动物营养学报    2022, Vol. 34 Issue (6): 3962-3971    PDF    
酵母培养物促进干细胞增殖分化、改善小鼠肠上皮完整性
张得香 , 朱超 , 周加义 , 王修启     
华南农业大学动物科学学院, 广东省动物营养调控重点实验室, 国家生猪种业工程技术研究中心, 广州 510642
摘要: 本研究旨在探讨酵母培养物(YC)对小鼠肠道干细胞驱动隐窝绒毛轴更新的影响。试验选取6周龄体重[(19.85±1.45) g]相近的健康C57BL/6雄性小鼠36只, 随机分为3组, 每组12个重复, 每个重复1只。对照组饲喂基础饲粮, 0.5%和1.0% YC组分别在基础饲粮中添加0.5%和1.0% YC。试验期10 d。结果显示: 1)与对照组相比, 0.5% YC组小鼠平均日采食量(ADFI)极显著增加(P < 0.01), 1.0% YC组小鼠平均日增重(ADG)极显著增加(P < 0.01), 1.0% YC组小鼠料重比(F/G)显著降低(P < 0.05)。2)与对照组相比, 1.0% YC组小鼠十二指肠和空肠单位长度重量显著增加(P < 0.05)。3)与对照组相比, 0.5%和1.0% YC组小鼠空肠总超氧化物岐化酶(T-SOD)和谷胱甘肽过氧化物酶(GSH-Px)活性显著或极显著增加(P < 0.05或P < 0.01), 1.0% YC组小鼠空肠丙二醛(MDA)含量显著降低(P < 0.05)。4)与对照组相比, 0.5%和1.0% YC组小鼠空肠绒毛高度(VH)和绒毛高度/隐窝深度(VH/CD)显著增加(P < 0.05)。5)与对照组相比, 0.5%和1.0% YC组小鼠空肠带状闭合蛋白-1(ZO-1)和闭合蛋白(Occludin)荧光信号强度极显著增加(P < 0.01), 0.5%和1.0% YC组小鼠空肠ZO-1和Occludin相对表达量极显著上调(P < 0.01)。6)与对照组相比, 0.5%和1.0% YC组小鼠空肠增殖细胞核抗原(PCNA)荧光信号强度极显著增加(P < 0.01), 而小鼠空肠裂解半胱天冬酶-3(cleaved caspase-3)荧光信号强度极显著降低(P < 0.01)。7)与对照组相比, 0.5%和1.0% YC组小鼠空肠角蛋白20(KRT20)、绒毛蛋白(Villin)、嗜铬粒蛋白A(CGA)荧光信号强度和溶菌酶(LYZ)阳性细胞数量显著或极显著增加(P < 0.05或P < 0.01)。由此可见, 饲粮中添加YC能促进肠道干细胞增殖和分化, 抑制细胞凋亡, 改善肠道结构和屏障功能, 增强肠道抗氧化能力, 提高小鼠生长性能。
关键词: 酵母培养物    肠道干细胞    肠上皮    增殖分化    
Yeast Culture Promotes Stem Cell Proliferation and Differentiation and Improves Intestinal Epithelial Integrity of Mice
ZHANG Dexiang , ZHU Chao , ZHOU Jiayi , WANG Xiuqi     
National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
Abstract: The aim of this study was to investigate the effects of yeast culture (YC) on crypt villus axis renewal driven by intestinal stem cells of mice. Thirty-six healthy 6-week-old male C57BL/6 mice with similar body weight [(19.85±1.45) g] were randomly divided into 3 groups with 12 replicates per group and 1 mouse per replicate. Mice in the control group were fed a basal diet, and others in 0.5% and 1.0% YC groups were fed the basal diet supplemented with 0.5% and 1.0% YC, respectively. The experiment lasted for 10 days. The results showed as follows: 1) compared with the control group, the average daily feed intake (ADFI) of mice of 0.5% YC group was significantly increased (P < 0.01), the average daily gain (ADG) of mice of 1.0% YC group was significantly increased (P < 0.01), and the ratio of feed to gain (F/G) of mice of 1.0% YC group was significantly decreased (P < 0.05). 2) Compared with the control group, the duodenum and jejunum weight per unit length of mice of 0.5% and 1.0% YC groups was significantly increased (P < 0.05). 3) Compared with the control group, the activities of total superoxide dismutase (T-SOD) and glutathione peroxidase (GSH-Px) in jejunum of mice of 0.5% and 1.0% YC groups were significantly increased (P < 0.05 or P < 0.01), and the jejunum malondialdehyde (MDA) content of mice of 1.0% YC group was significantly decreased (P < 0.05). 4) Compared with the control group, the villus height (VH) and villus height/crypt depth (VH/CD) in jejunum of mice of 0.5% and 1.0% YC groups were significantly increased (P < 0.05). 5) Compared with the control group, the fluorescence signal intensities of zonula occludens protein-1 (ZO-1) and Occludin in jejunum of mice of 0.5% and 1.0% YC groups were significantly increased (P < 0.01), and the relative expression levels of ZO-1 and Occludin in jejunum of mice of 0.5% and 1.0% YC groups were significantly up-regulated (P < 0.01). 6) Compared with the control group, the fluorescence signal intensity of proliferating nuclear antigen (PCNA) in jejunum of mice of 0.5% and 1.0% YC groups were significantly increased (P < 0.01), while the fluorescence signal intensity of cleaved caspase-3 in jejunum of mice were significantly decreased (P < 0.01). 7) Compared with the control group, the fluorescence signal intensities of keratin 20 (KRT20), Villin, chromogranin A (CGA) and positive cell number of lysozyme (LYZ) in jejunum of mice of 0.5% and 1.0% YC groups were significantly increased (P < 0.05 or P < 0.01). In conclusion, dietary YC can increase the proliferation and differentiation of intestinal stem cells, inhibite the cell apoptosis, improve the intestinal structure and barrier function, enhance the intestinal antioxidant capacity, and improve the growth performance of mice.
Key words: yeast culture    intestinal stem cells    intestinal epithelium    proliferation and differentiation    

酵母培养物(yeast culture,YC)是指在特定培养基上经酵母菌厌氧充分发酵后所形成的一种微生态制剂,主要由酵母细胞代谢产物、发酵变异培养基和少量无活性酵母细胞组成,富含各种小肽、氨基酸、维生素和有机酸,被广泛应用于单胃动物、反刍动物和水产动物生产中[1-4]。YC中各种功能性营养物质不仅在稳态条件下具有促进肠黏膜发育的功能,而且在肠道损伤后,能刺激隐窝-绒毛轴再生,保护肠道完整性[5-7]

肠黏膜上皮形态的发生由隐窝底部的干细胞驱动,经增殖、迁移和分化形成各种功能细胞单位,包括绒毛蛋白(Villin)标记的肠吸收细胞、嗜铬粒蛋白A(chromogranin A,CGA)标记的肠内分泌细胞、黏蛋白2(mucin 2,MUC2)标记的杯状细胞以及溶菌酶(lysozyme,LYZ)标记的潘氏细胞[8]。这些功能细胞各司其职,共同维护肠道健康。虽然已有研究报道,YC可改善肠道形态结构[1, 9-10],然而其作用机制尚不清楚。因此,本研究以小鼠为载体,探究YC在调节干细胞增殖分化、改善肠道功能方面的作用,旨在为YC在养殖中的精准供给和应用提供理论依据。

1 材料与方法 1.1 试验材料

YC主要由酵母细胞代谢产物、经过发酵后变异的培养基和少量已无活性的酵母细胞所构成,由河南某生物技术有限公司提供;酵母培养物颗粒饲料和C57BL/6小鼠均由广东省医学实验动物中心提供。

1.2 试验设计

试验选取36只6周龄健康状况良好、体重[(19.85±1.45) g]相近的雄性小鼠,在鼠房适应3 d后,随机分为3组,每组12个重复,每个重复1只。对照组饲喂玉米-豆粕型基础饲粮(对照组粗蛋白质水平用酪蛋白补足),试验组分别用0.5%和1.0% YC替代基础饲粮中的玉米。试验期10 d,在试验第11天处死小鼠。试验饲粮参照无特定病原体(SPF)维持鼠料营养需要配制,试验饲粮组成及营养水平见表 1

表 1 试验饲粮组成及营养水平(风干基础) Table 1 Composition and nutrient levels of experimental diets (air-dry basis) 
1.3 样品采集

将小鼠安乐死,采集各组小鼠十二指肠(位置为幽门1 cm处往下至“U”状弯曲结束处)和空肠(位置为“U”状弯曲结束处1~6 cm),在直尺的比对下,截取长度相近自然状态下伸展的十二指肠和前端空肠,结果精确到0.1 cm;纵向剪开肠道,清除内容物,吸水纸吸干水分后,采用特种准确度级(Ⅰ级)、精度为0.000 1 g的天平(LS120A,瑞士普利赛斯公司)称量小肠重量,计算十二指肠和空肠单位长度重量:

将样品分为2份,1份固定于4%多聚甲醛中,用于制作切片;1份置于冻存管中-80 ℃冰箱保存,用于匀浆及生化指标检测。

1.4 空肠总超氧化物歧化酶(T-SOD)、谷胱甘肽过氧化物酶(GSH-Px)活性及丙二醛(MDA)含量检测

取空肠样品,经匀浆、离心后,取上清按照试剂盒(南京建成生物工程研究所)说明书操作步骤检测空肠T-SOD、GSH-Px活性和MDA含量。

1.5 伊红-苏木精(HE)染色

经脱水、包埋、切片制作5 μm空肠切片,HE染色后,在光学显微镜下观察隐窝绒毛轴形态结构变化。每组选取6只小鼠,每只小鼠选取5张空肠切片,利用ImageJ软件统计绒毛高度(villus height,VH)和隐窝深度(crypt depth,CD),并计算绒毛高度和隐窝深度的比值(villus height/crypt depth,VH/CD)。

1.6 免疫荧光(immunofluorescence,IF)染色

肠道切片经抗原修复、0.25%聚乙二醇辛基苯基醚(Triton X-100)通透、5%牛血清白蛋白(BSA)封闭、一抗和二抗孵育、4′, 6-二脒基-2-苯基吲哚(DAPI)核染后,在荧光显微镜下拍照,并利用ImageJ软件统计荧光信号强度或阳性细胞数量。其中CGA(#ab15160)购自英国Abcam公司;裂解半胱天冬酶-3(cleaved caspase-3,#9664)、角蛋白20(KRT20,#13063)购自美国CST公司;溶菌酶(LYZ,#A0099)购自丹麦安捷伦公司;Villin(#sc-58897)购自美国圣克鲁斯生物技术(上海)有限公司;带状闭合蛋白-1(ZO-1,#339100)购自美国赛默飞世尔科技公司;闭合蛋白(Occludin,#502601)和增殖细胞核抗原(PCNA,200947-6B12)购自成都正能生物技术有限责任公司;荧光二抗(#125365,#133384)购自美国JIR公司。

1.7 蛋白免疫印迹(Western blotting)

样品经放射免疫沉淀法(radio-immunoprecipitation assay,RIPA)裂解、二辛可宁酸含量(bicinchoninic acid,BCA)测定浓度后,加入Loading buffer制作浓度均一的蛋白样品;随后通过十二烷基硫酸钠-聚丙烯酰胺凝胶电泳(SDS-PAGE)、转膜、5%脱脂奶粉封闭、一抗和二抗孵育以及化学发光仪拍照获得蛋白条带,用ImageJ软件统计灰度值。

1.8 数据分析

采用SPSS 22.0软件对试验数据进行统计分析,数据用平均值±标准误(mean±SE)表示。采用独立样本t检验分析组间差异显著性,P<0.05为差异显著,P<0.01为差异极显著,0.05<P<0.10为有增加或降低的趋势。

2 结果 2.1 YC对小鼠生长性能的影响

图 1-A可知,与对照组相比,0.5% YC组小鼠ADFI极显著增加(P < 0.01),而1.0% YC组小鼠ADFI有增加的趋势(P=0.073)。由图 1-B可知,与对照组相比,1.0% YC组小鼠ADG极显著增加(P < 0.01)。由图 1-C可知,与对照组相比,1.0% YC组小鼠F/G显著降低(P < 0.05)。

数据柱标注*表示差异显著(P < 0.05),标注**表示差异极显著(P < 0.01)。下图同。 Value columns with * mean significant difference (P < 0.05), and with ** mean extremely significant difference (P < 0.01). The same as below. 图 1 YC对小鼠生长性能的影响 Fig. 1 Effects of YC on growth performance of mice
2.2 YC对小鼠十二指肠和空肠单位长度重量的影响

图 2-A可知,与对照组相比,0.5% YC组小鼠十二指肠单位长度重量无显著差异(P>0.05),1.0% YC组小鼠十二指肠单位长度重量显著增加(P < 0.05)。图 2-B可知,与对照组相比,0.5% YC组相小鼠空肠单位长度重量有增加的趋势(P=0.059),1.0% YC组小鼠空肠单位长度重量显著增加(P < 0.05)。因此,后续研究选择空肠作为检测对象。

图 2 YC对小鼠十二指肠和空肠单位长度重量的影响 Fig. 2 Effects of YC on duodenum and jejunum weight per unit length of mice
2.3 YC对小鼠空肠T-SOD、GSH-Px活性和MDA含量的影响

图 3-A可知,与对照组相比,0.5%和1.0% YC组小鼠空肠T-SOD活性极显著增加(P < 0.01)。由图 3-B可知,与对照组相比,0.5%和1.0% YC组小鼠空肠GSH-Px活性显著增加(P < 0.05)。由图 3-C可知,与对照组相比,0.5% YC组小鼠空肠MDA含量有降低的趋势(P=0.079),1.0% YC组小鼠空肠MDA含量显著降低(P < 0.05)。

图 3 YC对小鼠空肠T-SOD、GSH-Px活性和MDA含量的影响 Fig. 3 Effects of yeast culture on activities of T-SOD and GSH-Px and content of MDA content in jejunum of mice
2.4 YC对小鼠空肠黏膜形态结构的影响

图 4-A为小鼠空肠HE染色结果。由图 4-B可知,与对照组相比,0.5%和1.0% YC组小鼠空肠VH显著增加(P < 0.05)。由图 4-C可知,各组之间组小鼠空肠CD无显著差异(P>0.05)。由图 4-D可知,与对照组相比,0.5%和1.0% YC组小鼠空肠VH/CD显著增加(P>0.05)。

图 4 YC对小鼠空肠黏膜形态结构的影响 Fig. 4 Effects of YC on jejunum mucosa morphology of mice
2.5 YC对小鼠空肠紧密连接蛋白表达的影响

图 5-A为空肠中ZO-1和Occludin的IF染色结果。由图 5-B图 5-C可知,与对照组相比,0.5%和1.0% YC组小鼠空肠ZO-1和Occludin荧光信号强度极显著增加(P < 0.01),0.5%和1.0% YC组之间无显著差异(P>0.05)。图 5-D为空肠中ZO-1和Occludin的Western blotting结果。由图 5-E可知,与对照组相比,0.5%和1.0% YC组小鼠空肠ZO-1和Occludin相对表达量极显著上调(P < 0.01),0.5%和1.0% YC组之间无显著差异(P>0.05)。

图 5 YC对小鼠空肠紧密连接蛋白表达的影响 Fig. 5 Effects of YC on jejunum tight junction protein expression of mice
2.6 YC对小鼠空肠细胞增殖的影响

图 6-A为空肠PCNA和cleaved caspase-3的IF染色结果。由图 6-B图 6-C可知,与对照组相比,0.5%和1.0% YC组PCNA荧光信号强度极显著增加(P < 0.01),而cleaved caspase-3荧光信号强度极显著降低(P < 0.01)。

图 6 YC对小鼠空肠细胞增殖的影响 Fig. 6 Effects of YC on jejunum cell proliferation of mice
2.7 YC对小鼠空肠细胞分化的影响

图 7-A为空肠KRT20、Villin、CGA和LYZ的IF染色结果。由图 7-B可知,与对照组相比,0.5%和1.0% YC组KRT20荧光信号强度极显著增加(P < 0.01)。由图 7-C可知,与对照组相比,0.5%和1.0% YC组Villin荧光信号强度显著上调(P < 0.05)。由图 7-D可知,与对照组相比,0.5%和1.0% YC组CGA荧光信号强度极显著上调(P < 0.01);由图 7-E可知,与对照组相比,0.5%和1.0% YC组隐窝中LYZ阳性细胞数量显著增加(P < 0.05)。

图 7 YC对小鼠空肠细胞分化的影响 Fig. 7 Effects of YC on jejunum cell differentiation of mice
3 讨论

YC作为一种功能性饲料添加剂,含有大量蛋白质、氨基酸和维生素等已知成分以及酵母菌分泌的各种代谢产物和某些未知的“生长因子”等,可增加饲料的营养价值。研究表明,YC能改善饲料适口性,提高营养物质的消化率。而适口性关乎采食量的稳定性,饲料消化率与营养物质的吸收和动物生长性能成正比。研究表明,断奶仔猪饲粮中添加0.5% YC可显著增加ADFI[11];在家禽上的研究同样发现,饲粮中添加1.25、1.50和2.50 g/kg YC均能提高饲料转化率[12]。这与本研究结果一致,饲粮中添加0.5和1.0% YC具备提升小鼠生长性能的作用,进一步拓宽了YC在哺乳动物饲粮中的添加范围,为降低YC水平、控制饲料成本提供借鉴。

小肠是吸收营养物质的主要场所。VH是反映肠吸收功能的关键指标。研究表明,YC可促进猪和肉鸡小肠上皮发育,增加VH,刺激机体生长[13-15]。本研究结果同样显示,饲粮中添加0.5和1.0% YC能够促进小鼠空肠绒毛生长,改善肠道形态结构,且饲粮中添加1.0% YC增加十二指肠和空肠重量。因此,YC具有促更新和促再生的双重作用。同时,小肠也是机体抵御外来病原菌侵袭的重要防线。细胞膜上Occludin末端与细胞质内膜表面带状闭合蛋白(ZO)相连,并通过磷酸化修饰控制紧密连接蛋白复合物的功能。本研究表明,饲粮中添加0.5%和1.0% YC能调节空肠上皮紧密连接蛋白的定位和表达,增强肠道屏障功能。其机制可能为YC通过抑制核因子-κB(nuclear factor kappa B,NF-κB)信号通路介导的肿瘤坏死因子-α的释放,上调OccludinZO-1基因表达,加强细胞间的紧密连接,改善肠道通透性,阻碍肠道中的内毒素进入血液[14, 16]。此外,YC中存在谷胱甘肽和超氧化物歧化酶等酵母代谢产物[17]。这些抗氧化物质被证明能清除氧和氮自由基,降低肠道氧化应激反应,改善隐窝绒毛轴形态,维持肠上皮完整性。姚仕彬等[5]研究证实,YC水溶物对氧化物丙二醛诱导的草鱼肠道黏膜细胞具有保护作用。这与本研究提出的YC具有提高小鼠小肠抗氧化功能的观点一致。

肠道干细胞是肠上皮结构形成的基石,YC中各种丰富的营养物质不仅能为肠道干细胞分裂提供能量和合成蛋白质、脂质的底物,而且可能作为信号分子刺激其不断更新,促进肠道消化吸收和增强肠道屏障功能。本课题组研究表明,谷氨酸和蛋氨酸等功能性物质可通过激活哺乳动物雷帕霉素靶蛋白复合物1(mTORC1)和Wnt/β-连环蛋白(Wnt/β-catenin)信号加速肠道干细胞扩增,促进隐窝绒毛轴更新[18-19]。本研究结果表明,饲粮中添加0.5%和1.0% YC不仅具有促进隐窝中肠细胞增殖的作用,而且能抑制绒毛上部细胞凋亡。本研究进一步研究发现,YC能促进其向吸收细胞、肠内分泌细胞和潘氏细胞分化。而杯状细胞分泌的黏蛋白及潘氏细胞分泌的溶菌酶和防御素是肠道化学和免疫屏障的重要组分。有研究表明,YC可增加肠道杯状细胞MUC2 mRNA相对丰度[20]。其机制可能为吸收细胞、肠内分泌细胞数量的增加使得YC组小鼠拥有更高的VH,进而提高其生长性能。然而,YC通过何种途径影响肠道干细胞活性需进一步挖掘。

4 结论

饲粮中添加0.5%和1.0% YC均能促进肠道上皮细胞增殖分化,维持肠上皮结构和屏障功能完整性,增强肠道抗氧化能力,提高小鼠生长性能。

参考文献
[1]
ZHANG J C, CHEN P, ZHANG C, et al. Yeast culture promotes the production of aged laying hens by improving intestinal digestive enzyme activities and the intestinal health status[J]. Poultry Science, 2020, 99(4): 2026-2032. DOI:10.1016/j.psj.2019.11.017
[2]
GENG C Y, REN L P, ZHOU Z M, et al. Comparison of active dry yeast (Saccharomyces cerevisiae) and yeast culture for growth performance, carcass traits, meat quality and blood indexes in finishing bulls[J]. Animal Science Journal, 2016, 87(8): 982-988. DOI:10.1111/asj.12522
[3]
ZHANG P Y, CAO S P, ZOU T, et al. Effects of dietary yeast culture on growth performance, immune response and disease resistance of gibel carp (Carassius auratus gibelio CAS Ⅲ)[J]. Fish & Shellfish Immunology, 2018, 82: 400-407.
[4]
AYIKU S, SHEN J F, TAN B P, et al. Effects of dietary yeast culture on shrimp growth, immune response, intestinal health and disease resistance against Vibrio harveyi[J]. Fish & Shellfish Immunology, 2020, 102: 286-295.
[5]
姚仕彬, 叶元土, 蔡春芳, 等. 酵母培养物水溶物对丙二醛损伤的离体草鱼肠道黏膜细胞的保护作用[J]. 动物营养学报, 2014, 26(9): 2652-2663.
YAO S B, YE Y T, CAI C F, et al. Protective effect of water soluble material of yeast culture on malondialdehyde damaged intestinal mucosal cells in vitro of grass carp (Ctenopharyngodon idella)[J]. Chinese Journal of Animal Nutrition, 2014, 26(9): 2652-2663 (in Chinese). DOI:10.3969/j.issn.1006-267x.2014.09.027
[6]
LIU J, YE G, ZHOU Y, et al. Feeding glycerol-enriched yeast culture improves performance, energy status, and heat shock protein gene expression of lactating Holstein cows under heat stress[J]. Journal of Animal Science, 2014, 92(6): 2494-2502. DOI:10.2527/jas.2013-7152
[7]
刘泓宇, 李立贤, AYIKU S, 等. 酵母培养物对珍珠龙胆石斑鱼生长性能、肠道形态、免疫功能和抗病力的影响[J]. 广东海洋大学学报, 2021, 41(3): 1-11.
LIU H Y, LI L X, AYIKU S, et al. Effects of dietary yeast culture supplementation on growth, intestinal morphology, immunity, and disease resistance in Epinephelus fuscoguttatus♀×Epinephelus lanceolatu[J]. Journal of Guangdong Ocean University, 2021, 41(3): 1-11 (in Chinese). DOI:10.3969/j.issn.1673-9159.2021.03.001
[8]
SHAKER A, RUBIN D C. Intestinal stem cells and epithelial-mesenchymal interactions in the crypt and stem cell niche[J]. Translational Research, 2010, 156(3): 180-187. DOI:10.1016/j.trsl.2010.06.003
[9]
LIU Y C, CHENG X, ZHEN W R, et al. Yeast culture improves egg quality and reproductive performance of aged breeder layers by regulating gut microbes[J]. Frontiers in Microbiology, 2021, 12: 633276. DOI:10.3389/fmicb.2021.633276
[10]
ADEBIYI O A, MAKANJUOLA B A, BANKOLE T O, et al. Yeast culture (Saccharomyces cerevisae) supplementation: effect on the performance and gut morphology of broiler birds[J]. Global Journal of Science Frontier Research Biological Sciences, 2012, 12(6): 24-29.
[11]
LEE D J, LIU X, SUN H Y, et al. Effects of yeast culture (Saccharomyces cerevisiae) supplementation on growth performance, fecal score, and nutrient digestibility of weaning pigs[J]. Journal of Animal Science, 2018, 96(Suppl.2): 48-49.
[12]
FATHI M M, AL-MANSOUR S, AL-HOMIDAN A, et al. Effect of yeast culture supplementation on carcass yield and humoral immune response of broiler chicks[J]. Veterinary World, 2012, 5(11): 651-657. DOI:10.5455/vetworld.2012.651-657
[13]
SHEN Y B, PIAO X S, KIM S W, et al. Effects of yeast culture supplementation on growth performance, intestinal health, and immune response of nursery pigs[J]. Journal of Animal Science, 2009, 87(8): 2614-2624. DOI:10.2527/jas.2008-1512
[14]
WANG S Q, ZHU S L, ZHANG J J, et al. Supplementation with yeast culture improves the integrity of intestinal tight junction proteins via NOD1/NF-κB P65 pathway in weaned piglets and H2O2-challenged IPEC-J2 cells[J]. Journal of Functional Foods, 2020, 72: 104058. DOI:10.1016/j.jff.2020.104058
[15]
GAO J, ZHANG H J, YU S H, et al. Effects of yeast culture in broiler diets on performance and immunomodulatory functions[J]. Poultry Science, 2008, 87(7): 1377-1384. DOI:10.3382/ps.2007-00418
[16]
LIU N, WANG J Q, JIA S C, et al. Effect of yeast cell wall on the growth performance and gut health of broilers challenged with aflatoxin B1 and necrotic enteritis[J]. Poultry Science, 2018, 97(2): 477-484. DOI:10.3382/ps/pex342
[17]
YANG H S, WU F, LONG L N, et al. Effects of yeast products on the intestinal morphology, barrier function, cytokine expression, and antioxidant system of weaned piglets[J]. Journal of Zhejiang University.Science.B, 2016, 17(10): 752-762. DOI:10.1631/jzus.B1500192
[18]
ZHU M, QIN Y C, GAO C Q, et al. Extracellular glutamate-induced mTORC1 activation via the IR/IRS/PI3K/Akt pathway enhances the expansion of porcine intestinal stem cells[J]. Journal of Agricultural and Food Chemistry, 2019, 67(34): 9510-9521. DOI:10.1021/acs.jafc.9b03626
[19]
ZHOU J Y, WANG Z, ZHANG S W, et al. Methionine and its hydroxyl analogues improve stem cell activity to eliminate deoxynivalenol-induced intestinal injury by reactivating Wnt/β-catenin signaling[J]. Journal of Agricultural and Food Chemistry, 2019, 67(41): 11464-11473. DOI:10.1021/acs.jafc.9b04442
[20]
刁慧, 晏家友, 张锦秀, 等. 有机微量元素和酵母培养物替代氧化锌对断奶仔猪生长性能和肠道健康的影响[J]. 中国饲料, 2020(19): 40-48.
DIAO H, YAN J Y, ZHANG J X, et al. Effects of combinations of organic trace minerals and yeast cultures as a replacement of zinc oxide on the growth performance and intestinal healthy in weaned piglets[J]. China Feed, 2020(19): 40-48 (in Chinese).