动物营养学报    2022, Vol. 34 Issue (6): 3768-3776    PDF    
放牧与舍饲对大通牦牛生长性能、瘤胃发酵参数、屠宰性能及肉品质的影响
姚喜喜1 , 王伟2 , 徐成体2 , 刘皓栋3 , 陈永珑4     
1. 青海大学农牧学院, 西宁 810016;
2. 青海大学畜牧兽医科学院, 西宁 810016;
3. 甘肃畜牧工程 职业技术学院, 武威 733006;
4. 青海东牧湾农牧科技开发有限公司, 海东 811600
摘要: 本试验旨在探讨冷季不同饲养方式——放牧与舍饲对大通牦牛生长性能、瘤胃发酵参数、屠宰性能及肉品质的影响, 以期为牦牛冷季育肥和规模化养殖提供理论依据。选取30头体重[(213.50±13.12) kg]相近、健康状况良好的2岁大通公牦牛, 随机分为放牧组与舍饲组, 每组15头。放牧组牦牛为传统放牧方式, 舍饲组牦牛为舍饲全混合日粮(TMR)。预试期15 d, 正试期190 d。试验结束后测定2组牦牛的生长性能、瘤胃发酵参数、屠宰性能及肉品质。结果显示: 1)饲养方式显著影响了牦牛的终末体重和平均日增重(P<0.05)。与放牧组相比, 舍饲组牦牛的终末体重和平均日增重分别增加了22.93%和63.46%(P<0.05)。2)饲养方式显著影响了牦牛的瘤胃发酵参数(P<0.05)。与放牧组相比, 舍饲组牦牛的瘤胃液pH和乙酸/丙酸分别降低了5.61%和24.09%(P<0.05), 瘤胃液氨态氮、乙酸、丙酸、异丁酸、丁酸、异戊酸和戊酸含量分别增加了54.07%、15.65%、13.85%、98.61%、32.35%、88.60%和68.12%(P<0.05)。3)饲养方式显著影响了牦牛的胴体性状(P<0.05)。与放牧组相比, 舍饲组牦牛的胴体重、屠宰率、净肉重、骨重、肉骨比和眼肌面积分别增加了59.11%、24.44%、68.32%、9.01%、54.11%和27.93%(P<0.05)。4)饲养方式显著影响了牦牛背最长肌的pH45 min、pH24 h、24 h亮度(L24 h*)值、45 min红度(a45 min*)值、24 h黄度(b24 h*)值、蒸煮损失和剪切力(P<0.05)。与放牧组相比, 舍饲组牦牛背最长肌的pH45 min、pH24 h、b24 h*值、蒸煮损失和剪切力分别降低了2.19%、4.46%、8.74%、10.98%和14.49%(P<0.05), 背最长肌的L24 h*值和a45 min*值分别增加了16.78%和5.05%(P<0.05)。综上所述, 与传统放牧相比, 冷季舍饲改善了大通牦牛的瘤胃发酵功能, 提高了平均日增重和屠宰性能, 并改善了背最长肌的色泽和食用品质, 降低了蒸煮损失。
关键词: 牦牛    饲养方式    生长性能    瘤胃发酵    屠宰性能    肉品质    
Effects of Grazing and Barn Feeding on Growth Performance, Rumen Fermentation Parameters, Slaughter Performance and Meat Quality of Datong Yaks (Bos grunniens)
YAO Xixi1 , WANG Wei2 , XU Chengti2 , LIU Haodong3 , CHEN Yonglong4     
1. College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China;
2. Academy of Animal Husbandry and Veterinary Sciences of Qinghai University, Xining 810016, China;
3. Gansu Polytechnic College of Animal Husbandry & Engineering, Wuwei 733006, China;
4. Qinghai Dongmuwan Agriculture and Animal Husbandry Technology Development Co., Ltd., Haidong 811600, China
Abstract: This experiment was conducted to investigate the effects of two kinds of feeding styles——grazing and barn feeding on growth performance, rumen fermentation parameters, slaughter performance and meat quality of Datong yaks under cold season, in order to provide theoretical basis for cold season fattening and large-scale breeding of yaks. Thirty 2-year-old Datong male yaks with similar body weight of (213.50±13.12) kg and good health were randomly divided into grazing group and barn feeding group with 15 yaks in each group. Yaks in the grazing group were only given traditional grazing, and yaks in the barn feeding group were fed total mixed ration (TMR) during the whole experiment. The pre-feeding period was 15 days, and the trial period was 190 days. After the experiment, the growth performance, rumen fermentation parameters, slaughter performance and meat quality of two groups of yaks were determined. The results showed as follows: 1) feeding style significantly affected the final body weight and average daily gain of yaks (P < 0.05). Compared with the grazing group, the final body weight and average daily gain of yaks in the barn feeding group were increased by 22.93% and 63.46% (P < 0.05), respectively. 2) Feeding style significantly affected the rumen fermentation parameters of yaks (P < 0.05). Compared with the grazing group, the rumen fluid pH and acetic acid/propionic acid in the barn feeding group were decreased by 5.61% and 24.09% (P < 0.05), respectively, and the contents of rumen fluid ammonia nitrogen, acetic acid, propionic acid, isobutyric acid, butyric acid, isovaleric acid and valeric acid were increased by 54.07%, 15.65%, 13.85%, 98.61%, 32.35%, 88.60% and 68.12% (P < 0.05), respectively. 3) Feeding style significantly affected the carcass traits of yaks (P < 0.05). Compared with the grazing group, the carcass weight, slaughter percentage, net meat weight, bone weight, meat to bone ratio and eye muscle area of yaks in the barn feeding group were increased by 59.11%, 24.44%, 68.32%, 9.01%, 54.11% and 27.93% (P < 0.05), respectively. 4) Feeding style significantly affected the pH45 min, pH24 h, 24 h brightness (L24 h*) value, 45 min redness (a45 min*) value, 24 h yellowness (b24 h*) value, cooking loss and shear force of longissimus dorsi for yaks (P < 0.05). Compared with the grazing group, the pH45 min, pH24 h, b24 h*, cooking loss and shear force of longissimus dorsi for yaks in the barn feeding group were decreased by 2.19%, 4.46%, 8.74%, 10.98% and 14.49% (P < 0.05), respectively, while the L24 h* value and a45 min* value of longissimus dorsi for yaks were increased by 16.78% and 5.05% (P < 0.05), respectively. In conclusion, compared with the traditional grazing, cold season barn feeding improves the rumen fermentation function, enhances the average daily gain and slaughter performance of Datong yaks, and improves the edible quality and color, and reduces the cooking loss of longissimus dorsi.
Key words: yaks    feeding style    growth performance    rumen fermentation    slaughter performance    meat quality    

牦牛(Bos grunniens)起源于青藏高原,对高寒缺氧的高原牧区有较强的适应能力,是青藏高原繁衍的珍稀牛种,也是高原牧民赖以生存的生产和生活资料[1]。长期以来,由于青藏高原严酷的生态环境,高原植物生长季较短,牧草资源相对匮乏,冬季牦牛常因牧草缺少得不到补充而出现“掉膘”现象[2]。据报道,冬季牦牛掉膘会达到25%~30%[3],冷季补饲已成为高原牧区常见的生产方式[4]。近些年,有关饲养方式和饲粮能量水平对牦牛生长性能、瘤胃发酵参数、瘤胃菌群和屠宰性能影响的研究已有诸多报道,冬春季节舍饲可以显著提高牦牛的生长性能,改善瘤胃发酵参数和血液生理生化指标,提高经济效益[5-12],但在肉品质方面的研究报道仍很缺少。牦牛肉中矿物质营养均衡丰富,且呈现低脂肪和高蛋白质等特点,近年来受到越来越多的消费者喜爱。据报道,增加饲粮营养水平可以显著提高奶公犊背最长肌熟肉率、多不饱和脂肪酸含量、亮度(L*)值,降低肌肉剪切力和蒸煮损失,改善肉品质[13]

鉴于饲养方式对牦牛肉品质方面的研究报道仍很缺少,本研究从青藏高原高寒牧区牦牛生产实际出发,系统研究放牧和舍饲2种饲养方式对青海大通牦牛生长性能、瘤胃发酵参数、屠宰性能及肉品质的影响,旨在提出适宜的冷季牦牛饲养方式,为缓解草场放牧压力、缩短养殖周期以及提升大通牦牛肉品加工品质、食用品质和口感提供理论依据。

1 材料与方法 1.1 试验设计

采用配对试验设计原则,选取30头体重[(213.50±13.12) kg]相近、健康状况良好的2岁大通公牦牛,随机分为放牧组和舍饲组,每组15头。放牧组牦牛在同一草场放牧,每天07:00—19:00进行放牧,放牧期间自由采食和自由饮水。放牧草场为多年中等强度放牧(3.5个羊单位/ha)的冬季牧场,每年枯草期10月将牦牛迁入,翌年5月下旬将牦牛迁出。放牧草场属于高寒草地类型,以矮蒿草、苔草及短柄草为优势种,草场海拔3 200~3 500 m,面积大小约为28 ha(420亩),年均降水量400~800 mm,主要集中在5—9月份。牧草生长期约为120 d,一般5月份开始返青,9月份开始枯黄,枯草期长达7~8个月。放牧草场地上生物量约为3 510 kg/hm2。舍饲组牦牛分3个独立圈舍,每个圈舍随机分配5头,每日分2次(08:00和17:00)饲喂全混合日粮(TMR),自由采食和饮水。TMR参考我国《肉牛饲养标准》[14](NY/T 815—2004),按体重200 kg、日增重1.0 kg进行配方设计(表 1),精粗比为4∶6。预试期15 d,正试期190 d。放牧组牦牛天然牧草营养水平、舍饲组牦牛TMR组成及营养水平见表 1

表 1 天然牧草营养水平、TMR组成及营养水平(风干基础) Table 1 Nutrient levels of natural grass, composition and nutritional level of the TMR (air-dry basis) 
1.2 饲养管理

试验开始前,首先对放牧组和舍饲组牦牛进行全面消毒,除对牛只进行常规体况检测外,并进行驱虫、免疫和耳标登记。对舍饲组牦牛牛舍进行全面消毒,试验过程中,每日做好试验牛只的采食、饮水、反刍行为和排便等的观察和记录工作。

1.3 样品采集与指标测定 1.3.1 生长性能、屠宰性能和肉品质

测定试验牦牛的初始体重和终末体重,根据测量数据计算平均日增重(ADG)。试验结束后屠宰所有牦牛(空腹24 h),测定胴体重、屠宰率、净肉重、骨重、肉骨比和眼肌面积[5]。选取第12~13根肋间背最长肌测定宰后45 min和24 h的pH以及L*值、红度(a*)值和黄度(b*)值,测定宰后24 h的蒸煮损失、失水率和剪切力[5]

1.3.2 瘤胃发酵参数

试验牛只屠宰后,每头牦牛采集瘤胃液75 mL,将混匀后的瘤胃液通过4层纱布过滤,立即采用pHSJ-3F仪测定pH[15];取其中20 mL分装到事先已通入过量CO2的5 mL冻存管中用于其他瘤胃发酵参数的测定,整个操作在30 min内完成。瘤胃液氨态氮含量参照Broderick等[15]提出的改进比色法进行测定,乙酸、丙酸、丁酸、异丁酸、戊酸、异戊酸含量采用安捷伦气相色谱仪(Agilent 7890A GC System,美国)测定。

1.4 统计分析

试验数据首先采用Excel 2013进行整理,然后采用SPSS 19.0软件对放牧组与舍饲组牦牛数据进行独立样本t检验,结果用平均值±标准差来表示,以P<0.05表示差异显著。

2 结果与分析 2.1 放牧与舍饲对牦牛生长性能的影响

表 2可知,饲养方式显著影响了牦牛的终末体重和平均日增重(P<0.05)。舍饲组牦牛的终末体重和平均日增重较放牧组牦牛分别增加了22.93%和63.46%(P<0.05)。

表 2 放牧与舍饲对牦牛生长性能的影响 Table 2 Effects of grazing and barn feeding on growth performance of yaks
2.2 放牧与舍饲对牦牛瘤胃发酵参数的影响

表 3可知,饲养方式显著影响了牦牛的瘤胃发酵参数(P<0.05)。舍饲组牦牛瘤胃液pH和乙酸/丙酸显著低于放牧组(P<0.05),而瘤胃液氨态氮、乙酸、丙酸、异丁酸、丁酸、异戊酸和戊酸含量则显著高于放牧组(P<0.05)。舍饲组牦牛瘤胃液pH和乙酸/丙酸较放牧组牦牛分别降低了5.61%和24.09%,而瘤胃液氨态氮、乙酸、丙酸、异丁酸、丁酸、异戊酸和戊酸含量则较放牧组牦牛分别增加了54.07%、15.65%、13.85%、98.61%、32.35%、88.60%和68.12%,说明冷季舍饲饲养方式促进了牦牛的瘤胃发酵。

表 3 放牧与舍饲对牦牛瘤胃发酵参数的影响 Table 3 Effects of grazing and barn feeding on rumen fermentation parameters of yaks
2.3 放牧与舍饲对牦牛屠宰性能的影响

表 4可知,饲养方式显著影响了牦牛的屠宰性能(P<0.05)。舍饲组牦牛的胴体重、屠宰率、净肉重、骨重、肉骨比和眼肌面积较放牧组牦牛分别增加了59.11%、24.44%、68.32%、9.01%、54.11%和27.93%(P<0.05)。

表 4 放牧与舍饲对牦牛屠宰性能的影响 Table 4 Effects of grazing and barn feeding on slaughter performance of yaks
2.4 放牧与舍饲对牦牛肉品质的影响

表 5可知,饲养方式对牦牛背最长肌的L45 min*值、a24 h*值、b45 min*值和失水率没有显著影响(P>0.05),但显著影响了牦牛背最长肌的pH45 min、pH24 h、L24 h*值、a45 min*值、b24 h*值、蒸煮损失和剪切力(P<0.05)。舍饲组牦牛背最长肌的pH45 min、pH24 h、b24 h*值、蒸煮损失和剪切力较放牧组牦牛分别降低了2.19%、4.46%、8.74%、10.98%和14.49%(P<0.05),背最长肌的L24 h*值和a45 min*值较舍饲组牦牛分别增加了16.78%和5.05%(P<0.05)。

表 5 放牧与舍饲对牦牛肉品质的影响 Table 5 Effects of grazing and barn feeding on meat quality of yaks
3 讨论 3.1 放牧与舍饲对牦牛生长性能的影响

动物机体的生长发育其实是营养物质在体内消化、吸收、转运和沉积的过程,机体发育易受所采食饲粮营养水平的影响,合理的饲粮营养水平对动物机体发育至关重要。基于饲粮蛋白质、能量水平和冷季补饲对不同生长发育年龄(犊牦牛、阉牦牛、育肥公牦牛和基础母牦牛)和不同品种牦牛(阿什旦牦牛、麦洼牦牛和青海牦牛)生产性能和日增重影响的研究报道很多[5, 7-8, 11, 16-17],但有关冷季饲养方式转变对放牧大通牦牛生长性能影响的研究较少。牦牛生活在极其特殊的高原环境中,每年通常有长达8个月的枯草期。传统放牧的饲养方式显著降低了牦牛的生长性能,导致牦牛的养殖效益明显下降。同时,由于近年来高原牲畜养殖数量的大幅增加,导致了过度放牧和草地退化,使得可供牦牛冷季采食的牧草数量和品质严重下降,冷季牦牛的营养需求得不到保证[2]。陈科宇[7]以3岁麦洼牦牛公牛为研究对象,发现冷季舍饲育肥较纯放牧育肥显著提高了麦洼牦牛的终末体重和平均日增重。王书祥等[8]研究表明,冷季补饲精料可以显著提高青海放牧牦牛的生长性能。戴东文等[16]和李万栋等[17]研究发现,饲粮营养水平的改善显著提高了育肥公牦牛和基础母牦牛的生长性能。Li等[18]研究表明,品种对安格斯和中国湘西黄牛的生长性能有显著影响。本研究结果一致与上述研究结果一致,放牧组大通牦牛的终末体重和平均日增重较放牧组牦牛分别提高了70.34和0.33 kg,说明饲养方式由放牧转变到舍饲可以显著提高大通牦牛的生长性能,发挥了大通牦牛优良性状的遗传潜力。同时,牦牛生长性能的提高水平可能与牦牛品种有关,为此还需进行深层次研究。

3.2 放牧与舍饲对牦牛瘤胃发酵参数的影响

瘤胃液pH是体现反刍动物瘤胃发酵水平的重要指标,瘤胃液pH的稳定能够保证瘤胃微生物的健康活动,正常瘤胃液pH维持在6~7的适宜范围内[19-20]。本研究中放牧组大通牦牛瘤胃液pH显著高于舍饲组牦牛,可能的原因是舍饲组牦牛饲粮拥有较高的能量水平,而放牧组牦牛采食的冷季牧草中中性洗涤纤维的含量较高,导致瘤胃发酵方式主要以丙酸型发酵为主[20]

瘤胃液中的氨态氮是微生物合成蛋白质的主要氮源,研究表明微生物合成的40%~68%的蛋白质的氮源为氨态氮,适宜微生物生长达到最高效率的瘤胃液氨态氮含量范围较广,通常在5~25 mg/dL[21-22]。本研究中,舍饲组牦牛瘤胃液NH3-N含量显著高于放牧组牦牛,这是由于舍饲组牦牛饲粮中含有较多的蛋白质,促进了瘤胃中可溶性蛋白质、易消化碳水化合物和非蛋白氮含氮物的发酵,有利于瘤胃内微生物蛋白(MCP)的合成和瘤胃氮素的利用,这与Satter等[21]和Preston等[22]的研究结果一致。

挥发性脂肪酸是由瘤胃微生物发酵分解饲粮碳水化合物产生的,能够为反刍动物生产提供70%~80%的能量[23]。本研究中,放牧组牦牛瘤胃液乙酸、丙酸、异丁酸、丁酸、异戊酸和戊酸含量显著低于舍饲组牦牛,可能与前者在冷季放牧条件下的干物质采食量较低有关,较低的干物质采食量限制了瘤胃微生物发酵底物的供应量,由此造成了瘤胃液挥发性脂肪酸含量的降低。研究表明,随饲粮能量水平的升高,牦牛瘤胃液乙酸、丙酸、异丁酸、丁酸、异戊酸和戊酸含量会有所提高[24],与本研究结果一致。这是因为放牧组牦牛采食的牧草中中性洗涤纤维和酸性洗涤纤维的含量较高,即非可溶性碳水化合物的含量较高,瘤胃发酵产生的乙酸较多;舍饲组牦牛TMR中的能量饲料主要为玉米,玉米中含有较多的淀粉,淀粉属于易消化的可溶性碳水化合物,此时瘤胃发酵产生的丙酸也相应增加。丙酸作为糖异生的主要来源,约有27%的葡萄糖源自丙酸合成,瘤胃液中丙酸含量高意味着反刍动物可以得到更多的能量用于生长,表现为舍饲组牦牛的终末体重和平均日增重较放牧组牦牛分别增加了22.93%和63.46%,因此舍饲组牦牛拥有更好的育肥效果。

3.3 放牧与舍饲对牦牛屠宰性能的影响

研究表明,饲粮蛋白质、能量水平和冷季补饲会显著影响育肥牦牛宰前活重、胴体重、净肉重和眼肌面积[7-8, 10, 16-17]。本研究中,舍饲组大通牦牛宰前活重、胴体重、屠宰率和眼肌面积显著高于放牧组牦牛,这与陈科宇[7]对冷季3岁麦洼牦牛公牛的研究结果一致。此外,郭亮等[25]研究显示,高营养水平组荷斯坦奶牛屠宰性能显著高于低营养水平组;田生花等[26]报道,高能精料组肉牛的屠宰率、胴体重以及净肉率显著高于低能精料组;王星凌等[27]研究得出,高精料饲粮组肉牛的屠宰性能显著高于低精料饲粮组。放牧组大通牦牛由于营养缺乏导致机体获得的能量较少,除了满足自身维持需要外,能够用于生长的能量相对较少。然而,舍饲组大通牦牛通过采食TMR获取了更多的能量,除了满足自身维持的能量需要外,较放牧组牦牛有更多的能量被用于生产,所以能量水平的提高有助于改善大通牦牛的生长性能,增加胴体重、净肉重和眼肌面积,从而提高屠宰性能。

3.4 放牧与舍饲对牦牛肉品质的影响

肉制品在人类的膳食结构中拥有极其重要的作用,是人体所需优质蛋白质的主要供体。消费者对肉品质需求的本质,就是要满足人体新陈代谢所需的各种营养需求。消费者对肉品的评价一方面来自购买时的感官评定,另一方面取决于食用品质。pH代表了宰后动物机体糖原降解速率,能够较好地反映肉品品质,肉品pH较高不利于肉品的储藏保鲜,pH较低则会引起异常肉的出现[28]。肉品pH不仅直接影响了肉的口感、嫩度、蒸煮损失和货架时间,还与肉品的失水率、剪切力和肉色紧密相关[29]。本研究中,舍饲组大通牦牛背最长肌的pH45 min、pH24 h显著高于放牧组牦牛,说明舍饲显著改善了大通牦牛背最长肌的营养水平,背最长肌中的糖原降解为乳酸,降低了pH,该结果与吴晓云等[5]和陈科宇[7]的研究结果一致。

肉色是反映肌肉色、香、味、质几大要素的最直观指标,肉色深浅和色度主要受肌肉色素含量的影响,是消费者对肉品感官评定的最直接反映[29]。a*值是反映肌肉中血红蛋白含量的指标,与肉色呈显著正相关关系;b*值是反映肌肉鲜度的指标,通常肉越新鲜b*值越低;L*值反映了肉色的白度,通常L*值越低肉色越好[30]。本研究中,舍饲组大通牦牛背最长肌的a*值和L*值均高于放牧组大通牦牛,说明舍饲组大通牦牛背最长肌的色泽优于放牧组大通牦牛,可能是舍饲组牦牛饲粮营养水平较高造成的,这与李春芳[11]、郭亮等[25]和Ekiz等[30]的研究结果一致。

蒸煮损失、失水率和剪切力是评价肉品质的重要指标,是肉品保水性能的客观反映,代表了消费者对肉品食用品质的满意程度。蒸煮损失和失水率越小,说明肉品的保水性能越好。研究表明,肌肉剪切力大小与肌肉中肌内脂肪含量密切相关,剪切力越大,说明肌肉嫩度越低[31]。本研究中,放牧组大通牦牛背最长肌的蒸煮损失和剪切力显著高于舍饲组大通牦牛,说明舍饲组大通牦牛肉品加工损失显著小于放牧组大通牦牛,肌肉嫩度显著高于放牧组大通牦牛,口感更好。饲养方式的转变对肉品的加工特性构成了显著影响,进一步说明舍饲饲养方式有利于改善大通牦牛肉的加工品质、嫩度和口感,这与吴晓云等[5]和刘奕轩等[32]的研究结果一致。

4 结论

与传统放牧相比,冷季舍饲提高了大通牦牛瘤胃液中氨态氮的含量,促进了挥发性脂肪酸的合成,改善了瘤胃发酵功能,进而提高了大通牦牛的生长性能;同时,舍饲还提高了大通牦牛宰前活重、胴体重、净肉重和眼肌面积,提升了大通牦牛肉品的加工品质、食用品质和口感。

参考文献
[1]
贾功雪, 丁路明, 徐尚荣, 等. 青藏高原牦牛遗传资源保护和利用: 问题与展望[J]. 生态学报, 2020, 40(18): 6314-6323.
JIA G X, DING L M, XU S R, et al. Conservation and utilization of yak genetic resources in Qinghai-Tibet Plateau: problems and perspectives[J]. Acta Ecologica Sinica, 2020, 40(18): 6314-6323 (in Chinese).
[2]
LONG R J, DING L M, SHANG Z H, et al. The yak grazing system on the Qinghai-Tibetan Plateau and its status[J]. The Rangeland Journal, 2008, 30(2): 241-246. DOI:10.1071/RJ08012
[3]
ZOBELL D R, GOONEWARDENE L A, OLSON K C, et al. Effects of feeding wheat middlings on production, digestibility, ruminal fermentation and carcass characteristics in beef cattle[J]. Canadian Journal of Animal Science, 2003, 83(3): 551-557. DOI:10.4141/A02-086
[4]
MIAO F H, GUO Z G, XUE R, et al. Effects of grazing and precipitation on herbage biomass, herbage nutritive value, and yak performance in an alpine meadow on the Qinghai-Tibetan Plateau[J]. PLoS One, 2015, 10(6): e0127275. DOI:10.1371/journal.pone.0127275
[5]
吴晓云, 梁春年, 姚喜喜, 等. 舍饲育肥对阿什旦牦牛胴体性状和肉品质的影响[J]. 中国草食动物科学, 2020, 40(4): 36-39.
WU X Y, LIANG C N, YAO X X, et al. Effects of house fattening on carcass traits and meat quality of Ashidan yak[J]. China Herbivore Science, 2020, 40(4): 36-39 (in Chinese). DOI:10.3969/j.issn.2095-3887.2020.04.008
[6]
PENG Q H, KHAN N A, XUE B, et al. Effect of different levels of protein concentrates supplementation on the growth performance, plasma amino acids profile and mTOR cascade genes expression in early-weaned yak calves[J]. Asian-Australasian Journal of Animal Sciences, 2018, 31(2): 218-224. DOI:10.5713/ajas.16.0999
[7]
陈科宇. 麦洼牦牛冷季舍饲育肥经济效益分析[D]. 硕士学位论文. 雅安: 四川农业大学, 2018.
CHEN K Y. Economic benefit analysis of Maiwa yak fattening in cold season[D]. Master's Thesis. Ya'an: Sichuan Agricultural University, 2018. (in Chinese)
[8]
王书祥, 戴东文, 杨英魁, 等. 补饲精料对冷季放牧牦牛生长性能、瘤胃发酵及菌群结构的影响[J]. 动物营养学报, 2021, 33(11): 6266-6276.
WANG S X, DAI D W, YANG Y K, et al. Effects of concentrate supplementation on growth performance, rumen fermentation and microbial community structure of grazing yaks in cold season[J]. Chinese Journal of Animal Nutrition, 2021, 33(11): 6266-6276 (in Chinese). DOI:10.3969/j.issn.1006-267x.2021.11.027
[9]
牛化欣, 胡宗福, 张适, 等. 饲粮能量水平和养殖环境温湿指数对育肥肉牛生长性能、营养物质表观消化率和血清生化指标的影响[J]. 动物营养学报, 2020, 32(7): 3190-3198.
NIU H X, HU Z F, ZHANG S, et al. Effects of dietary energy level and ambient temperature humidity index on growth performance, nutrient apparent digestibility and serum biochemical indices of fattening beef cattle[J]. Chinese Journal of Animal Nutrition, 2020, 32(7): 3190-3198 (in Chinese).
[10]
李亚茹, 郝力壮, 刘书杰, 等. 冷季不同能量水平对生长期舍饲牦牛生长性能及血液生化指标的影响[J]. 黑龙江畜牧兽医, 2015(21): 222-225.
LI Y R, HAO L Z, LIU S J, et al. Effects of the diets with different energy levels on growth performance and blood biochemical parameters of barn-feeding yaks in growing period in the cold season[J]. Heilongjiang Animal Science and Veterinary Medicine, 2015(21): 222-225 (in Chinese).
[11]
孙国平. 两种育肥方式下绒山羊瘤胃发酵及几种瘤胃微生物数量的比较研究[D]. 硕士学位论文. 呼和浩特: 内蒙古农业大学, 2013.
SUN G P. Comparative study of two fattening ways on rumen fermentation and the number of several rumen microorganisms of cashmere goats[D]. Master's Thesis. Hohhot: Inner Mongolia Agricultural University, 2013. (in Chinese)
[12]
韩旭峰. 日龄、日粮精粗比对陕北白绒山羊瘤胃微生物区系影响的研究[D]. 博士学位论文. 杨凌: 西北农林科技大学, 2015.
HAN X F. Effects of age and dietary forage-to-concentrate ratios on rumen microbial flora of the Shaanbei white-cashmere goat[D]. Ph. D. Thesis. Yangling: Northwest A & F University, 2015. (in Chinese)
[13]
李春芳. 不同日粮营养水平对荷斯坦淘汰奶牛、奶公牛生长性能及肉品质的影响[D]. 硕士学位论文. 保定: 河北农业大学, 2013.
LI C F. Influence on growth performance and beef quality of Holstein culling cows and dairy bull fed different nutrition levels in diet[D]. Master's Thesis. Baoding: Hebei Agricultural University, 2013. (in Chinese)
[14]
中华人民共和国农业部. 肉牛饲养标准: NY/T 815—2004[S]. 北京: 中国农业出版社, 2004.
Ministry of Agriculture of the PRC. Feeding standard of beef cattle: NY/T 815—2004[S]. Beijing: China Agriculture Press, 2004. (in Chinese)
[15]
BRODERICK G A, KANG J H. Automated simultaneous determination of ammonia and total amino acids in ruminal fluid and in vitro media[J]. Journal of Dairy Science, 1980, 63(1): 64-75. DOI:10.3168/jds.S0022-0302(80)82888-8
[16]
戴东文, 王书祥, 周振明, 等. 不同精粗比饲粮对育肥前期牦牛生长性能、血清生化指标及瘤胃发酵参数的影响[J]. 动物营养学报, 2021, 33(3): 1555-1564.
DAI D W, WANG S X, ZHOU Z M, et al. Effects of diets with different concentrate-roughage ratios on growth performance, serum biochemical indexes and rumen fermentation parameters of yak in early stage of fattening[J]. Chinese Journal of Animal Nutrition, 2021, 33(3): 1555-1564 (in Chinese). DOI:10.3969/j.issn.1006-267x.2021.03.037
[17]
李万栋, 郝力壮, 刘书杰, 等. 不同营养水平对生长期舍饲牦牛生长性能和营养物质表观消化率的影响[J]. 饲料工业, 2015, 36(17): 42-46.
LI W D, HAO L Z, LIU S J, et al. Effect of different nutrient diets on production performance and apparent digestibility of nutrients in three years old yaks by barn-feeding[J]. Feed Industry, 2015, 36(17): 42-46 (in Chinese).
[18]
LI L Y, ZHU Y K, WANG X Y, et al. Effects of different dietary energy and protein levels and sex on growth performance, carcass characteristics and meat quality of F1 Angus×Chinese Xiangxi yellow cattle[J]. Journal of Animal Science and Biotechnology, 2014, 5(1): 21. DOI:10.1186/2049-1891-5-21
[19]
张振宇, 梁春年, 姚喜喜, 等. 饲养方式和饲粮能量水平对牦牛生长性能、瘤胃发酵参数和瘤胃菌群的影响[J]. 动物营养学报, 2021, 33(6): 3343-3355.
ZHANG Z Y, LIANG C N, YAO X X, et al. Effects of feeding model and dietary energy level on growth performance, rumen fermentation parameters and rumen bacterial community of yaks[J]. Chinese Journal of Animal Nutrition, 2021, 33(6): 3343-3355 (in Chinese).
[20]
王鸿泽. 日粮能量水平对舍饲育肥牦牛生产性能、瘤胃发酵及肌内脂肪代谢的影响[D]. 硕士学位论文. 雅安: 四川农业大学, 2015.
WANG H Z. Effects of dietary energy concentration on performance, rumen fermentation and intramuscular fat metabolism in yaks fed indoors[D]. Master's Thesis. Ya'an: Sichuan Agricultural University, 2015. (in Chinese)
[21]
SATTER L D, SLYTER L L. Effect of ammonia concentration of rumen microbial protein production in vitro[J]. The British Journal of Nutrition, 1974, 32(2): 199-208. DOI:10.1079/BJN19740073
[22]
PRESTON R L, SCHNAKENBERG D D, PFANDER W H. Protein utilization in ruminants.Ⅰ.Blood urea nitrogen as affected by protein intake[J]. The Journal of Nutrition, 1965, 86(3): 281-288. DOI:10.1093/jn/86.3.281
[23]
VAN HOUTERT M F J. The production and metabolism of volatile fatty acids by ruminants fed roughages: a review[J]. Animal Feed Science and Technology, 1993, 43(3/4): 189-225.
[24]
LI L Y, HE Y, AZIZ-UR-RAHMAN M, et al. Effects of different dietary energy and rumen-degradable protein levels on rumen fermentation, nutrients apparent digestibility and blood biochemical constituents of Chinese crossbred yellow bulls[J]. Pakistan Veterinary Journal, 2014, 34(3): 367-371.
[25]
郭亮, 王治华, 蔡治华, 等. 营养水平对荷斯坦肥育牛胴体品质及肉品质量的影响[J]. 中国兽医学报, 2008, 28(10): 1225-1228, 1238.
GUO L, WANG Z H, CAI Z H, et al. Effect of nutrition levels on carcass quality and meat quality in finishing Holstein steers[J]. Chinese Journal of Veterinary Science, 2008, 28(10): 1225-1228, 1238 (in Chinese).
[26]
田生花, 何成伟, 夏玉芬, 等. 不同能量水平日粮对肉牛产肉性能和肌内脂肪含量的影响[J]. 畜牧与兽医, 2010, 42(7): 43-45.
TIAN S H, HE C W, XIA Y F, et al. Effects of different energy levels on meat performance and intramuscular fat content of beef cattle[J]. Animal Husbandry & Veterinary Medicine, 2010, 42(7): 43-45 (in Chinese).
[27]
王星凌, 游伟, 赵洪波, 等. 提高精补料能量浓度对杂交肉牛育肥性能和效益的影响[J]. 西南农业学报, 2017, 30(7): 1656-1661.
WANG X L, YOU W, ZHAO H B, et al. Effects of increasing dietary energy concentration on performance and economic benefits of finishing Simmental crossbred beef cattle[J]. Southwest China Journal of Agricultural Sciences, 2017, 30(7): 1656-1661 (in Chinese).
[28]
万红玲, 雒林通, 吴建平. 牦牛肉品质特性研究进展[J]. 畜牧兽医杂志, 2012, 31(1): 36-40.
WAN H L, LUO L T, WU J P. Research advances in yak meat quality characteristics[J]. Journal of Animal Science and Veterinary Medicine, 2012, 31(1): 36-40 (in Chinese).
[29]
万发春, 张幸开, 张丽萍, 等. 牛肉品质评定的主要指标[J]. 中国畜牧兽医, 2004, 31(12): 17-19.
WAN F C, ZHANG X K, ZHANG L P, et al. The main indexes of beef quality evaluation and measurement[J]. China Animal Husbandry & Veterinary Medicine, 2004, 31(12): 17-19 (in Chinese). DOI:10.3969/j.issn.1671-7236.2004.12.007
[30]
EKIZ B, YILMAZ A, OZCAN M, et al. Effect of production system on carcass measurements and meat quality of Kivircik lambs[J]. Meat Science, 2012, 90(2): 465-471. DOI:10.1016/j.meatsci.2011.09.008
[31]
CHO S, KANG G, SEONG P N, et al. Effect of slaughter age on the antioxidant enzyme activity, color, and oxidative stability of Korean Hanwoo (Bos taurus coreanae) cow beef[J]. Meat Science, 2015, 108: 44-49. DOI:10.1016/j.meatsci.2015.05.018
[32]
刘奕轩, 熊琳, 梁春年, 等. 冷季不同饲养模式对牦牛肉品质的影响[J]. 畜牧兽医学报, 2021, 52(6): 1640-1651.
LIU Y X, XIONG L, LIANG C N, et al. Effects of different feeding systems on meat quality of yak in cold season[J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(6): 1640-1651 (in Chinese).