脂蛋白(LDL)和高密度脂蛋白(HDL)含量,从而提高心血管疾病的发病几率[31]; 与SFA相反,PUFA能起到对心脑血管类疾病的预防和治疗效果,对人体健康具有重要作用[32]。游离氨基酸是肌肉中重要的滋味和香味前体物质,必需氨基酸对人体的生长发育及正常代谢起重要作用,缺乏任何一种必需氨基酸都会造成机体的代谢障碍[33]。耿春银[34]研究表明,饲粮添加活性干酵母有增加牛肉单个脂肪酸和总脂肪酸含量的趋势。本试验条件下,各组之间肌肉脂肪酸含量差异不显著,但Ⅰ组和Ⅱ组的肌肉SFA含量均低于对照组,肌肉MUFA和PUFA含量均高于对照组,改善了脂肪酸的组成。

世界卫生组织(WHO)/联合国粮农组织(FAO)理想蛋白质标准指出EAA/TAA、EAA/NEAA分别应为40%和60%[35],与本试验中EAA/TAA、EAA/NEAA接近。有研究表明,肉类中必需氨基酸含量及比例越接近于人体蛋白质组成,营养价值越高[36]。冯健等[37]研究表明,在延边黄牛育肥后期饲粮中添加以玉米粉和糖蜜等经酵母菌发酵饲料,提高了肌肉中油酸和谷氨酸含量,与本试验研究结果不一致,可能与发酵菌种及饲粮营养组成有关,也可能与牛的品种和性别有关。目前,有关发酵饲料对牛肉脂肪酸组成和氨基酸组成的影响研究相对较少,具体的作用机理有待进一步研究。

4 结论

在本试验条件下,发酵稻草可以提高安格斯牛生长性能和养殖效益,改善肉品质,但对屠宰性能的影响相对较小,且以添加量20%为宜。

参考文献
[1]
NIE S A, LEI X M, ZHAO L X, et al. Fungal communities and functions response to long-term fertilization in paddy soils[J]. Applied Soil Ecology, 2018, 130: 251-258. DOI:10.1016/j.apsoil.2018.06.008
[2]
王丽娟, 任嘉宇, 姜岩, 等. 浅谈逆铣式水稻秸秆深埋还田机的发展前景[J]. 现代化农业, 2019(1): 60-61.
WANG L J, REN J Y, JIANG Y, et al. Talking about the development prospect of the up-milling rice straw deep-buried returning machine[J]. Modernizing Agriculture, 2019(1): 60-61 (in Chinese).
[3]
ZHAO J, DONG Z H, LI J F, et al. Effects of lactic acid bacteria and molasses on fermentation dynamics, structural and nonstructural carbohydrate composition and in vitro ruminal fermentation of rice straw silage[J]. Asian-Australasian Journal of Animal Sciences, 2019, 32(6): 783-791. DOI:10.5713/ajas.18.0543
[4]
KOGO T, YOSHIDA Y, KOGANEI K, et al. Production of rice straw hydrolysis enzymes by the fungi Trichoderma reesei and Humicola insolens using rice straw as a carbon source[J]. Bioresource Technology, 2017, 233: 67-73. DOI:10.1016/j.biortech.2017.01.075
[5]
CHERDTHONG A, SUNTARA C, KHOTA W. Lactobacillus casei TH14 and additives could modulate the quality, gas kinetics and the in vitro digestibility of ensilaged rice straw[J]. Journal of Animal Physiology and Animal Nutrition, 2020, 104(6): 1690-1703. DOI:10.1111/jpn.13426
[6]
MISSOTTEN J A, MICHIELS J, DEGROOTE J, et al. Fermented liquid feed for pigs: an ancient technique for the future[J]. Journal of Animal Science and Biotechnology, 2015, 6(1): 4. DOI:10.1186/2049-1891-6-4
[7]
MUKHERJEE R, CHAKRABORTY R, DUTTA A. Role of fermentation in improving nutritional quality of soybean meal—a review[J]. Asian-Australasian Journal of Animal Sciences, 2016, 29(11): 1523-1529.
[8]
陈昭琪, 丁之恩, 蔡海莹, 等. 发酵菜籽粕对肉鸡生长性能、营养物质消化吸收及肉品质的影响[J]. 动物营养学报, 2017, 29(8): 2969-2976.
CHEN Z Q, DING Z E, CAI H Y, et al. Effect of fermented rapeseed meal on growth performance, nutrient digestion and absorption and meat quality of broilers[J]. Chinese Journal of Animal Nutrition, 2017, 29(8): 2969-2976 (in Chinese). DOI:10.3969/j.issn.1006-267x.2017.08.042
[9]
邱玉朗, 李林, 纪传来, 等. 秸秆玉米浆混合发酵对肉羊生长及血液指标的影响[J]. 饲料研究, 2019, 42(1): 12-14.
QIU Y L, LI L, JI C L, et al. Effects of mixed fermentation of straw and corn syrup on growth and blood indexes of meat sheep[J]. Feed Research, 2019, 42(1): 12-14 (in Chinese).
[10]
仲伟光, 王大广, 王玉婷, 等. 玉米秸秆膨化发酵饲料对育肥羊生产性能及肉品质的影响[J]. 家畜生态学报, 2019, 40(9): 82-85.
ZHONG W G, WANG D G, WANG Y T, et al. The effect of corn straw puffing fermentation feed on production performance and meat quality of fattening sheep[J]. Acta Ecologae Animalis Domastici, 2019, 40(9): 82-85 (in Chinese).
[11]
谢建林, 张巧娥, 张转弟, 等. 复合菌发酵稻草对安格斯牛生长性能、瘤胃发酵参数及菌群结构的影响[J]. 动物营养学报, 2021, 33(5): 2738-2751.
XIE J L, ZHANG Q E, ZHANG Z D, et al. Effects of compound bacteria fermented rice straw on growth performance, rumen fermentation parameters and microbial structure of Angus cattle[J]. Chinese Journal of Animal Nutrition, 2021, 33(5): 2738-2751 (in Chinese).
[12]
昝林森. 牛生产学[M]. 2版.北京: 中国农业出版社, 2007.
ZAN L S. Cattle production science[M]. 2nd ed.Beijing: China Agriculture Press, 2007 (in Chinese).
[13]
刘婷, 吴建平, 宫旭胤, 等. 牛至精油对甘肃高山细毛羊肉品质、脂肪酸组成及含量和抗氧化性能的影响[J]. 食品与发酵工业, 2020, 46(9): 164-170.
LIU T, WU J P, GONG X Y, et al. Effect of oregano essential oil on meat quality, fatty acid profiles and antioxidant capacity of Gansu alpine fine-wool sheep[J]. Food and Fermentation Industries, 2020, 46(9): 164-170 (in Chinese).
[14]
马秀花, 扈志强, 齐明江, 等. 多不饱和脂肪酸组合对滩羊肉品质、血清抗氧化指标及共轭亚油酸含量的影响[J]. 动物营养学报, 2022, 34(1): 457-466.
MA X H, HU Z Q, QI M J, et al. Effects of polyunsaturated fatty acid combination on meat quality, serum antioxidant indexes and conjugated linoleic acid content of Tan sheep[J]. Chinese Journal of Animal Nutrition, 2022, 34(1): 457-466 (in Chinese). DOI:10.3969/j.issn.1006-267x.2022.01.043
[15]
胡宇超, 王园, 孟子琪, 等. 发酵麸皮多糖对肉羊肉品质、肌肉氨基酸组成及肌肉抗氧化酶和肌纤维类型相关基因表达的影响[J]. 动物营养学报, 2020, 32(2): 932-940.
HU Y C, WANG Y, MENG Z Q, et al. Effects of fermented wheat bran polysaccharides on meat quality, muscle amino acid composition and expression of antioxidant enzymes and muscle fiber type-related genes in muscle of mutton sheep[J]. Chinese Journal of Animal Nutrition, 2020, 32(2): 932-940 (in Chinese). DOI:10.3969/j.issn.1006-267x.2020.02.049
[16]
彭忠利, 郭春华, 严锦秀, 等. 发酵饲料对育肥肉牛生产性能、养分消化率和肉质的影响[J]. 黑龙江畜牧兽医, 2013(23): 67-70.
PENG Z L, GUO C H, YAN J X, et al. Effects of fermented feed on productive performance and nutrient digestibility and meat quality in fattening beef cattle[J]. Heilongjiang Animal Science and Veterinary Medicine, 2013(23): 67-70 (in Chinese).
[17]
蔺宏凯, 张杨, 周振勇, 等. 新疆褐牛体尺性状指标与体重的主成分分析[J]. 中国畜牧兽医, 2010, 37(8): 130-133.
LIN H K, ZHANG Y, ZHOU Z Y, et al. The principal component analysis of Xinjiang brown cattle body measurement trait[J]. China Animal Husbandry & Veterinary Medicine, 2010, 37(8): 130-133 (in Chinese).
[18]
KREHBIEL C R, RUST S R, ZHANG G, et al. Bacterial direct-fed microbials in ruminant diets: performance response and mode of action[J]. Journal of Animal Science, 2003, 81(Suppl.2): E120-E132.
[19]
WANG J P, YOO J S, KIM H J, et al. Nutrient digestibility, blood profiles and fecal microbiota are influenced by chitooligosaccharide supplementation of growing pigs[J]. Livestock Science, 2009, 125(2/3): 298-303.
[20]
DHANALAKSHMI S, DEVI R S, SRIKUMAR R, et al. Protective effect of Triphala on cold stress-induced behavioral and biochemical abnormalities in rats[J]. Yakugaku Zasshi: Journal of the Pharmaceutical Society of Japan, 2007, 127(11): 1863-1867.
[21]
余淼, 严锦绣, 彭忠利, 等. 微生物发酵饲料对肉牛免疫机能的影响[J]. 中国畜牧兽医, 2013, 40(4): 114-117.
YU M, YAN J X, PENG Z L, et al. Effects of microbial fermented feed on immune function parameter of beef cattle[J]. China Animal Husbandry & Veterinary Medicine, 2013, 40(4): 114-117 (in Chinese).
[22]
俞文靓, 王超, 韦振喆, 等. 发酵饲料对荷斯坦奶公牛生长、消化及血清生化指标的影响[J]. 饲料研究, 2019, 42(8): 1-4.
YU W L, WANG C, WEI Z Z, et al. Effect of fermented feed on growth, digestion and serum biochemical indexes of Holstein milk bulls[J]. Feed Research, 2019, 42(8): 1-4 (in Chinese).
[23]
王润寒. 玉米或高粱DDGS对肉牛生长性能、血液指标及屠宰性能的影响[J]. 中国饲料, 2019(2): 58-62.
WANG R H. Effects of corn or sorghum dried distiller's grains solubles on growth performance, blood biochemistry indices and carcass traits of beef[J]. China Feed, 2019(2): 58-62 (in Chinese).
[24]
孙德文. 糖萜素对鸡肉品质的影响及其作用机理研究[D]. 硕士学位论文. 杭州: 浙江大学, 2003.
SUN D W. Effects of Saccharicterpenin on broilers meat quality and approach to its mechanism[D]. Master's Thesis. Hangzhou: Zhejiang University, 2003. (in Chinese)
[25]
王莉梅, 李长青, 郭天龙, 等. 土豆渣发酵饲料对小尾寒羊生长性能和肉品质的影响[J]. 饲料研究, 2019, 42(1): 8-11.
WANG L M, LI C Q, GUO T L, et al. Effect of the potato dregs fermentation feed on the growth performance and mutton quality of small tail Han sheep[J]. Feed Research, 2019, 42(1): 8-11 (in Chinese).
[26]
肖建中, 刘耕, 李一平, 等. 发酵桑叶对新晃黄牛生长性能、血液生化指标、屠宰性能和肉品质的影响[J]. 蚕业科学, 2019, 45(1): 116-121.
XIAO J Z, LIU G, LI Y P, et al. Effects of adding fermented mulberry leaf to diet on growth performance, blood biochemical indices, slaughtering performance and meat quality of Xinhuang yellow cattle[J]. Acta Sericologica Sinica, 2019, 45(1): 116-121 (in Chinese).
[27]
朱凯, 周瑞, 徐红伟, 等. 尾菜发酵饲料对绵羊生长性能、屠宰性能及肉品质的影响[J]. 现代畜牧兽医, 2021(12): 32-35.
ZHU K, ZHOU R, XU H W, et al. Effect of vegetable residue fermented feed on growth performance, slaughtering performance and meat quality of sheep[J]. Modern Journal of Animal Husbandry and Veterinary Medicine, 2021(12): 32-35 (in Chinese).
[28]
MANZANILLA E G, PEREZ J F, MARTIN M, et al. Effect of plant extracts and formic acid on the intestinal equilibrium of early-weaned pigs[J]. Journal of Animal Science, 2004, 82(11): 3210-3218.
[29]
LI L Y, ZHU Y K, WANG X Y, et al. Effects of different dietary energy and protein levels and sex on growth performance, carcass characteristics and meat quality of F1 Angus×Chinese Xiangxi yellow cattle[J]. Journal of Animal Science and Biotechnology, 2014, 5(1): 21.
[30]
WOOD J D, RICHARDSON R I, NUTE G R, et al. Effects of fatty acids on meat quality: a review[J]. Meat Science, 2004, 66(1): 21-32.
[31]
WARNANTS N, VAN OECKEL M J, BOUCQUÉ C V. Incorporation of dietary polyunsaturated fatty acids in pork tissues and its implications for the quality of the end products[J]. Meat Science, 1996, 44(1/2): 125-144.
[32]
ELMORE J S, MOTTRAM D S. The role of lipid in the flavour of cooked beef[J]. Developments in Food Science, 2006, 43: 375-378.
[33]
FAO/WHO. Protein quality evaluation in human diets: FAO food and nutrition paper 51 FAO Rome[R]. Rome: Food and Agriculture Organization, 1991.
[34]
耿春银. 活性酵母与酵母培养物饲喂育肥牛生长性能、胴体指标和牛肉品质的比较[D]. 博士学位论文. 北京: 中国农业大学, 2015.
GENG C Y. Comparison of live yeast (Saccharomyces cerevisiae) and yeast culture for growth performance, carcass traits and meat quality in finishing cattle[D]. Ph. D. Thesis. Beijing: China Agricultural University, 2015. (in Chinese)
[35]
王翠丽, 柏雪, 邱翔, 等. 乌骨鸡肉中氨基酸组成和肌苷酸含量的分析[J]. 西南民族大学学报(自然科学版), 2011, 37(1): 90-92.
WANG C L, BAI X, QIU X, et al. Amino acid composition and ionsine monophosphate contents in meat of black bone chicken[J]. Journal of Southwest University for Nationalities(Natural Science Edition), 2011, 37(1): 90-92 (in Chinese).
[36]
曹胜雄, 杨秀娟, 陈琛, 等. 两种云南地方鸡肌肉氨基酸和脂肪酸含量比较研究[J]. 中国畜牧兽医, 2017, 44(10): 2908-2915.
CAO S X, YANG X J, CHEN C, et al. Comparative analysis of amino acid and fatty acid content among two kinds of Yunnan local chickens[J]. China Animal Husbandry & Veterinary Medicine, 2017, 44(10): 2908-2915 (in Chinese).
[37]
冯健, 同仲彬, 金鑫, 等. 饲喂生物发酵饲料对延边黄牛屠宰性能及氨基酸、脂肪酸的影响[J]. 饲料工业, 2015, 36(17): 51-54.
FENG J, TONG Z B, JIN X, et al. Effect of adding biological fermentation feed on slaughtering performance, amino acid and fatty acid of Yanbian yellow steers[J]. Feed Industry, 2015, 36(17): 51-54 (in Chinese).