动物营养学报    2022, Vol. 34 Issue (8): 4802-4811    PDF    
功能性低聚木糖在肉鸡生产中的应用研究进展
李茜茜 , 王鑫鑫 , 马文锋 , 赵芙蓉     
河南科技大学动物科技学院, 洛阳 471023
摘要: 低聚木糖作为一种绿色功能性添加剂, 可通过发挥肠道正常功能、促进营养物质消化吸收的作用来提高肉鸡生长性能、改善饲料利用效率、减少含氮有机物的排泄进而降低有害气体的产生; 同时, 可增强血清抗氧化能力以及机体免疫功能。本文在国内外相关研究的基础上, 综述分析了低聚木糖对肉鸡生长性能、肉品质、氮代谢及粪便氨气释放、血清生化指标、抗氧化功能、肠道组织形态、免疫功能和采食行为的影响, 旨在为低聚木糖在肉鸡生产上的研究与合理利用提供科学依据。
关键词: 低聚木糖    肉鸡    生长性能    氮代谢    血清生化指标    抗氧化    肠道形态    免疫功能    
Research Progress in Application of Functional Xylooligosaccharides in Broiler Production
LI Xixi , WANG Xinxin , MA Wenfeng , ZHAO Furong     
College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China
Abstract: As a green functional additive, xylooligosaccharides can improve the growth performance and feed utilization efficiency, reduce the excretion of nitrogen-containing organic matter and restrict the production of harmful gases by exerting the normal intestinal function and promoting the digestion and absorption of nutrients. Meanwhile, it can enhance serum antioxidant capacity as well as immune function. This review analyzed the effect of xylooligosaccharides in broiler based on the related studies at home and abroad, including growth performance and meat quality, nitrogen metabolism and fecal ammonia release, blood biochemical indices, antioxidant capacity, intestinal tissue morphology, immune function and feeding behavior. The purpose is to provide a scientific basis for the research and rational utilization of xylooligosaccharides in broiler production.
Key words: xylooligosaccharides    broiler    growth performance    nitrogen metabolism    serum biochemical indices    antioxidant    intestinal morphology    immune function    

低聚木糖是通过β-1, 4糖苷键将2~8个木糖分子连接起来的寡糖[1],主要有效成分包括木二糖、木三糖和木四糖,其来源广泛,由甘蔗渣、玉米芯、稻壳、秸秆等富含半纤维素的农作物副产品水解而得[2]。低聚木糖在pH 2.5~8.0稳定性高,并具有耐高温的特点[3]。动物体内缺乏水解β-1, 4糖苷键的消化酶,因此低聚木糖可直接经过胃和小肠,进入消化道后段,经肠道微生物发酵产生的短链脂肪酸(SCFAs),如乙酸盐、丙酸盐、丁酸盐降低肠道pH,抑制有害菌生长繁殖,促进双歧杆菌、乳酸杆菌的定植,选择性刺激与健康和福利相关的肠道微生物群的生长和活性的变化[4]。低聚木糖具有增强先天免疫[5]、调节血脂水平[6]、提高抗氧化功能[7]和改善肠道形态结构的特点[8]。影响低聚木糖使用效果的因素有很多,包括其结构组成、添加剂量、饲粮种类、饲养环境以及动物个体之间的差异,因而在畜禽应用上的研究结论并不一致。本文综述了低聚木糖对肉鸡生长性能、肉品质、氮代谢及粪便氨气释放、血清生化指标、抗氧化功能、肠道组织形态、免疫功能和采食行为的影响,为进一步研究和应用低聚木糖提供参考。

1 低聚木糖对肉鸡生长性能和肉品质的影响 1.1 低聚木糖对肉鸡生长性能的影响

低聚木糖对肉鸡生长性能的影响报道并不一致。有学者认为添加适宜水平的低聚糖对禽类生长性能、屠宰性能以及健康状况有明显的改善。由于机体健康状况得到改善,用于抵御、排除病原微生物消耗的能量支出转化到生产中,使饲料转化率也有明显提高[9]。Craig等[10]在小麦型饲粮中添加0.25和1.00 g/kg低聚木糖均降低了28日龄肉鸡采食量和饲料转化率。冷智贤等[11]研究发现,豆粕型基础饲粮中添加100 mg/kg的低聚木糖可显著提高肉鸡21和42日龄平均体重及1~21日龄平均日增重。Courtin等[12]报道,小麦型基础饲粮中添加0.5%或玉米型基础饲粮中添加0.25%的麦麸源阿拉伯低聚木糖均可提高肉鸡饲料转化率。De Maesschalck等[13]试验结果也表明,小麦型基础饲粮添加0.2%和0.5%的低聚木糖可显著提高肉仔鸡初期和生长期饲料转化率,整个试验期间的饲料转化率也显著提高,但0.5%的低聚木糖对不同时期平均体重均没有显著影响。综上所述,低聚木糖通过提高肠道消化酶活性,促进与生长相关的激素分泌,增加肠道SCFAs含量[14],从而将饲料中难以分解的大分子营养物质转变为易被消化吸收的小分子营养物质。同时,低聚木糖经有益菌代谢产生的SCFAs为肠上皮细胞(IEC)吸收营养物质提供能量[4],因此,低聚木糖可在一定程度上改善肉鸡生长性能。然而,Luo等[15]试验发现,玉米-豆粕型基础饲粮中添加150 mg/kg低聚木糖对肉仔鸡体增重、采食量、饲料转化率均无显著影响。Ribeiro等[16]研究表明,玉米型基础饲粮中添加0.1 g/kg低聚木糖组与未添加组相比虽然肉鸡体重较高,但是随着添加水平的提高,高剂量组(10.0 g/kg)与未添加组的体重类似。索海青等[17]报道,玉米-豆粕型基础饲粮中低聚木糖添加水平在160~1 600 mg/kg时,对1~21日龄和22~42日龄肉仔鸡生长性能和死亡率的影响均不显著。关于低聚木糖对肉鸡生长性能影响的报道不一致的原因可能是肉鸡存在一个适应期,低聚木糖使食糜通过消化道的速度加快,导致营养物质来不及吸收,或与添加剂量和产品形式的差异有关。

1.2 低聚木糖对肉鸡肉品质的影响

肉色、肌肉pH、嫩度和系水力是综合反映肉品质的指标,肌肉pH反映屠宰后体内糖原酵解的速度,与其他肉品质指标密切相关。据报道,青脚麻鸡饲粮中添加低聚木糖合生元有利于改善肉品质,降低了屠宰后胸肌蒸煮损失和24 h滴水损失[18]。Suo等[19]试验结果表明,肉鸡腿肌滴水损失随着低聚木糖添加水平的提高呈线性下降,当添加量为100 mg/kg时腿肌滴水损失最低,但对胸肌肉品质没有显著影响。研究表明,肉鸭肌肉较高的抗氧化酶活性使pH、系水力提高,肉色也更加稳定,可抑制脂质氧化并参与肉质的调节[20],因此,肌肉系水力的提高可能与低聚木糖的抗氧化性有关。陈倩妮[21]试验发现,低聚木糖能降低肉鸡腹脂率,而对胸肌率和腿肌率没有显著影响,0.3%添加水平有利于提高肌肉粗蛋白质和粗脂肪含量,这可能是由于含有大量消化酶的有益菌在肠道中增殖,促使一些不能被自身内源酶降解的大分子营养物质得到吸收利用,降低了血氨浓度,使体内蛋白质的蓄积增加所致。邓文等[22]报道,单独添加丁酸梭菌和低聚木糖以及同时添加两者能显著降低肉鸡的腹脂率。综上所述, 丁酸梭菌和低聚木糖可互作改善肉鸡生长性能、屠宰性能和肉品质。

2 低聚木糖对肉鸡氮代谢及粪便氨气释放的影响

血清总蛋白(TP)及白蛋白(ALB)的含量能准确反映机体蛋白质吸收状况,血清尿素氮(UN)和尿酸(UA)是家禽利用蛋白质的产物,可直接反映氨基酸和蛋白质的代谢情况,蛋白质代谢良好时,血清UN含量降低。肉鸡饲粮中有约2/3的氮沉积到肌肉中或被组织吸收,剩下约1/3的氮不能被利用而排出体外[23]。据Hou等[24]报道,低聚木糖可以降低血清UN含量,而对血清TP、ALB含量影响的报道结果不一致。王鹏[25]在玉米-豆粕型饲粮中添加300 g/t(即300 mg/kg)低聚木糖可显著提高肉仔鸡血清TP、ALB含量。陈雁南等[26]则报道,添加150 mg/kg低聚木糖显著降低肉鸡血清TP和ALB含量。氮代谢报道不一致的原因可能与饲粮氨基酸水平、肉鸡生长阶段的代谢水平不同以及肠道微生物区系有关。

氨气是鸡舍中危害最大的有害气体之一,主要来源于含氮有机物如粪便的分解。当有害菌在肠道中的活动增强时,蛋白质更多地转化成胺、氨以及其他腐败物质[27]。Kajihara等[28]研究表明,低聚木糖可以通过抑制产氨厌氧菌(如拟杆菌)的肠道定植来发挥作用,粪便恶臭物质生成量减少可能是因为分解氨基酸产生氨气的细菌主要是革兰氏阴性菌。Christophersen等[29]在人类结肠模拟器中,通过混合粪便微生物群向发酵大豆蛋白添加低聚木糖或菊粉,发现低聚木糖可通过特定的菌群和SCFAs调节蛋白质诱导的结肠环境的遗传毒性。这是由于大多数结肠蛋白酶在中性条件下发挥最佳作用,SCFAs的产生导致结肠pH降低,从而抑制了蛋白酶活性[30],SCFAs含量增加时也可以抑制蛋白质的降解(抑制脱氨基作用)[31]

3 低聚木糖对肉鸡血清生化指标的影响

血清生化指标的变化可反映机体的代谢状况,Samanta等[32]报道,玉米壳来源的低聚木糖显著降低了肉鸡血清胆固醇(CHOL)、葡萄糖(GLU)、极低密度脂蛋白(VLDL)、低密度脂蛋白(LDL)和甘油三酯(TG)的含量。低聚木糖对脂代谢的调控可能是通过有益菌发酵产生的SCFAs介导的[33]。研究发现,饲粮中添加菊粉可显著降低仓鼠血浆中TG、VLDL和总胆固醇的含量,刺激胆汁酸的合成[34]。为了维持肠肝循环所需的结合胆汁酸水平,排泄的胆汁酸被体内胆固醇合成新的胆汁酸所替代,从而发挥降低体内CHOL的潜力[35],结肠发酵产物丙酸盐也能抑制肝脏脂肪的形成[36]。也有研究发现,SCFAs通过降低过氧化物酶体增殖物激活受体γ(PPARγ)及靶基因Cd36、LplFabp4和Pltp在肝脏和脂肪组织中的表达来调节脂质代谢[37]。甲状腺激素(TH)可调节多种生理过程,包括细胞生长、分化、代谢和增殖[38],在刺激垂体生长激素(GH)合成和分泌中起关键作用[39]。范艳平[40]在肉鸡饲粮中添加棉籽壳源低聚木糖菌糠显著提高了血清三碘甲状腺原氨酸(T3)、甲状腺素(T4)、GH和胰岛素(Ins)含量。李淑珍等[14]研究也发现,饲粮添加低聚木糖可显著增加肉鸡血清GH和T3的含量,并显著降低血清T4含量,可能是在低聚木糖的作用下,一部分T4转化成T3,使总体上T3所占比例显著增加,正向调控肉鸡生长速率,与Sun等[41]、Iqbal等[42]发现低聚糖能显著增加血清T3含量的报道一致。

4 低聚木糖对肉鸡抗氧化功能的影响

氧化应激是一种不平衡的状态,产生的一系列活性氧(ROS),如超氧阴离子(O2-)、过氧化氢(H2O2)和羟自由基(·OH)的含量超过正常细胞功能所需的水平时,将压倒内源性抗氧化能力和修复能力[43]。氧化应激通过破坏蛋白质和核酸、诱导脂质过氧化产生大量丙二醛(MDA)等方式对细胞造成损伤,导致内环境失衡并引发疾病[44]。肉鸡生长中后期随着机体的衰老,自由基产生和脂质过氧化作用加剧,生理机能减退。超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、谷胱甘肽还原酶(GR)、谷胱甘肽过氧化物酶(GSH-Px)和黄嘌呤氧化还原酶(XOR)负责维持自由基形成和清除之间的平衡[45]。Boonchuay等[46]报道,玉米芯来源的低聚木糖具有良好的2, 2′-二苯-1-吡啶肼(DPPH)和2, 2′-叠氮-双(3-乙基苯并噻唑啉-6-磺酸)(ABTS)自由基清除活性和铁还原抗氧化能力(FRAP),总酚类化合物含量显著提高。研究表明,低聚木糖可增强动物的抗氧化能力[47-48]。赵颖[49]也报道,低聚木糖添加组肉鸡21日龄血清MDA含量降低,血清总抗氧化能力(T-AOC)提高,尤其是75 mg/kg超微低聚木糖组其血清T-AOC显著高于常规低聚木糖组。杨卫兵[50]试验结果表明,饲粮添加100 mg/kg的低聚木糖可提高肉鸡血清SOD和CAT活性,降低血清MDA含量。Chen等[51]在肉鸡饲粮中添加1.5 g/kg合生元(1.5 g合生元含有150 mg低聚木糖、3×109 CFU丁酸梭菌和4.5×1010 CFU枯草芽孢杆菌等),降低42日龄肉鸡回肠MDA含量。抗氧化能力的提高可能是因为低聚木糖促进了肉鸡肠道乳酸杆菌属的生长,乙酸盐和丙酸盐浓度增加[52],低聚木糖使受试黄鸡体内SOD活性,与对照组比较显著提高[53]

5 低聚木糖对肉鸡肠道组织形态的影响

小肠是消化吸收的主要场所和关键器官,肠壁厚度、绒毛高度和隐窝深度可作为衡量肠道形态的指标。绒隐比(VH/CD)通常用作评估肠道绒毛吸收营养物质能力的标准,其数值的增加意味着小肠吸收能力更强。杯状细胞的数量常用于评估肠道完整性,有研究发现,150 mg/kg低聚木糖添加水平使肉鸡十二指肠和空肠杯状细胞数量增加,有利于保护肠黏膜屏障[15]。赵颖[49]研究发现,玉米-豆粕型饲粮添加75 mg/kg超微粉碎低聚木糖虽然对十二指肠肠道形态无显著影响,但可显著增加回肠绒毛高度,降低空肠隐窝深度,提高空肠VH/CD值,说明超微粉碎低聚木糖可在一定程度上改善肉鸡肠道黏膜结构。Suo等[19]在玉米-豆粕型饲粮中添加75 mg/kg低聚木糖,对肉鸡十二指肠绒毛高度和宽度均无显著影响,但显著降低了十二指肠隐窝深度。Wang等[54]也报道,玉米-豆粕型饲粮中添加100 mg/kg低聚木糖对肉鸡十二指肠的长度及相对重量产生有利影响,显著提高肉鸡所有肠段绒毛高度和VH/CD。不一致的是,吴媛媛等[9]在玉米-豆粕型饲粮中分别添加1、2和4 g/kg低聚木糖,发现对肉鸡空肠绒毛高度和隐窝深度均无显著影响。研究表明,饲喂阿拉伯低聚木糖可以刺激或“启动”饲粮中阿拉伯木聚糖的消化,从而促进幼龄肉鸡肠道中纤维发酵微生物组的发育[55]。肠道形态的改变可能是因为益生菌通过与病原体竞争有限的营养,抑制病原体对肠上皮、黏膜的黏附和侵袭,产生抗菌物质或刺激了黏膜免疫[56],肠道细菌的多样性提高并改变了微生物的组成[57]。有益菌代谢产生的SCFAs是肠道微生物菌群和肠上皮细胞的重要能量来源[58],细胞增殖主要发生在隐窝的下半部分,有丝分裂产生的压力迫使细胞沿隐窝轴上升[59],促进隐窝分裂的细胞向脱落的肠绒毛上皮细胞方向移动,增加了绒毛高度,基部细胞生成速率缓慢从而降低了隐窝深度。当前,市场上用于生产低聚木糖的原料来源广泛,由于所含有效成分的不同导致在肉鸡饲粮中的添加剂量差异很大,因此,低聚木糖对肉鸡肠道组织形态的影响及其机理有待进一步研究。

6 低聚木糖对肉鸡免疫功能的影响

低聚木糖本身具有免疫源性,可诱导免疫系统中的多种细胞因子,激活巨噬细胞和T、B淋巴细胞,发挥免疫调控作用。经抗原提呈细胞激活免疫应答,促进免疫细胞增殖分化[60]。微生物代谢产物SCFAs可通过激活G蛋白偶联受体(FFAR2、FFAR3、GPR109a和Olfr78)来调节IEC和白细胞的发育、存活及功能;调节酶和转录因子的活性,建立微生物群和免疫系统之间的联系[61];通过抑制组蛋白脱乙酰酶(HDAC)的活性促进T细胞分化为效应T细胞和调节T细胞[62]。肿瘤坏死因子-α(TNF-α)、白细胞介素-1(IL-1)、白细胞介素-1β(IL-1β)、白细胞介素-6(IL-6)、前列腺素E2(PGE2)、诱导型一氧化氮合酶(iNOS)及环氧合酶-2(COX-2)等促炎细胞因子和炎性介质触发炎症联动效应[63]。体外试验发现,低聚木糖在脂多糖(LPS)刺激的巨噬细胞RAW264.7中以剂量依赖性的方式抑制TNF-α、IL-1β、IL-6和一氧化氮(NO)的产生[64]。特定的肠道微生物可以通过连接到上皮细胞和免疫细胞上的Toll样受体和其他模式识别受体来刺激宿主免疫系统[65]。Yuan等[66]报道,添加2 mg/kg低聚木糖可显著增加肉鸡血浆免疫球蛋白G(IgG)含量,下调21和42日龄空肠干扰素-γ(IFN-γ)、LPS诱导的肿瘤坏死因子(LITAF)和Toll样受体5(TLR5)的mRNA表达水平。发酵产物乙酸盐、丙酸盐和丁酸盐是能力最强的SCFAs,可诱导钙动员,调节免疫系统中的白细胞功能[67]。Pourabedin等[68]发现,感染肠炎沙门氏菌的肉仔鸡饲粮中添加2 g/kg低聚木糖,肉仔鸡盲肠扁桃体中LITAF和IL-6的含量显著降低。而Singh等[69]试验结果表明,饲粮添加100 mg/kg的低聚木糖,肉鸡回肠中白细胞介素-4(IL-4)和白细胞介素-10(IL-10)含量显著提高。据Jazi等[70]报道,在感染鼠伤寒沙门氏菌的肉鸡饲粮中添加2 g/kg低聚木糖,可显著降低肝、脾脏和法氏囊等免疫器官的沙门氏菌数量,同时显著降低血清嗜异性粒细胞与淋巴细胞数量比(H/L),从而增强免疫应答。Sun等[41]通过检测肉鸡血清AI H5N1抗体滴度发现,饲粮添加5、10和20 g/kg低聚木糖,肉鸡24日龄血清抗体滴度均显著高于对照组,且10 g/kg添加水平在59日龄时的血清抗体滴度仍显著提高,因此,研究认为低聚木糖可以通过刺激抗体的产生来提高肉鸡体液免疫。袁缨等[71]研究也发现,果寡糖、甘露寡糖、低聚异麦芽糖、低聚木糖均可改善肉仔鸡免疫器官指数,其中低聚木糖提高胸腺、脾脏、法氏囊指数的效果优于其他低聚糖,与冷智贤等[11]、杨卫兵[50]使用低聚木糖提高肉鸡免疫器官指数的报道一致。综上所述,低聚木糖可以刺激机体细胞免疫和体液免疫,使免疫器官指数在正常范围内提高,可能是因为有益菌和代谢产物作为抗原物质间接促进了免疫器官的发育和成熟。

低聚木糖还可以提高肠黏膜局部免疫力。SCFAs诱导肠道巨噬细胞的抗微生物活性并增加对病原体的抵抗力[72],分泌型免疫球蛋白A(sIgA)是肠黏膜表面最突出的抗体,起着重要的防御作用。杨卫兵[50]报道,饲粮添加100 mg/kg低聚木糖能提高肉鸡空肠和回肠sIgA含量。Min等[73]通过添加低聚木糖、甘露低聚糖和枯草芽孢杆菌组成的合生元研究对肉仔鸡肠道形态和肠黏膜sIgA含量的影响,结果发现能显著提高sIgA含量,新增的抗体覆盖在肠黏膜表面来保护绒毛免受损伤。sIgA受到抗原刺激时分泌量增加,尤其是受到肠道微生物的刺激,可能是低聚木糖促进了sIgA的分泌来提高肠黏膜免疫力。

7 低聚木糖对肉鸡采食行为的影响

行为评价指标是衡量动物健康和福利状况的可靠性指标,采食行为与动物生产性能的高低有直接关系。大量研究表明,饲粮味道[74]、粒度[75]、营养成分[76-77]等因素影响肉鸡的采食行为。韩淑云[78]报道,饲粮添加可溶性纤维可通过增加禽类的顿间间隔时间来提高饱腹感,进而影响采食行为。近年的研究发现,饲喂添加0.5%的阿拉伯低聚木糖的饲粮后,肉鸡回肠食糜黏度均高于对照组[55],因此,推测阿拉伯低聚木糖可能提高了小肠内容物的黏度,延长营养物质在消化道的运输和吸收从而增加了饱腹感。肠道菌群代谢产生的SCFAs可通过与G蛋白偶联受体(GPCRs),如GPR41和GPR43结合来调节基因表达,由GPR41和GPR43发出的信号会影响广泛的生物学功能,其中包括参与食欲控制的激素和Ins的分泌[79]。目前,国内外有关低聚木糖对肉鸡采食行为的影响至今尚未见报道,且低聚木糖略带特殊气味,是否会影响肉鸡对饲粮的采食偏好性进而影响采食行为有待研究。

8 小结

低聚木糖在提高肉鸡抗氧化能力、免疫功能和改善肠道组织形态等方面发挥的积极作用,已被大量试验证实,但是对于生长性能的报道没有一致的结论。这是由于目前市场上生产低聚木糖的原料广泛,且有效成分(木二糖、木三糖和木四糖)的含量不同,导致在饲粮中的添加剂量差异很大。此外,低聚木糖的使用效果还与饲粮种类和试验动物的品种、日龄以及健康状况密切相关。因此,添加低聚木糖对生长性能并不一定产生积极的影响,具体因素和最适添加水平还需进行更多的研究加以论证。采食行为也是动物生产的一个重要方面,通过采食行为将机体所需的各种营养物质摄入体内,以满足生长发育的需要。研究低聚木糖对肉鸡采食行为的影响及其作用机制,有望进一步为低聚木糖在肉鸡生产中的合理应用提供参考依据。

参考文献
[1]
PU J H, ZHAO X, WANG Q C, et al. Development and validation of a HPLC method for determination of degree of polymerization of xylo-oligosaccharides[J]. Food Chemistry, 2016, 213: 654-659. DOI:10.1016/j.foodchem.2016.07.014
[2]
CARVALHO A F A, DE OLIVA NETO P, DA SILVA D F, et al. Xylo-oligosaccharides from lignocellulosic materials: chemical structure, health benefits and production by chemical and enzymatic hydrolysis[J]. Food Research International, 2013, 51(1): 75-85. DOI:10.1016/j.foodres.2012.11.021
[3]
AMORIM C, SILVÉRIO S C, PRATHER K L J, et al. From lignocellulosic residues to market: production and commercial potential of xylooligosaccharides[J]. Biotechnology Advances, 2019, 37(7): 107397. DOI:10.1016/j.biotechadv.2019.05.003
[4]
MARTIN-GALLAUSIAUX C, MARINELLI L, BLOTTIÈRE H M, et al. SCFA: mechanisms and functional importance in the gut[J]. The Proceedings of the Nutrition Society, 2021, 80(1): 37-49. DOI:10.1017/S0029665120006916
[5]
ZHANG Z H, CHEN M, XIE S W, et al. Effects of dietary xylooligosaccharide on growth performance, enzyme activity and immunity of juvenile grass carp, Ctenopharyngodon idellus[J]. Aquaculture Reports, 2020, 18: 100519. DOI:10.1016/j.aqrep.2020.100519
[6]
ABDULAZIZ ABBOD ABDO A, ZHANG C N, LIN Y L, et al. Xylo-oligosaccharides ameliorate high cholesterol diet induced hypercholesterolemia and modulate sterol excretion and gut microbiota in hamsters[J]. Journal of Functional Foods, 2021, 77: 104334. DOI:10.1016/j.jff.2020.104334
[7]
GOWDHAMAN D, PONNUSAMI V. Production and optimization of xylooligosaccharides from corncob by Bacillus aerophilus KGJ2 xylanase and its antioxidant potential[J]. International Journal of Biological Macromolecules, 2015, 79: 595-600. DOI:10.1016/j.ijbiomac.2015.05.046
[8]
马文锋, 吴秋珏, 赵芙蓉, 等. 低聚木糖对产蛋后期蛋鸡生产性能、肠道形态结构及蛋品质的影响[J]. 西北农林科技大学学报(自然科学版), 2021, 49(9): 16-21.
MA W F, WU Q J, ZHAO F R, et al. Effects of xylooligosaccharide on production performance, egg quality and intestinal morphology of laying hens[J]. Journal of Northwest A & F University(Natural Science Edition), 2021, 49(9): 16-21 (in Chinese).
[9]
吴媛媛, 呙于明, 王忠, 等. 木寡糖对肉仔鸡生长性能、肠道生理学和形态学指标的影响[J]. 中国农业大学学报, 2006, 11(4): 42-46.
WU Y Y, GUO Y M, WANG Z, et al. Effect of XOS on growth performance, intestinal physiology and morphology of broilers[J]. Journal of China Agricultural University, 2006, 11(4): 42-46 (in Chinese). DOI:10.3321/j.issn:1007-4333.2006.04.009
[10]
CRAIG A D, KHATTAK F, HASTIE P, et al. Xylanase and xylo-oligosaccharide prebiotic improve the growth performance and concentration of potentially prebiotic oligosaccharides in the ileum of broiler chickens[J]. British Poultry Science, 2020, 61(1): 70-78. DOI:10.1080/00071668.2019.1673318
[11]
冷智贤, 杨雪, 洑琴, 等. 低聚木糖和低聚壳聚糖及其复合制剂对肉鸡生产性能、免疫机能和盲肠菌群的影响[J]. 畜牧与兽医, 2014, 46(5): 13-18.
LENG Z X, YANG X, FU Q, et al. Effects of xylooligosaccharide and chitosan oligosaccharide alone or in combination on growth performance, immune function and cecal microflora of broilers[J]. Animal Husbandry & Veterinary Medicine, 2014, 46(5): 13-18 (in Chinese).
[12]
COURTIN C M, BROEKAERT W F, SWENNEN K, et al. Dietary inclusion of wheat bran arabinoxylooligosaccharides induces beneficial nutritional effects in chickens[J]. Cereal Chemistry, 2008, 85(5): 607-613. DOI:10.1094/CCHEM-85-5-0607
[13]
DE MAESSCHALCK C, EECKHAUT V, MAERTENS L, et al. Effects of xylo-oligosaccharides on broiler chicken performance and microbiota[J]. Applied and Environmental Microbiology, 2015, 81(17): 5880-5888. DOI:10.1128/AEM.01616-15
[14]
李淑珍, 刘娇, 陈志敏, 等. 杨木低聚木糖对肉鸡生长性能、肠道消化酶活性和短链脂肪酸含量及血清激素水平的影响[J]. 动物营养学报, 2021, 33(2): 832-840.
LI S Z, LIU J, CHEN Z M, et al. Effects of xylo-oligosaccharides from poplar on growth performance, intestinal digestive enzyme activity and short-chain fatty acid content and serum hormone levels of broilers[J]. Chinese Journal of Animal Nutrition, 2021, 33(2): 832-840 (in Chinese). DOI:10.3969/j.issn.1006-267x.2021.02.024
[15]
LUO D, LI J L, XING T, et al. Combined effects of xylo-oligosaccharides and coated sodium butyrate on growth performance, immune function, and intestinal physical barrier function of broilers[J]. Animal Science Journal, 2021, 92(1): e13545.
[16]
RIBEIRO T, CARDOSO V, FERREIRA L M A, et al. Xylo-oligosaccharides display a prebiotic activity when used to supplement wheat or corn-based diets for broilers[J]. Poultry Science, 2018, 97(12): 4330-4341. DOI:10.3382/ps/pey336
[17]
索海青, 许国辉, 肖林, 等. 低聚木糖对肉仔鸡的生物安全性评价[J]. 动物营养学报, 2015, 27(6): 1841-1852.
SUO H Q, XU G H, XIAO L, et al. Evaluation of the biological safety of xylooligosaccharides for broilers[J]. Chinese Journal of Animal Nutrition, 2015, 27(6): 1841-1852 (in Chinese).
[18]
LI J, CHENG Y F, CHEN Y P, et al. Effects of dietary synbiotic supplementation on growth performance, lipid metabolism, antioxidant status, and meat quality in Partridge shank chickens[J]. Journal of Applied Animal Research, 2019, 47(1): 586-590. DOI:10.1080/09712119.2019.1693382
[19]
SUO H Q, LU L, XU G H, et al. Effectiveness of dietary xylo-oligosaccharides for broilers fed a conventional corn-soybean meal diet[J]. Journal of Integrative Agriculture, 2015, 14(10): 2050-2057. DOI:10.1016/S2095-3119(15)61101-7
[20]
ZHENG N Z, ZHANG L L, XIN Q W, et al. Changes in antioxidant enzymes in postmortem muscle and effects on meat quality from three duck breeds during cold storage[J]. Canadian Journal of Animal Science, 2020, 100(2): 234-243. DOI:10.1139/cjas-2018-0067
[21]
陈倩妮. 低聚木糖对肉仔鸡生产性能、肉品质及肠道微生物的影响[D]. 硕士学位论文. 北京: 中国农业科学院, 2009.
CHEN Q N. Effects of xylooligosaccharides on growth performance, meat quality and intestinal bacteria in broilers[D]. Master's Thesis. Beijing: Chinese Academy of Agricultural Sciences, 2009. (in Chinese)
[22]
邓文, 焦玉萍, 徐彬, 等. 丁酸梭菌和低聚木糖对肉鸡生产性能、屠宰性能和肉品质的影响[J]. 中国家禽, 2017, 39(7): 24-28.
DENG W, JIAO Y P, XU B, et al. Effect of Clostridium botulinum and xylo-oligosaccharides on production performance, slaughter performance and meat quality of broilers[J]. China Poultry, 2017, 39(7): 24-28 (in Chinese).
[23]
SZCZUREK W. Performance and nitrogen output in young broilers fed diets containing different plant by-products and formulated with predetermined ileal digestible amino acid values[J]. Annals of Animal Science, 2010, 10(3): 285-298.
[24]
HOU Z P, WU D Q, DAI Q Z. Effects of dietary xylo-oligosaccharide on growth performance, serum biochemical parameters, antioxidant function, and immunological function of nursery piglets[J]. Revista Brasileira de Zootecnia, 2020, 49: e20190170. DOI:10.37496/rbz4920190170
[25]
王鹏. 低聚木糖和姜黄素对肉仔鸡生产性能及免疫机能影响的研究[D]. 硕士学位论文. 郑州: 河南农业大学, 2018.
WANG P. Study on the effects of xylooligosaccharide and curcumin on growth performance and immune function in broilers[D]. Master's Thesis. Zhengzhou: Henan Agricultural University, 2018. (in Chinese)
[26]
陈雁南, 罗有文, 郝家杰, 等. 低聚木糖对AA肉鸡生产性能、血清相关指标及盲肠大肠杆菌数的影响[J]. 江苏农业科学, 2009(6): 273-275.
CHEN Y N, LUO Y W, HAO J J, et al. Effect of the xylo-oligosaccharides on performance, serum indexes and cecal Escherichia coli count of broilers[J]. Jiangsu Agricultural Sciences, 2009(6): 273-275 (in Chinese). DOI:10.3969/j.issn.1002-1302.2009.06.114
[27]
袁建敏, 万振环. 家禽排泄物中氨减排的饲料配制技术进展[J]. 家畜生态学报, 2008, 29(4): 1-5.
YUAN J M, WAN Z H. Research progress on feed formulations to reduce N exctetion and ammonia emission from poultry manure[J]. Acta Ecologae Animalis Domastici, 2008, 29(4): 1-5 (in Chinese). DOI:10.3969/j.issn.1673-1182.2008.04.001
[28]
KAJIHARA M, KATO S, KONISHI M, et al. Xylooligosaccharide decreases blood ammonia levels in patients with liver cirrhosis[J]. American Journal of Gastroenterology, 2000, 95(9): 2514.
[29]
CHRISTOPHERSEN C T, PETERSEN A, LICHT T R, et al. Xylo-oligosaccharides and inulin affect genotoxicity and bacterial populations differently in a human colonic simulator challenged with soy protein[J]. Nutrients, 2013, 5(9): 3740-3756. DOI:10.3390/nu5093740
[30]
SCHEPPACH W, LUEHRS H, MENZEL T. Beneficial health effects of low-digestible carbohydrate consumption[J]. British Journal of Nutrition, 2001, 85(Suppl.1): S23-S30.
[31]
CUMMINGS J H, BINGHAM S A. Dietary fibre, fermentation and large bowel cancer[J]. Cancer Surveys, 1987, 6(4): 601-621.
[32]
SAMANTA A K, KOLTE A, ELANGOVAN A V, et al. Effects of corn husks derived xylooligosaccharides on performance of broiler chicken[J]. Indian Journal of Animal Sciences, 2017, 87(5): 640-643.
[33]
WEITKUNAT K, SCHUMANN S, PETZKE K J, et al. Effects of dietary inulin on bacterial growth, short-chain fatty acid production and hepatic lipid metabolism in gnotobiotic mice[J]. The Journal of Nutritional Biochemistry, 2015, 26(9): 929-937. DOI:10.1016/j.jnutbio.2015.03.010
[34]
TRAUTWEIN E A, RIECKHOFF D, ERBERSDOBLER H F. Dietary inulin lowers plasma cholesterol and triacylglycerol and alters biliary bile acid profile in hamsters[J]. The Journal of Nutrition, 1998, 128(11): 1937-1943. DOI:10.1093/jn/128.11.1937
[35]
WANG J, ZHANG H, CHEN X, et al. Selection of potential probiotic lactobacilli for cholesterol-lowering properties and their effect on cholesterol metabolism in rats fed a high-lipid diet[J]. Journal of Dairy Science, 2012, 95(4): 1645-1654. DOI:10.3168/jds.2011-4768
[36]
BROEKAERT W F, COURTIN C M, VERBEKE K, et al. Prebiotic and other health-related effects of cereal-derived arabinoxylans, arabinoxylan-oligosaccharides, and xylooligosaccharides[J]. Critical Reviews in Food Science and Nutrition, 2011, 51(2): 178-194. DOI:10.1080/10408390903044768
[37]
DEN BESTEN G, BLEEKER A, GERDING A, et al. Short-chain fatty acids protect against high-fat diet-induced obesity via a PPARγ-dependent switch from lipogenesis to fat oxidation[J]. Diabetes, 2015, 64(7): 2398-2408. DOI:10.2337/db14-1213
[38]
CHEN C Y, TSAI M M, CHI H C, et al. Biological significance of a thyroid hormone-regulated secretome[J]. Biochimica et Biophysica Acta, 2013, 1834(11): 2271-2284. DOI:10.1016/j.bbapap.2013.02.016
[39]
VALCAVI R, ZINI M, PORTIOLI I. Thyroid hormones and growth hormone secretion[J]. Journal of Endocrinological Investigation, 1992, 15(4): 313-330. DOI:10.1007/BF03348744
[40]
范艳平. 棉籽壳源低聚木糖菌糠对AA肉鸡生长代谢的影响[D]. 硕士学位论文. 扬州: 扬州大学, 2009.
FAN Y P. Effects of spent substrate of xylo-oligosaccharides from cottonseed hull supplementation on growth metabolism of AA broiler chickens[D]. Master's Thesis. Yangzhou: Yangzhou University, 2009. (in Chinese)
[41]
SUN Z P, LV W T, YU R K, et al. Effect of a straw-derived xylooligosaccharide on broiler growth performance, endocrine metabolism, and immune response[J]. Canadian Journal of Veterinary Research, 2013, 77(2): 105-109.
[42]
IQBAL M A, ROOHI N, KHAN O. Dietary supplemented effects of mannan-oligosaccharides on biochemical parameters of 4 close-bred flocks of Japanese quail breeders[J]. Poultry Science, 2018, 97(10): 3718-3727. DOI:10.3382/ps/pey210
[43]
KIM D O, LEE C Y. Comprehensive study on vitamin C equivalent antioxidant capacity (VCEAC) of various polyphenolics in scavenging a free radical and its structural relationship[J]. Critical Reviews in Food Science and Nutrition, 2004, 44(4): 253-273. DOI:10.1080/10408690490464960
[44]
LIU H Z, LUO P, CHEN S H, et al. Effects of squid ink on growth performance, antioxidant functions and immunity in growing broiler chickens[J]. Asian-Australasian Journal of Animal Sciences, 2011, 24(12): 1752-1756. DOI:10.5713/ajas.2011.11128
[45]
CECERSKA-HERYĆ E, SUROWSKA O, HERYĆ R, et al. Are antioxidant enzymes essential markers in the diagnosis and monitoring of cancer patients-a review[J]. Clinical Biochemistry, 2021, 93: 1-8. DOI:10.1016/j.clinbiochem.2021.03.008
[46]
BOONCHUAY P, WONGPOOMCHAI R, JATURASITHA S, et al. Prebiotic properties, antioxidant activity, and acute oral toxicity of xylooligosaccharides derived enzymatically from corncob[J]. Food Bioscience, 2021, 40: 100895. DOI:10.1016/j.fbio.2021.100895
[47]
ABASUBONG K P, LIU W B, ZHANG D D, et al. Fishmeal replacement by rice protein concentrate with xylooligosaccharides supplement benefits the growth performance, antioxidant capability and immune responses against Aeromonas hydrophila in blunt snout bream (Megalobrama amblycephala)[J]. Fish & Shellfish Immunology, 2018, 78: 177-186.
[48]
WANG J, CAO Y P, WANG C T, et al. Wheat bran xylooligosaccharides improve blood lipid metabolism and antioxidant status in rats fed a high-fat diet[J]. Carbohydrate Polymers, 2011, 86(3): 1192-1197. DOI:10.1016/j.carbpol.2011.06.014
[49]
赵颖. 超微粉碎低聚木糖对肉鸡生产性能、抗氧化及免疫机能的影响[D]. 硕士学位论文. 南京: 南京农业大学, 2013.
ZHAO Y. Effects of superfine xylooligosaccharides on growth performance, antioxidant and immunity function of broiler chickens[D]. Master's Thesis. Nanjing: Nanjing Agricultural University, 2013. (in Chinese)
[50]
杨卫兵. 不同粒度低聚木糖的体外抑菌作用及在肉鸡饲料中的应用研究[D]. 硕士学位论文. 南京: 南京农业大学, 2012.
YANG W B. Effects of xylooligosaccharides with different particle size on antibacterial function in vitro and applications in broiler diets[D]. Master's Thesis. Nanjing: Nanjing Agricultural University, 2012. (in Chinese)
[51]
CHEN Y P, WEN C, ZHOU Y M. Dietary synbiotic incorporation as an alternative to antibiotic improves growth performance, intestinal morphology, immunity and antioxidant capacity of broilers[J]. Journal of the Science of Food and Agriculture, 2018, 98(9): 3343-3350. DOI:10.1002/jsfa.8838
[52]
POURABEDIN M, GUAN L L, ZHAO X. Xylo-oligosaccharides and virginiamycin differentially modulate gut microbial composition in chickens[J]. Microbiome, 2015, 3(1): 15. DOI:10.1186/s40168-015-0079-4
[53]
卜祥斌, 陈洁, 刘红艳, 等. 沸石粉、寡糖及益生素在黄鸡饲料中的应用效果研究[J]. 家畜生态学报, 2006, 27(1): 37-40.
BU X B, CHEN J, LIU H Y, et al. Study on the effect of zeolite, oligosaccharide and probiotics in feed for yellow broiler[J]. Acta Ecologiae Animalis Domastici, 2006, 27(1): 37-40 (in Chinese). DOI:10.3969/j.issn.1673-1182.2006.01.009
[54]
WANG Q, WANG X F, XING T, et al. The combined impact of xylo-oligosaccharides and gamma-irradiated Astragalus polysaccharides on growth performance and intestinal mucosal barrier function of broilers[J]. Poultry Science, 2021, 100(3): 100909. DOI:10.1016/j.psj.2020.11.075
[55]
BAUTIL A, VERSPREET J, BUYSE J, et al. Arabinoxylan-oligosaccharides kick-start arabinoxylan digestion in the aging broiler[J]. Poultry Science, 2020, 99(5): 2555-2565. DOI:10.1016/j.psj.2019.12.041
[56]
SERVIN A L, COCONNIER M H. Adhesion of probiotic strains to the intestinal mucosa and interaction with pathogens[J]. Best Practice & Research.Clinical Gastroenterology, 2003, 17(5): 741-754.
[57]
ZHOU J M, WU S G, QI G H, et al. Dietary supplemental xylooligosaccharide modulates nutrient digestibility, intestinal morphology, and gut microbiota in laying hens[J]. Animal Nutrition, 2021, 7(1): 152-162. DOI:10.1016/j.aninu.2020.05.010
[58]
FARZI A, FRÖHLICH E E, HOLZER P. Gut Microbiota and the Neuroendocrine System[J]. Neurotherapeutics, 2018, 15(1): 5-22. DOI:10.1007/s13311-017-0600-5
[59]
INAN M S, RASOULPOUR R J, YIN L, et al. The luminal short-chain fatty acid butyrate modulates NF-kappaB activity in a human colonic epithelial cell line[J]. Gastroenterology, 2000, 118(4): 724-734. DOI:10.1016/S0016-5085(00)70142-9
[60]
谢芳, 张海波, 幸清凤, 等. 低聚木糖对动物肠道屏障的影响及其在动物生产中应用的研究进展[J]. 中国畜牧杂志, 2020, 56(10): 7-12.
XIE F, ZHANG H B, XING Q F, et al. Advances in effect of xylo-oligosaccharide mediated intestinal flora and its metabolites on animal intestinal barrier[J]. Chinese Journal of Animal Science, 2020, 56(10): 7-12 (in Chinese).
[61]
CORRÊA-OLIVEIRA R, FACHI J L, VIEIRA A, et al. Regulation of immune cell function by short-chain fatty acids[J]. Clinical & Translational Immunology, 2016, 5(4): e73.
[62]
PARK J, KIM M, KANG S G, et al. Short-chain fatty acids induce both effector and regulatory T cells by suppression of histone deacetylases and regulation of the mTOR-S6K pathway[J]. Mucosal Immunology, 2015, 8(1): 80-93. DOI:10.1038/mi.2014.44
[63]
ZHANG P, CUI J. Neuroprotective effect of fisetin against the cerebral ischemia-reperfusion damage via suppression of oxidative stress and inflammatory parameters[J]. Inflammation, 2021, 44(4): 1490-1506. DOI:10.1007/s10753-021-01434-x
[64]
CHEN H H, CHEN Y K, CHANG H C, et al. Immunomodulatory effects of xylooligosaccharides[J]. Food Science and Technology Research, 2012, 18(2): 195-199. DOI:10.3136/fstr.18.195
[65]
HANSEN C H F, FRØKIÆR H, CHRISTENSEN A G, et al. Dietary xylooligosaccharide downregulates IFN-γ and the low-grade inflammatory cytokine IL-1β systemically in mice[J]. The Journal of Nutrition, 2013, 143(4): 533-540.
[66]
YUAN L, LI W L, HUO Q Q, et al. Effects of xylo-oligosaccharide and flavomycin on the immune function of broiler chickens[J]. PeerJ, 2018, 6: e4435.
[67]
NILSSON N E, KOTARSKY K, OWMAN C, et al. Identification of a free fatty acid receptor, FFA2R, expressed on leukocytes and activated by short-chain fatty acids[J]. Biochemical and Biophysical Research Communications, 2003, 303(4): 1047-1052.
[68]
POURABEDIN M, CHEN Q L, YANG M M, et al. Mannan- and xylooligosaccharides modulate caecal microbiota and expression of inflammatory-related cytokines and reduce caecal Salmonella enteritidis colonisation in young chickens[J]. FEMS Microbiology Ecology, 2017, 93(1): fiw226.
[69]
SINGH A K, MISHRA B, BEDFORD M R, et al. Effects of supplemental xylanase and xylooligosaccharides on production performance and gut health variables of broiler chickens[J]. Journal of Animal Science and Biotechnology, 2021, 12(1): 98.
[70]
JAZI V, MOHEBODINI H, ASHAYERIZADEH A, et al. Fermented soybean meal ameliorates Salmonella typhimurium infection in young broiler chickens[J]. Poultry Science, 2019, 98(11): 5648-5660.
[71]
袁缨, 闫际平, 陈立华, 等. 不同寡糖对肉仔鸡肠道主要菌群和免疫器官指数的影响[J]. 中国饲料, 2007(15): 15-17.
YUAN Y, YAN J P, CHEN L H, et al. Effects of different oligosaccharides on gastrointestinal microorganisms and immune organ indexes of broilers[J]. China Feed, 2007(15): 15-17 (in Chinese).
[72]
SCHULTHESS J, PANDEY S, CAPITANI M, et al. The short chain fatty acid butyrate imprints an antimicrobial program in macrophages[J]. Immunity, 2019, 50(2): 432-445.
[73]
MIN Y N, YANG H L, XU Y X, et al. Effects of dietary supplementation of synbiotics on growth performance, intestinal morphology, sIgA content and antioxidant capacities of broilers[J]. Journal of Animal Physiology and Animal Nutrition, 2016, 100(6): 1073-1080.
[74]
BALOG J M, MILLAR R I. Influence of the sense of taste on broiler chick feed consumption[J]. Poultry Science, 1989, 68(11): 1519-1526.
[75]
YO T, SIEGEL P B, GUERIN H, et al. Self-selection of dietary protein and energy by broilers grown under a tropical climate: effect of feed particle size on the feed choice[J]. Poultry Science, 1997, 76(11): 1467-1473.
[76]
VAN EMOUS R, KWAKKEL R, VAN KRIMPEN M. Effects of dietary protein levels during rearing on feed intake, eating time, eating rate, and behaviour in broiler breeder females[C]//IX European Symposium on Poultry Welfare, Uppsala: Wageningen University & Research, 2013.
[77]
OAD R K, RAJPUT N, LAGHARI I H, et al. Effect of dietary lysine on the meat production and behaviour of broilers[J]. Pakistan Journal of Zoology, 2022, 54(1): 373-379.
[78]
韩淑云. 日粮中添加可溶性纤维对蛋鸡采食行为、产蛋性能和蛋品质的影响[J]. 中国饲料, 2020(10): 53-55.
HAN S Y. The effect of dietary soluble fiber on the feeding behavior, laying performance and egg quality of laying hens[J]. China Feed, 2020(10): 53-55 (in Chinese).
[79]
PUERTOLLANO E, KOLIDA S, YAQOOB P. Biological significance of short-chain fatty acid metabolism by the intestinal microbiome[J]. Current Opinion in Clinical Nutrition and Metabolic Care, 2014, 17(2): 139-144.