动物营养学报    2022, Vol. 34 Issue (7): 4099-4107    PDF    
淀粉在反刍动物消化道的消化特性及整体供能方式优化
任豪 , 雷新建 , 陈鲁豫 , 姚军虎     
西北农林科技大学动物科技学院, 杨凌 712100
摘要: 淀粉是高产反刍动物的主要能量来源,生产中常通过提高饲粮淀粉含量来增加饲粮能量浓度,以期提升动物的生产水平。此做法易导致瘤胃酸中毒和大肠酸中毒等代谢性疾病,严重危害动物健康,限制生产潜力的发挥。本文总结了淀粉在瘤胃、小肠和大肠降解利用的特点,比较淀粉在各消化位点为机体供能的差异,旨在为淀粉能量最大化供应进而充分发挥反刍动物遗传潜力提供理论依据。
关键词: 反刍动物    淀粉    消化位点    能量效率    
Digested Characteristics of Starch in Digestive Tract of Ruminants and Its Whole Energy Supply Mode Optimization
REN Hao , LEI Xinjian , CHEN Luyu , YAO Junhu     
College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
Abstract: Starch is the main energy source for ruminants, and improving dietary starch content in feeding practices is often used to increase dietary energy concentration, aiming to promote the animal production. It's easy to cause rumen acidosis and hindgut acidosis, which could damage the animal health and animal performance. This paper summarized the characterizes of starch digested in the rumen, small intestine and hindgut, and compared the differences of energy supplied by starch digested in different tract sites, in order to provide the reference for optimizing the energy supply of starch to promote the animal genetic potential.
Key words: ruminants    starch    digestive sites    energy efficiency    

遗传学家通过对反刍动物产奶和生长性状进行高强度选育,奶牛产奶量和肉牛生长速率不断提高,反刍动物对营养物质(特别是能量)的需求量也随之增加。为充分发挥高产反刍动物的基因潜能,生产实践中常大量使用谷物饲料增加饲粮能量浓度。谷物饲料中淀粉含量差别很大,范围一般为58%~77%[1]。泌乳牛饲粮最佳淀粉含量至今尚无定论,推荐范围为25%~30%[2],且主要取决于产奶量、泌乳阶段、饲粮物理有效中性洗涤纤维4.0(peNDF4.0)含量等。育肥牛饲粮中最主要的营养物质是淀粉,每日淀粉摄入量超过7.5 kg,超过干物质采食量(DMI)的60%[3]。这种饲喂方式可提高饲粮能量浓度,理论上满足高产动物遗传潜能的需求,但实际中经常出现瘤胃酸中毒[4-5]、小肠淀粉消化能力不足[6-7]和大肠酸中毒[8]等问题。因此,针对反刍动物复杂的消化道系统,我们需充分了解消化道各部位的消化特点,精准确定淀粉供应量和供应方式,合理调控淀粉的消化位点,从而最大限度地满足反刍动物的能量需求,以充分发挥其自身的遗传潜力。

1 淀粉在反刍动物主要消化位点的降解利用特点 1.1 淀粉在瘤胃降解

生产实践中饲粮中的淀粉主要来自玉米,有时也包括高粱、小麦、燕麦和大麦等。不同谷物的淀粉含量和瘤胃降解率变化较大。体外检测产气速率可反映淀粉降解率,结果显示小麦、大麦、玉米和高粱的产气速率分别为0.26、0.24、0.15和0.06 h-1,对应其瘤胃降解速率为小麦>大麦>玉米>高粱[9]。瘤胃淀粉降解率变异较大,综合分析显示,奶牛瘤胃淀粉降解量占淀粉摄入量范围为22.4%~94.2%[10-12]。影响瘤胃淀粉降解速率、降解量和降解位点的因素较多,可归纳为淀粉相关和动物相关2个方面的因素。淀粉相关因素包括淀粉类型、胚乳含量、谷物加工方式、储存方式、化学处理和饲粮组成等。动物相关因素包括采食量、咀嚼行为、食糜流通速率、瘤胃壁吸收能力、瘤胃微生物数量和微生物对饲粮适应能力及其他因素,内外因素相互影响发挥作用[6, 13-14]

瘤胃是淀粉降解的主要位点[15],约有75%的淀粉被瘤胃微生物降解[16]。降解淀粉的微生物主要是细菌,Kotarski等[17]报道了15种不同淀粉降解菌株和8种由这些菌株产生的淀粉酶,其中最具代表性的细菌包括牛链球菌(Streptococcus bovis)、嗜淀粉瘤胃杆菌(Ruminobacter amylophilus)、普雷沃氏菌(Prevotella species)、溶淀粉琥珀酸单胞菌(Succinimonas amylolytica)、反刍兽新月形单胞菌(Selenomonas ruminantium)和双歧杆菌(Bifidobacterium species)[1]。瘤胃降解菌黏附定植在谷物颗粒表面,产生大量水解直链和支链淀粉的糖苷键酶,将淀粉降解为不同的寡糖[18-19]。每种淀粉降解菌都具备降解淀粉的能力,但它们自身并没有一套完整降解整个谷物淀粉的多酶体系。因此,这些淀粉降解菌相互协作组装形成一个产多种酶的复合体系,将淀粉转化为单糖,快速高效地完成淀粉降解[17, 19-20]

瘤胃内原虫和真菌数量级较小,但影响瘤胃淀粉降解速率[17]。原虫可直接吞咽淀粉颗粒消化大量淀粉,显著降低淀粉的瘤胃降解速率[21]。研究表明,给去瘤胃原虫的绵羊饲喂高湿玉米显著提高瘤胃淀粉降解速率和降解量[21-22]。真菌利用自身消化酶破坏谷物表皮结构,帮助细菌更好地黏附在谷物表面消化淀粉颗粒[16-18, 23]

瘤胃微生物发酵淀粉后主要产物是挥发性脂肪酸(VFA,主要包括乙酸、丙酸和丁酸)、甲烷、二氧化碳和氨气等。葡萄糖氧化生成乙酸和丁酸过程中伴随氢气产生,而生成丙酸过程中利用内环境中氢的能量[24]。葡萄糖氧化为乙酸、丙酸和丁酸的能量利用效率分别为62%、109%和78%[25]。通过研究大群泌乳牛产奶性能和瘤胃发酵模式,Shabat等[26]发现高产奶牛瘤胃VFA浓度和丙酸比例更高。Ren等[27]比较了饲喂蒸汽压片和粉碎玉米对荷斯坦青年牛生长性能的影响,发现高日增重青年牛瘤胃内丙酸比例更高。当1 mol葡萄糖转化为乙酸或丙酸时,瘤胃微生物可获得4 mol ATP,而转化为丁酸时,微生物只能获得3 mol ATP[28]。综上可知,瘤胃丙酸发酵对机体和微生物是能量效率最高的发酵方式。

瘤胃淀粉发酵产酸速率大于瘤胃壁吸收能力时,有机酸(VFA和乳酸)大量积累[29-30],当超过瘤胃缓冲盐的正常缓冲范围时,瘤胃pH降低导致酸中毒[31]。1 d内瘤胃pH低于5.6累计超过3 h就会出现亚急性瘤胃酸中毒,引发瘤胃炎症或肝脓肿等疾病,造成反刍动物生长性能下降。当瘤胃pH低于5.2时表现为急性酸中毒,出现采食量下降、腹泻、蹄病和瘤胃功能受损等症状[32-33]。Krause等[34]报道,泌乳牛饲喂高湿玉米比饲喂干玉米时瘤胃pH更低。淀粉降解量和降解速率与瘤胃有机酸产量和产生速率相对应,饲粮中淀粉的数量和结构决定淀粉的降解量和降解速率,因此,饲粮中淀粉数量和结构是影响酸中毒的重要因素[35]。调控饲粮中淀粉含量或改变淀粉结构降低淀粉在瘤胃中的降解量或降解速率,提高过瘤胃淀粉水平,可避免发生瘤胃酸中毒。

针对瘤胃酸中毒带来的诸多负面影响,通过限饲[36-37]、添加脂肪[38-39]或改变谷物类型[40-41]调控瘤胃淀粉降解速率,改变淀粉降解位点,可降低淀粉在瘤胃中的降解量,进而预防或缓解瘤胃酸中毒。但调控淀粉消化位点(将在瘤胃降解的淀粉部分转移至后肠道)会导致其他问题,如减少瘤胃淀粉降解量时,由于小肠淀粉消化受限,会降低全肠道淀粉消化率和饲粮可消化能[6, 11-12, 42-44]。除考虑小肠淀粉消化受限外,还要考虑瘤胃微生物能量供应不足导致微生物蛋白质合成量减少,蛋白质表观消化率降低等情况[45]。因此,在保证瘤胃健康前提下,改善小肠淀粉消化利用,为缓解瘤胃酸中毒并保证动物生产效率提供了一种可行的解决方案。

1.2 淀粉在小肠消化

反刍动物小肠对淀粉的消化吸收过程与单胃动物类似,分为3个阶段[6, 16, 43, 46]。第1阶段始于十二指肠胰腺α-淀粉酶(EC 3.2.1.1)分泌,胰腺α-淀粉酶水解淀粉α-(1,4)糖苷键释放麦芽糖、麦芽三糖和糊精;第2阶段发生在小肠上皮刷状缘膜,小分子多糖被刷状缘膜上分泌的麦芽糖酶和异麦芽糖酶等水解成单个葡萄糖;第3阶段是小肠肠腔中的葡萄糖被转运载体运输进入门静脉循环。

与在瘤胃发酵产生VFA不同,淀粉在小肠水解生成葡萄糖,为机体提供能量的效率更高。Hale等[47]综述了谷物加工方式对肉牛饲料转化效率的影响,发现提高瘤胃或小肠淀粉消化率均降低料重比,但回归方程截距显示淀粉在瘤胃内降解对饲料转化效率的贡献效率只有在小肠消化的70%。这个数值与经瘤胃或小肠直接灌注葡萄糖,计算出的淀粉在不同部分的降解能量效率的结果(69%~76%)接近[48]。Black[49]计算了以甲烷产量、发酵、消化和排泄产热等形式损耗的能量差异,结果表明瘤胃淀粉降解对生产净能的贡献仅为62%~82%。McLeod等[50]采用真胃灌注和直接饲喂2种方式给羔羊(21 kg)每日提供180 g葡萄糖,165 d饲养试验结果显示,直接饲喂葡萄糖组羔羊能量沉积只有真胃灌注组的52%。因此,Owens等[43]得出,淀粉在小肠内消化提供的能量效率比在瘤胃内高42%。为验证此结论,McLeod等[51]连续28 d瘤胃或真胃灌注淀粉比较淀粉降解位点对生长公牛能量沉积的影响,通过间接测热法计算得出真胃灌注淀粉的能量效率为0.6,而瘤胃灌注淀粉的能量效率仅为0.48。

淀粉在小肠中水解比在瘤胃内降解的能量利用效率高,但反刍动物小肠淀粉消化受限[15-16, 42-43]。反刍动物小肠淀粉的消化量与到达小肠的淀粉数量有关,不存在一个绝对最大值[44]。与瘤胃淀粉降解量相似,小肠淀粉消化率变异也较大,范围为40%~80%[13, 16, 43],Meta分析表明,小肠淀粉平均消化率为60.6%[12]。当牛、羊采食相同饲粮时,羊小肠淀粉消化率比牛高[42],说明牛小肠淀粉消化受限程度更大。

1.3 淀粉在大肠降解

大肠降解淀粉与瘤胃相似,利用微生物将底物发酵生成VFA和甲烷等气体[52-53]。大肠和瘤胃具有相似的还原电势、氧分压和pH[53-54],可生成甲烷,其产量占甲烷总产量的6%~14%[55]。2个消化位点细菌数量(1010~1012个/mL)相似,95%以上是厌氧菌[56],产生VFA和气体速率相同[57]。改变饲粮中淀粉含量对大肠和粪便VFA比例的影响一致,当饲粮中淀粉含量降低时,大肠和瘤胃VFA中乙丙比均增加,粪便中纤维降解菌数量增加;当饲粮淀粉含量增加时,乙丙比降低,粪便中淀粉降解菌数量增加[56, 58-60]

大肠对全肠道淀粉消化率的贡献比瘤胃和小肠低,淀粉在大肠发酵的能量利用效率仅为小肠的40%,是能量利用效率最低的淀粉消化位点[43, 61],但大肠对动物生产和健康具有同样重要的影响[8]。反刍动物大肠吸收的VFA为消化道总吸收量的8%~17%[54, 59],提供5%~10%的代谢能[57],占山羊消化能摄入的5%[62]。瘤胃酸中毒增加后肠发酵碳水化合物的数量,易导致大肠酸中毒。大肠酸中毒定义:大量碳水化合物在大肠内发酵,有机酸积累降低食糜pH,改变微生物组成,损伤肠道上皮细胞。发生这种现象通常表示动物瘤胃健康功能受损,大量淀粉通过瘤胃经过小肠到达大肠发酵[8]

对绵羊瘤胃后消化道灌注可发酵碳水化合物对粪便黏稠度影响的研究结果表明,回肠灌注90 g葡萄糖显著降低粪便干物质含量[63],盲肠灌注300 g淀粉显著增加粪便VFA浓度[58]。奶牛真胃灌注1.2 kg/d小麦淀粉,粪便pH从6.64降至6.26,表明部分灌注淀粉逃离在大肠发酵[64]。给荷斯坦非泌乳牛饲喂全粗料基础饲粮,十二指肠灌注1.0或2.0 kg/d玉米或小麦淀粉,检测回肠和粪便中淀粉量,低灌注水平时,0.2 kg/d的淀粉到达回肠,粪便中几乎无法检测到淀粉;高灌注水平时,0.8 kg/d的淀粉到达回肠,0.5 kg/d的淀粉在大肠内被发酵,0.3 kg/d的淀粉随粪便排出[65]。肉牛真胃灌注4 kg/d玉米淀粉时,引发严重的大肠酸中毒,粪便pH从7降至5,并发生腹泻,粪便中夹杂肠道黏蛋白[66]。青年牛小肠淀粉消化量超过1.0 kg/d时,增加大肠淀粉发酵量,12%的淀粉在大肠发酵,超过20%的淀粉随粪便排出体外[67]。以上研究表明,大肠淀粉发酵量随十二指肠淀粉灌注量的增加而增加。瘤胃酸中毒和大肠酸中毒产生的发酵酸均会破坏肠道上皮,导致细菌、胺或毒素通过血液循环进入全身,引发机体炎症,损害动物健康。

2 调控反刍动物淀粉消化位点

淀粉在瘤胃内降解生成VFA,部分碳元素被利用生成二氧化碳和甲烷,瘤胃微生物维持需要和产热均消耗能量,故淀粉在小肠内直接水解生成葡萄糖的能量利用效率更高[6]。但Harmon[68]认为,当淀粉在小肠消化率超过70%时,让更多淀粉在小肠水解才能提高淀粉整体能量利用效率。若小肠淀粉消化率低于70%,过瘤胃淀粉会后移至大肠发酵,只有部分VFA被机体吸收,大量微生物蛋白质和未消化淀粉只能通过粪便排出,抵消小肠能量效率的优势。

调控淀粉消化位点的研究较多,主要措施是改变谷物加工方式[27, 69-73],调整饲粮淀粉含量、谷物来源或胚乳类型[74-76]及改变谷物储存方式[77],或通过真胃灌注淀粉[64, 70, 78-79]或十二指肠灌注葡萄糖[80-84]。研究表明,瘤胃高丙酸产量可提高蛋白质(微生物蛋白质和乳蛋白)合成效率和乳产量[85]。也有研究表明,小肠水淀粉解产生的葡萄糖会提高乳产量[74],但较多研究显示,小肠淀粉水解产生的葡萄糖主要用于组织蛋白质和脂肪沉积[13, 64, 70]。相关研究结果不一致,可能是因为试验奶牛泌乳时期不同所致。

将瘤胃降解淀粉部分转移至小肠消化,提高小肠葡萄糖吸收量,直接增加机体葡萄糖供应,减少脂肪氧化代谢,理论上可解决围产期奶牛能量不足所引起的营养问题[70, 86]。围产期奶牛真胃灌注葡萄糖可有效缓解外周组织体脂动员,整体提高机体血糖水平并降低血液中非酯化脂肪酸(NEFA)含量[70]。为进一步验证此观点,给围产期奶牛饲喂过瘤胃葡萄糖,研究直接供应葡萄糖对围产期奶牛泌乳和机体健康的影响,结果表明饲喂过瘤胃葡萄糖不影响产奶性能,但降低血液中NEFA和脂多糖结合蛋白(炎性蛋白因子)含量,缓解机体脂肪分解,提高能量水平并降低炎症[87]。Shipandeni[88]研究了不同淀粉来源(玉米和高粱)和加工方式(细粉和粗粉)对经产牛泌乳性能的影响,结果发现淀粉来源和加工方式显著改变了十二指肠淀粉量,但对奶牛泌乳性能无显著影响;作者又继续研究了粗粉玉米和细粉玉米对初产奶牛泌乳早期生产性能的影响,结果发现粗粉玉米可显著提高初产牛的产奶量,降低血液NEFA含量,并有利于产后体况恢复,主要原因是粗粉玉米提高小肠消化淀粉量,增加十二指肠葡萄糖供应量。

肉牛热应激期间饲喂过瘤胃葡萄糖,全期(62 d)无效果,但过瘤胃葡萄糖可显著提高肉牛中期(15~39 d)的日增重,这段时期是肉牛热应激最严重时期,说明动物处于极端代谢异常情况下,添加过瘤胃葡萄糖作用效果比较显著[89]。结合奶牛试验,动物处于围产期或热应激最严重时期,提高小肠葡萄糖供应的试验结果较一致,故试验动物所处生理时期的差别是导致过瘤胃葡萄糖作用不一致的主要因素。此外,肝脏氧化理论可部分解释上述相互矛盾的试验结果[90]。当动物处于极端代谢异常(产犊或应激)初期或最严重时,应及时调控淀粉消化位点或利用其他手段增加能量供应,改善机体健康。

3 利用消化道不同位点淀粉降解率估测其对反刍动物的整体能量供应效率

综合淀粉在瘤胃、小肠和大肠降解特点及其对反刍动物的能量供应差异,姚军虎等[91]提出饲粮淀粉能量利用效率(SEF)公式:SEF(%)=0.7RDS+1.0SIDS+0.4LIDS。式中RDS、SIDS和LIDS分别为瘤胃、小肠和大肠降解淀粉量占动物总淀粉摄入量的百分比(%)。假设淀粉在小肠内完全消化吸收的能量效率为1,淀粉在瘤胃、大肠内降解利用的能量效率分别为小肠0.7和0.4。反刍动物小肠淀粉消化吸收受限,且瘤胃微生物也需要能量供应,在保证瘤胃微生物基本淀粉供应量时,若小肠淀粉消化率大于70%,在小肠内消化的淀粉越多,对动物自身能量供应效率越高;若小肠淀粉消化率小于70%,则在保证瘤胃健康前提下,提高淀粉在瘤胃内降解量相对可提高淀粉整体能量利用效率。淀粉在大肠内发酵能量利用效率最低,应该避免淀粉在大肠降解。为实现淀粉对反刍动物整体供能最大化,我们应该研究如何高效地提高小肠淀粉消化率。

4 小结

淀粉是反刍动物重要的能量来源,在瘤胃、小肠和大肠3个位点被降解利用。在保证瘤胃健康和高效发酵的前提下,提高淀粉在小肠的消化量,避免淀粉在大肠内发酵,可优化淀粉对反刍动物的能量供应。研究不同生理阶段和生产性能时牛、羊在瘤胃、小肠和大肠3个位点的最佳淀粉供应量,对进一步提高淀粉利用效率和充分发挥牛、羊生产潜力具有重要的意义。

参考文献
[1]
NRC. Nutrient requirements of dairy cattle[S]. 7th ed. Washington, D.C. : The National Academies Press, 2001.
[2]
ALLEN M S, PIANTONI P. Carbohydrate nutrition: managing energy intake and partitioning through lactation[J]. The Veterinary Clinics of North America.Food Animal Practice, 2014, 30(3): 577-597. DOI:10.1016/j.cvfa.2014.07.004
[3]
COOPER R J, MILTON C T, KLOPFENSTEIN T J, et al. Effect of corn processing on starch digestion and bacterial crude protein flow in finishing cattle[J]. Journal of Animal Science, 2002, 80(3): 797-804. DOI:10.2527/2002.803797x
[4]
MAO S Y, ZHANG R Y, WANG D S, et al. The diversity of the fecal bacterial community and its relationship with the concentration of volatile fatty acids in the feces during subacute rumen acidosis in dairy cows[J]. BMC Veterinary Research, 2012, 8: 237. DOI:10.1186/1746-6148-8-237
[5]
李飞. 奶山羊亚急性瘤胃酸中毒模型构建与奶牛日粮CBI的优化[D]. 博士学位论文. 杨凌: 西北农林科技大学, 2014.
LI F. Developing the models of subacute ruminal acidosis of dairy goats and optimizing the CBI for dairy cows[D]. Ph. D. Thesis. Yangling: Northwest A&F University, 2014. (in Chinese)
[6]
HUNTINGTON G B, HARMON D L, RICHARDS C J. Sites, rates, and limits of starch digestion and glucose metabolism in growing cattle[J]. Journal of Animal Science, 2006, 84(Suppl.): E14-E24.
[7]
XU M, DU S, WANG J, et al. Influence of rumen escape starch on pancreatic exocrine secretion of goats[J]. Journal of Animal Physiology and Animal Nutrition, 2009, 93(1): 122-129. DOI:10.1111/j.1439-0396.2007.00792.x
[8]
GRESSLEY T F, HALL M B, ARMENTANO L E. Ruminant nutrition symposium: productivity, digestion, and health responses to hindgut acidosis in ruminants[J]. Journal of Animal Science, 2011, 89(4): 1120-1130. DOI:10.2527/jas.2010-3460
[9]
LANZAS C, FOX D G, PELL A N. Digestion kinetics of dried cereal grains[J]. Animal Feed Science and Technology, 2007, 136(3/4): 265-280.
[10]
NOCEK J E, TAMMINGA S. Site of digestion of starch in the gastrointestinal tract of dairy cows and its effect on milk yield and composition[J]. Journal of Dairy Science, 1991, 74(10): 3598-3629. DOI:10.3168/jds.S0022-0302(91)78552-4
[11]
PATTON R A, PATTON J R, BOUCHER S E. Defining ruminal and total-tract starch degradation for adult dairy cattle using in vivo data[J]. Journal of Dairy Science, 2012, 95(2): 765-782. DOI:10.3168/jds.2011-4183
[12]
MOHARRERY A, LARSEN M, WEISBJERG M R. Starch digestion in the rumen, small intestine, and hind gut of dairy cows-a meta-analysis[J]. Animal Feed Science and Technology, 2014, 192: 1-14. DOI:10.1016/j.anifeedsci.2014.03.001
[13]
REYNOLDS C K. Production and metabolic effects of site of starch digestion in dairy cattle[J]. Animal Feed Science and Technology, 2006, 130(1/2): 78-94.
[14]
GIUBERTI G, GALLO A, MASOERO F, et al. Factors affecting starch utilization in large animal food production system: a review[J]. Starch-Stärke, 2014, 66(1/2): 72-90.
[15]
THEURER C B. Steam-flaking improves starch utilization and milk production parameters[C]//Cornell Nutrition Conference for Feed Manufacturers. [S. l]: [s. n. ], 1996.
[16]
HUNTINGTON G B. Starch utilization by ruminants: from basics to the bunk[J]. Journal of Animal Science, 1997, 75(3): 852-867. DOI:10.2527/1997.753852x
[17]
KOTARSKI S F, WANISKA R D, THURN K K. Starch hydrolysis by the ruminal microflora[J]. The Journal of Nutrition, 1992, 122(1): 178-190. DOI:10.1093/jn/122.1.178
[18]
MCALLISTER T A, BAE H D, JONES G A, et al. Microbial attachment and feed digestion in the rumen[J]. Journal of Animal Science, 1994, 72(11): 3004-3018. DOI:10.2527/1994.72113004x
[19]
TESTER R F, KARKALAS J, QI X. Starch-composition, fine structure and architecture[J]. Journal of Cereal Science, 2004, 39(2): 151-165. DOI:10.1016/j.jcs.2003.12.001
[20]
STEWART R D, AUFFRET M D, WARR A, et al. Compendium of 4, 941 rumen metagenome-assembled genomes for rumen microbiome biology and enzyme discovery[J]. Nature Biotechnology, 2019, 37(8): 953-961. DOI:10.1038/s41587-019-0202-3
[21]
MENDOZA G D, BRITTON R A, STOCK R A. Influence of ruminal protozoa on site and extent of starch digestion and ruminal fermentation[J]. Journal of Animal Science, 1993, 71(6): 1572-1578. DOI:10.2527/1993.7161572x
[22]
NAGARAJA T G, TOWNE G, BEHARKA A A. Moderation of ruminal fermentation by ciliated protozoa in cattle fed a high-grain diet[J]. Applied and Environmental Microbiology, 1992, 58(8): 2410-2414. DOI:10.1128/aem.58.8.2410-2414.1992
[23]
LI Z J, LIU N N, CAO Y C, et al. Effects of fumaric acid supplementation on methane production and rumen fermentation in goats fed diets varying in forage and concentrate particle size[J]. Journal of Animal Science and Biotechnology, 2018, 9: 21. DOI:10.1186/s40104-018-0235-3
[24]
李宗军. 瘤胃丙酸发酵的增强策略及其对碳水化合物代谢的动态影响[D]. 博士学位论文. 杨凌: 西北农林科技大学, 2018.
LI Z J. The ruminal manipulation strategies for enhancing propionate fermentation and their dynamic effects on carbohydrate metabolism[D]. Ph. D. Thesis. Yangling: Northwest A&F University, 2018. (in Chinese)
[25]
RYLE M, ØRSKOV E R. Energy nutrition in ruminants[M]. Dordrecht: Springer, 1990.
[26]
SHABAT S K B, SASSON G, DORON-FAIGENBOIM A, et al. Specific microbiome-dependent mechanisms underlie the energy harvest efficiency of ruminants[J]. The ISME Journal, 2016, 10(12): 2958-2972. DOI:10.1038/ismej.2016.62
[27]
REN H, SU X D, BAI H X, et al. Specific enrichment of microbes and increased ruminal propionate production: the potential mechanism underlying the high energy efficiency of Holstein heifers fed steam-flaked corn[J]. AMB Express, 2019, 9(1): 209. DOI:10.1186/s13568-019-0937-8
[28]
HRISTOV A N, OH J, FIRKINS J L, et al. Special topics-mitigation of methane and nitrous oxide emissions from animal operations: Ⅰ.A review of enteric methane mitigation options[J]. Journal of Animal Science, 2013, 91(11): 5045-5069. DOI:10.2527/jas.2013-6583
[29]
OWENS F N, SECRIST D S, HILL W J, et al. The effect of grain source and grain processing on performance of feedlot cattle: a review[J]. Journal of Animal Science, 1997, 75(3): 868-879. DOI:10.2527/1997.753868x
[30]
LI F, CAO Y C, LIU N N, et al. Subacute ruminal acidosis challenge changed in situ degradability of feedstuffs in dairy goats[J]. Journal of Dairy Science, 2014, 97(8): 5101-5109. DOI:10.3168/jds.2013-7676
[31]
NAGARAJA T G, TITGEMEYER E C. Ruminal acidosis in beef cattle: the current microbiological and nutritional outlook[J]. Journal of Dairy Science, 2007, 90(Suppl.): E17-E38.
[32]
PLAIZIER J C, KRAUSE D O, GOZHO G N, et al. Subacute ruminal acidosis in dairy cows: the physiological causes, incidence and consequences[J]. The Veterinary Journal, 2008, 176(1): 21-31. DOI:10.1016/j.tvjl.2007.12.016
[33]
ABDELA N. Sub-acute ruminal acidosis (SARA) and its consequence in dairy cattle: a review of past and recent research at global prospective[J]. Achievements in the Life Sciences, 2016, 10(2): 187-196. DOI:10.1016/j.als.2016.11.006
[34]
KRAUSE K M, COMBS D K, BEAUCHEMIN K A. Effects of forage particle size and grain fermentability in midlactation cows.Ⅰ.Milk production and diet digestibility[J]. Journal of Dairy Science, 2002, 85(8): 1936-1946. DOI:10.3168/jds.S0022-0302(02)74270-7
[35]
沈宜钊. 日粮淀粉来源与有机酸预处理玉米对奶山羊瘤胃酸中毒的影响及机制[D]. 博士学位论文. 扬州: 扬州大学, 2018.
SHEN Y Z. Effect and mechanism of dietary starch source and organic acid pretreated corn on ruminal acidosis in dairy goats[D]. Ph. D. Thesis. Yangzhou: Yangzhou University, 2018. (in Chinese)
[36]
MURPHY T A, FLUHARTY F L, LOERCH S C. The influence of intake level and corn processing on digestibility and ruminal metabolism in steers fed all-concentrate diets[J]. Journal of Animal Science, 1994, 72(6): 1608-1615. DOI:10.2527/1994.7261608x
[37]
CLARK J H, OLSON K C, SCHMIDT T B, et al. Effects of dry matter intake restriction on diet digestion, energy partitioning, phosphorus retention, and ruminal fermentation by beef steers[J]. Journal of Animal Science, 2007, 85(12): 3383-3390. DOI:10.2527/jas.2006-741
[38]
KUCUK O, HESS B W, RULE D C. Soybean oil supplementation of a high-concentrate diet does not affect site and extent of organic matter, starch, neutral detergent fiber, or nitrogen digestion, but influences both ruminal metabolism and intestinal flow of fatty acids in limit-fed lambs[J]. Journal of Animal Science, 2004, 82(10): 2985-2994. DOI:10.2527/2004.82102985x
[39]
MONTGOMERY S P, DROUILLARD J S, NAGARAJA T G, et al. Effects of supplemental fat source on nutrient digestion and ruminal fermentation in steers[J]. Journal of Animal Science, 2008, 86(3): 640-650. DOI:10.2527/jas.2006-812
[40]
CORONA L, RODRIGUEZ S, WARE R A, et al. Comparative effects of whole, ground, dry-rolled, and steam-flaked corn on digestion and growth performance in feedlot cattle[J]. The Professional Animal Scientist, 2005, 21(3): 200-206. DOI:10.15232/S1080-7446(15)31203-1
[41]
PLASCENCIA A, BERMÚDEZ R M, CERVANTES M, et al. Influence of processing method on comparative digestion of white corn versus conventional steam-flaked yellow dent corn in finishing diets for feedlot cattle[J]. Journal of Animal Science, 2011, 89(1): 136-141. DOI:10.2527/jas.2010-3116
[42]
ORSKOV E R. The effect of processing on digestion and utilization of cereals by ruminants[J]. The Proceedings of the Nutrition Society, 1976, 35(2): 245-252. DOI:10.1079/PNS19760038
[43]
OWENS F N, ZINN R A, KIM Y K. Limits to starch digestion in the ruminant small intestine[J]. Journal of Animal Science, 1986, 63(5): 1634-1648. DOI:10.2527/jas1986.6351634x
[44]
HARMON D L. Dietary influences on carbohydrases and small intestinal starch hydrolysis capacity in ruminants[J]. The Journal of Nutrition, 1992, 122(1): 203-210. DOI:10.1093/jn/122.1.203
[45]
WESTREICHER-KRISTEN E, ROBBERS K, BLANK R, et al. Postruminal digestion of starch infused into the abomasum of heifers with or without exogenous amylase administration[J]. Journal of Animal Science, 2018, 96(5): 1939-1951. DOI:10.1093/jas/sky082
[46]
HARMON D L, YAMKA R M, ELAM N A. Factors affecting intestinal starch digestion in ruminants: a review[J]. Canadian Journal of Animal Science, 2004, 84(3): 309-318. DOI:10.4141/A03-077
[47]
HALE W H, PROUTY F. Grain processing systems for milo and corn[J]. Feedstuffs, 1980, 52(47): 12-30.
[48]
ARMSTRONG D G, BLASTER I L. GRAHAM N M C.Fat synthesis from glucose by sheep[J]. Proceedings of the Nutrition Society, 1960, 19: 31-36.
[49]
BLACK J L. A theoretical consideration of the effect of preventing rumen fermentation on the efficiency of utilization of dietary energy and protein in lambs[J]. British Journal of Nutrition, 1971, 25(1): 31-55. DOI:10.1079/BJN19710063
[50]
MCLEOD K R, BALDWIN R L V, HARMON D L, et al. Influence of ruminal and postruminal starch infusion on energy balance in growing steers[C]//Proceedings of the 15th Symposium on Energy Metabolism in Animals. Wageningen: Wageningen, 2001: 385-388.
[51]
MCLEOD K R, BALDWIN R L 6th, SOLOMON M B, et al. Influence of ruminal and postruminal carbohydrate infusion on visceral organ mass and adipose tissue accretion in growing beef steers[J]. Journal of Animal Science, 2007, 85(9): 2256-2270. DOI:10.2527/jas.2006-359
[52]
NOLAN J V, NORTON B W, LENG R A. Further studies of the dynamics of nitrogen metabolism in sheep[J]. British Journal of Nutrition, 1976, 35(1): 127-147. DOI:10.1079/BJN19760016
[53]
STEVENS C E, ARGENZIO R A, CLEMENS E T. Microbial digestion: rumen versus large intestine[M]//RUCKEBUSCH Y, THIVEND P. Digestive physiology and metabolism in ruminants. Dordrecht: Springer, 1980: 685-706.
[54]
MCNEIL N I. Nutritional implications of human and mammalian large intestinal function[J]. World Review of Nutrition and Dietetics, 1988, 56: 1-42.
[55]
IMMIG I. The rumen and hindgut as source of ruminant methanogenesis[J]. Environmental Monitoring and Assessment, 1996, 42(1/2): 57-72.
[56]
HUME I D. Fermentation in the hindgut of mammals[M]//MACKI R I, WHITE B A. Gastrointestinal microbiology. Boston: Springer, 1997: 84-115.
[57]
VÁRADYOVÁ Z, ZELEÑÁK I, SIROKA P. In vitro study of the rumen and hindgut fermentation of fibrous materials (meadow hay, beech sawdust, wheat straw) in sheep[J]. Animal Feed Science and Technology, 2000, 83(2): 127-138. DOI:10.1016/S0377-8401(99)00121-2
[58]
ORSKOV E R, FRASER C, KAY R N. Dietary factors influencing the digestion of starch in the rumen and small and large intestine of early weaned lambs[J]. British Journal of Nutrition, 1969, 23(2): 217-226. DOI:10.1079/BJN19690029
[59]
HOOVER W H. Digestion and absorption in the hindgut of ruminants[J]. Journal of Animal Science, 1978, 46(6): 1789-1799. DOI:10.2527/jas1978.4661789x
[60]
ZHANG J, SHI H T, WANG Y J, et al. Effect of limit-fed diets with different forage to concentrate ratios on fecal bacterial and archaeal community composition in Holstein heifers[J]. Frontiers in Microbiology, 2018, 9: 976. DOI:10.3389/fmicb.2018.00976
[61]
HARMON D L, MCLEOD K R. Glucose uptake and regulation by intestinal tissues: implications and whole-body energetics[J]. Journal of Animal Science, 2001, 79(Suppl.E): E59-E72.
[62]
FAICHNEY G J. Volatile fatty acids in the caecum of the sheep[J]. Australian Journal of Biological Sciences, 1968, 21(1): 177-180. DOI:10.1071/BI9680177
[63]
THORNTON R F, BIRD P R, SOMERS M, et al. Urea excretion in ruminants.Ⅲ.The role of the hind-gut (caecum and colon)[J]. Australian Journal of Agricultural Research, 1970, 21(2): 345-354. DOI:10.1071/AR9700345
[64]
REYNOLDS C K, CAMMELL S B, HUMPHRIES D J, et al. Effects of postrumen starch infusion on milk production and energy metabolism in dairy cows[J]. Journal of Dairy Science, 2001, 84(10): 2250-2259. DOI:10.3168/jds.S0022-0302(01)74672-3
[65]
MATTHÉ A, LEBZIEN P, HRIC I, et al. Influence of prolonged adaptation periods on starch degradation in the digestive tract of dairy cows[J]. Animal Feed Science and Technology, 2003, 103(1/4): 15-27.
[66]
BISSELL H A, HALL M B. Cattle differ in ability to adapt to small intestinal digestion of starch[J]. Journal of Dairy Science, 2010, 93(E-Suppl.1): 845.
[67]
ROBBERS K, WESTREICHER-KRISTEN E, TROESCHER A, et al. Effects of abomasally infused amylase and increasing amounts of corn starch on fecal excretion of starch, total and microbial nitrogen, and volatile fatty acids in heifers[J]. Journal of Animal Science, 2019, 97(9): 3984-3993. DOI:10.1093/jas/skz243
[68]
HARMON D L. Understanding starch utilization in the small intestine of cattle[J]. Asian-Australasian Journal of Animal Sciences, 2009, 22(7): 915-922. DOI:10.5713/ajas.2009.r.08
[69]
CALLISON S L, FIRKINS J L, EASTRIDGE M L, et al. Site of nutrient digestion by dairy cows fed corn of different particle sizes or steam-rolled[J]. Journal of Dairy Science, 2001, 84(6): 1458-1467. DOI:10.3168/jds.S0022-0302(01)70179-8
[70]
LARSEN M, KRISTENSEN N B. Effect of abomasal glucose infusion on splanchnic and whole-body glucose metabolism in periparturient dairy cows[J]. Journal of Dairy Science, 2009, 92(3): 1071-1083. DOI:10.3168/jds.2008-1453
[71]
SMITH W. Impacts of small intestinal enzyme activity and varying corn grain processing types on feeding behavior, and growth performance of finishing beef steers[D]. Master's Thesis. Vermillion: South Dakota State University, 2019.
[72]
RÉMOND D, CABRERA-ESTRADA J I, CHAMPION M, et al. Effect of corn particle size on site and extent of starch digestion in lactating dairy cows[J]. Journal of Dairy Science, 2004, 87(5): 1389-1399. DOI:10.3168/jds.S0022-0302(04)73288-9
[73]
白翰逊. 日粮瘤胃可降解淀粉对青年奶山羊生长性能、血液生化及免疫功能的影响[D]. 硕士学位论文. 杨凌: 西北农林科技大学, 2019.
BAI H X. Effects of ruminal degradable starch levels on growth performance, blood parameter and immunity in young dairy goat[D]. Master's Thesis. Yangling: Northwest A&F University, 2019. (in Chinese)
[74]
MCCARTHY R D, J r, KLUSMEYER T H, VICINI J L, et al. Effects of source of protein and carbohydrate on ruminal fermentation and passage of nutrients to the small intestine of lactating cows[J]. Journal of Dairy Science, 1989, 72(8): 2002-2016. DOI:10.3168/jds.S0022-0302(89)79324-3
[75]
PHILIPPEAU C, LE DESCHAULT DE MONREDON F, MICHALET-DOREAU B. Relationship between ruminal starch degradation and the physical characteristics of corn grain[J]. Journal of Animal Science, 1999, 77(1): 238-243. DOI:10.2527/1999.771238x
[76]
TAYLOR C C, ALLEN M S. Corn grain endosperm type and brown midrib 3 corn silage: site of digestion and ruminal digestion kinetics in lactating cows[J]. Journal of Dairy Science, 2005, 88(4): 1413-1424. DOI:10.3168/jds.S0022-0302(05)72809-5
[77]
OBA M, ALLEN M S. Effects of corn grain conservation method on feeding behavior and productivity of lactating dairy cows at two dietary starch concentrations[J]. Journal of Dairy Science, 2003, 86(1): 174-183. DOI:10.3168/jds.S0022-0302(03)73598-X
[78]
KNOWLTON K F, GLENN B P, ERDMAN R A. Performance, ruminal fermentation, and site of starch digestion in early lactation cows fed corn grain harvested and processed differently[J]. Journal of Dairy Science, 1998, 81(7): 1972-1984. DOI:10.3168/jds.S0022-0302(98)75771-6
[79]
ABRAMSON S M, BRUCKENTAL I, LIPSHITZ L, et al. Starch digestion site: influence of ruminal and abomasal starch infusion on starch digestion and utilization in dairy cows[J]. Animal Science, 2005, 80(2): 201-207. DOI:10.1079/ASC41640201
[80]
FROBISH R A, DAVIS C L. Effects of abomasal infusions of glucose and proprionate on milk yield and composition[J]. Journal of Dairy Science, 1977, 60(2): 204-209. DOI:10.3168/jds.S0022-0302(77)83855-1
[81]
LEMOSQUET S, RIDEAU N, RULQUIN H, et al. Effects of a duodenal glucose infusion on the relationship between plasma concentrations of glucose and insulin in dairy cows[J]. Journal of Dairy Science, 1997, 80(11): 2854-2865. DOI:10.3168/jds.S0022-0302(97)76250-7
[82]
HURTAUD C, RULQUIN H, VERITE R. Effects of graded duodenal infusions of glucose on yield and composition of milk from dairy cows.1.Diets based on corn silage[J]. Journal of Dairy Science, 1998, 81(12): 3239-3247. DOI:10.3168/jds.S0022-0302(98)75888-6
[83]
RIGOUT S, LEMOSQUET S, BACH A, et al. Duodenal infusion of glucose decreases milk fat production in grass silage-fed dairy cows[J]. Journal of Dairy Science, 2002, 85(10): 2541-2550. DOI:10.3168/jds.S0022-0302(02)74337-3
[84]
RIGOUT S, HURTAUD C, LEMOSQUET S, et al. Lactational effect of propionic acid and duodenal glucose in cows[J]. Journal of Dairy Science, 2003, 86(1): 243-253. DOI:10.3168/jds.S0022-0302(03)73603-0
[85]
THEURER C B, LOZANO O, ALIO A, et al. Steam-processed corn and sorghum grain flaked at different densities alter ruminal, small intestinal, and total tract digestibility of starch by steers[J]. Journal of Animal Science, 1999, 77(10): 2824-2831. DOI:10.2527/1999.77102824x
[86]
LARSEN M, KRISTENSEN N B. Effects of glucogenic and ketogenic feeding strategies on splanchnic glucose and amino acid metabolism in postpartum transition Holstein cows[J]. Journal of Dairy Science, 2012, 95(10): 5946-5960. DOI:10.3168/jds.2012-5458
[87]
MCCARTHY C. Evaluating the effects of rumen-protected glucose (RPG) on production, metabolism, and inflammation in transitioning dairy cows[D]. Master's Thesis. Ames: Iowa State University, 2019.
[88]
SHIPANDENI M N T. Modulation of starch digestion for productive performance in dairy cows[D]. Ph. D. Thesis. Stellenbosch: Stellenbosch University, 2019.
[89]
RUSSI J P, DILORENZO N, RELLING A E. Effects of rumen-protected carbohydrate supplementation on performance and blood metabolites in feedlot finishing steers during heat stress[J]. Translational Animal Science, 2019, 3(1): 513-521. DOI:10.1093/tas/txy122
[90]
ALLEN M S, BRADFORD B J, OBA M. Board invited review: the hepatic oxidation theory of the control of feed intake and its application to ruminants[J]. Journal of Animal Science, 2009, 87(10): 3317-3334. DOI:10.2527/jas.2009-1779
[91]
姚军虎, 申静. 瘤胃可降解淀粉: 决定反刍动物消化道健康与养分利用的关键日粮因子[J]. 饲料工业, 2020, 41(8): 1-7.
YAO J H, SHEN J. Rumen degradable starch regulate the gut health and nutrient utilization in ruminants[J]. Feed Industry, 2020, 41(8): 1-7 (in Chinese).