动物营养学报    2022, Vol. 34 Issue (8): 4821-4828    PDF    
茶副产物在反刍动物饲料应用中的研究进展
晏琦1 , 赵国琦1,2 , OSMOND Datsomor1,2 , 林淼1,2     
1. 扬州大学动物科学与技术学院, 扬州 225009;
2. 扬州大学动物营养与饲料工程研究中心, 扬州 225009
摘要: 茶副产物是指经过浸提生产茶饮料的残渣或生产成品茶弃去的残渣, 其营养成分和活性物质丰富, 在反刍动物营养、抗氧化和预防疾病等方面有极大利用价值。将茶副产物应用于反刍动物生产, 可以缓解我国优质牧草原料短缺、人畜争粮的局面, 并且很大程度上还能降低饲养成本。因此, 本文总结了茶副产物的常规营养价值、主要活性物质以及在反刍动物生产中的利用研究进展, 为更好地将茶副产物利用于反刍动物生产提供理论依据。
关键词: 茶副产物    营养价值    活性物质    反刍动物    生产性能    
Research Progress in Application of Tea By-Products in Ruminant Feed
YAN Qi1 , ZHAO Guoqi1,2 , OSMOND Datsomor1,2 , LIN Miao1,2     
1. College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China;
2. Research Center of Animal Nutrition and Feed Engineering Technology, Yangzhou University, Yangzhou 225009, China
Abstract: Tea by-product refers to the residue of tea beverage production after extraction or the residue of finished tea production, which is rich in nutrients and active substances and has great application value in ruminant nutrition, antioxidant and disease prevention. The application of tea by-products in ruminant production can alleviate the shortage of high-quality forage materials and the competition between people and livestock, and reduce the feeding cost to a large extent. In this paper, the conventional nutritional value, main active substances and utilization of tea by-products in ruminant production were summarized, providing theoretical basis for better utilization of tea by-products in ruminant production.
Key words: tea by-products    nutritional value    active substance    ruminant    performance    

目前我国经济已从高速发展阶段开始转向高质量发展阶段,人民对于生活品质的追求不断提高,这对我国农业发展、农业科技创新提出了更高更新的要求,以及更需要围绕提高农业质量效益竞争力,破解当前农业资源趋紧、环境破坏严重和生态系统退化等重大短板问题。近年来,我国畜牧业发展日新月异,但随之出现的饲料供给矛盾、原料价格居高不下等问题日益显著[1]。反刍动物饲料供需矛盾格外突出,据中国海关总署官网(http://www.customs.gov.cn/)统计,2019年中国草产品进口量为162.88万t,其中苜蓿干草和燕麦草分别为135.61万和24.09万t,进口量大且成本高,反刍动物养殖生产受此制约大。在这种背景下,使用工农业副产物作为饲料原料不仅可以减轻工农业和畜牧业对于环境的压力,而且有利于反刍动物养殖生产,所以开发非常规饲料的任务显得格外紧迫[2]

“十三五”期间,我国茶产业雄居全球第一,生产规模不断加大。2020年,我国茶园面积达321.6万hm2,较2015年增长约21.8%;同年,我国茶叶消费量约为220万t,较2015年增长约31%[3]。快速发展的茶产业,也产生了大量的茶副产物。每生产1 t成品茶,约能产生20~30 kg干茶副产物(dried tea by-product,DTBP),据以上数据估算,每年全国生产成品茶所产生的DTBP约为7万t,而生产茶饮料或是茶提取物后剩余的湿茶副产物(wet tea by-product,WTBP)有数十万t[4]。目前,只有少量茶副产物得到了合理利用,茶副产物造成的资源浪费与环境污染问题依然严峻。茶副产物主要包括2类,DTBP主要包括成品茶叶生产过程中除成品茶外被废弃的茶末、茶片和茶梗等[5],WTBP主要为生产茶饮料过程中经浸提后弃去的茶渣。茶副产物含大量营养成分,其中粗蛋白质(CP)含量约为20%,粗纤维含量约为60%[6]。此外,茶副产物的生物活性物质,如茶多酚、茶氨酸、茶皂素、单宁酸和咖啡因等,与普通茶叶的种类相同、含量相近[7-8]。有报道称,在围产期奶牛饲粮中添加茶多酚可降低血浆过氧化氢(H2O2)和丙二醛(malondialdehyde,MDA)含量,并降低血浆促炎因子肿瘤坏死因子-α(TNF-α)和白细胞介素-1β(IL-1β)等含量,有助于提高产后高酮血奶牛产奶量和改善健康状况[9]。通过饲粮调控有助于抑制反刍动物甲烷排放,提高生产效率,保护自然环境,在羔羊饲粮中添加茶皂素对羔羊生长性能无不良影响,但有助于降低甲烷的排放量[10-11]。本文旨在通过综述茶副产物的化学成分与营养价值,以及其对反刍动物健康和生产性能的影响,以期为茶副产物作为反刍动物饲料开发与应用提供科学指导与理论依据。

1 茶副产物的营养组成

目前关于茶副产物作为反刍动物饲料资源的研究主要集中在速溶茶和茶饮料经过浸提后弃去的残渣WTBP[12],其营养成分见表 1[13-21]。茶园中修剪以及成品茶生产过程中所产生的残渣DTBP,含有丰富的木质素和纤维素[12],未经过处理很难被反刍动物消化,因为DTBP中木质素的存在阻碍了瘤胃微生物对纤维素和半纤维素的有效利用[22],所以这类茶副产物应用于反刍动物饲料资源的研究鲜有报道。Nasehi等[23]报道,干绿茶副产物(dried green tea by-product,DGTBP)中的有机物(OM)含量为94.4%,CP含量为16.3%,粗脂肪(EE)含量为10%,中性洗涤纤维(NDF)含量为42.1%,酸性洗涤纤维(ADF)含量为32.9%,钙(Ca)含量为3.5%,磷(P)含量为2.1%。

表 1 WTBP的营养成分 Table 1 Nutrient composition of WTBP% DM
2 茶副产物的主要功能性物质

DTBP通常未经处理,营养成分得以保存;WTBP经过了浸提,但营养价值没有过多损失[24]。WTBP中含有大量生物活性物质,如多酚、生物碱(咖啡因、茶碱和可可碱)、色素、萜类(茶皂素)、氨基酸和多糖等[25]

2.1 茶多酚

茶多酚是茶所特有的生物活性物质,主要是由表儿茶素、表儿茶素没食子酸酯、表没食子儿茶素和表没食子儿茶素没食子酸酯4种儿茶素组成[25],是一类有效的抗氧化剂[26-27],具有较强的免疫调节功能[28]。Gladine等[29]报道,因为瘤胃微生物能将茶多酚聚合物分解为生物活性单体,所以反刍动物比单胃动物对于各种不同类型的多酚利用效率更高。金黄色葡萄球菌在人和动物中引起多种疾病,对畜牧业乃至人类生活造成极大危害[30-31]。Shimamura等[32]报道,茶多酚可以抑制金黄葡萄球菌的生长,其机理主要是通过直接结合其细胞壁的肽聚糖来干扰金黄色葡萄球菌的生物合成,此外,还可能通过诱导其细胞壁损伤对其产生抑制作用。不同茶副产物的茶多酚含量见表 2[14, 16, 18, 21]

表 2 不同茶副产物的茶多酚含量 Table 2 Tea polyphenol content in different tea by-products 
2.2 茶皂素

茶皂素主要是由三萜皂苷组成,具有抗菌、减少反刍动物胃肠道的甲烷排放等作用,植物中含有的茶皂素可以被动物机体更有效地吸收,比相同的合成物质更具有效果[33]。Wang等[34]研究添加不同剂量的茶皂素对奶牛泌乳性能、抗氧化状态和免疫反应的影响,结果表明,添加30 g/d的茶皂素效果最好,减轻了氧化应激,提高了机体免疫力,且不影响奶牛采食量。研究表明,添加茶皂素能够降低反刍动物产甲烷量,在Guyader等[35]的体外产气研究中发现,增加茶皂素用量线性降低了甲烷生成,体外添加0.5 g/L的茶皂素降低了29%的产甲烷量。反刍动物90%的甲烷产生于瘤胃,其次来自于小肠[36]。在Zhou等[37]的研究中,在湖羊饲粮中添加茶皂素降低了甲烷产量,但是添加2.1 L/d与添加2.5 L/d对产甲烷影响无显著性差异。添加茶皂素降低甲烷产量主要是通过抑制瘤胃原虫降低其数量,从而降低了相关产甲烷菌的活性,同时添加茶皂素也不影响瘤胃真菌和纤维分解菌的相对丰度。Liu等[38]也研究发现,饲粮中添加茶皂素可以降低杂交羊甲烷日排放量,并且有效提高了杂交羊的OM、氮(N)、NDF和ADF的表观消化率。前人研究证明了茶皂素可降低反刍动物产甲烷量,但作用机制有待更详细的研究。在Wang等[39]的研究中,分别添加茶皂素到苜蓿干草和大豆皮中饲喂犊牛28 d,观察添加茶皂素后瘤胃微生物菌群的变化,结果表明犊牛的瘤胃中普雷沃氏菌科YAB2003(Prevotellaceae-YAB2003)的丰度增加,普雷沃氏菌科YAB2003是瘤胃纤维降解菌,表明茶皂素能有效促进纤维消化。不过,还应进一步研究茶叶副产物中的茶皂素对反刍动物作用的具体机制。

2.3 茶氨酸

茶氨酸(γ-谷氨酰胺乙胺)是一种L型氨基酸,占游离氨基酸的50%以上,具有抗氧化、抗炎和神经保护的潜力[40-41]。孔志伟等[42]研究表明,通过添加不同剂量的茶氨酸可以缓解对H2O2诱导的瘤胃上皮细胞损伤,且添加高于8 mmol/L的茶氨酸能通过促进B细胞淋巴瘤-2(Bcl-2)蛋白表达和抑制Bcl-2相关X蛋白(Bax)的蛋白表达,从而缓解由H2O2刺激的瘤胃上皮细胞凋亡。Wang等[43]研究表明,将茶氨酸分别以16和32 g/d的含量添加到奶牛饲粮中,探究茶氨酸对热应激条件下奶牛瘤胃液、血液以及牛乳中脂多糖(lispolysaccharide,LPS)含量的变化,同时还检测了血液中相关炎症因子含量的变化,结果表明,与对照组相比,热应激条件下在奶牛饲粮中添加16 g/d茶氨酸降低了瘤胃液、血浆和牛奶中的LPS含量;同时,添加16和32 g/d茶氨酸降低了血清中IL-1β的含量,并且血清中白细胞介素-2(IL-2)的含量也有降低的趋势。因此,茶氨酸通过降低奶牛机体的LPS含量,以及降低血清中IL-1β和IL-2的含量,从而缓解奶牛在热应激条件下LPS释放引起的奶牛炎症反应。

3 茶副产物在反刍动物中的饲料化应用 3.1 茶副产物的应用方式

成品茶与茶叶修剪所产生的DTBP水分含量不高,可以作为粗饲料直接使用。但是生产速溶茶、茶饮料的WTBP经过浸提后水分含量高,不易保存,以青贮的方式进行加工后可以作为反刍动物的饲料进行使用[12]

在Cao等[20]的研究中,分别将豆腐饼(dry tofu cake,DTC)、米糠(rice bran,RB)以及饮料厂收集的湿绿茶副产物(wet green tea by-product,WGTBP)与全株水稻混合制作青贮饲料,分别添加干物质基础的30%,并且比较了不同混合青贮饲料的营养特点。结果显示,WGTBP组15.26%的CP含量与DTC组的15.16%无显著差异,且均高于RB组的11.91%;但EE含量方面,RB组的8.26%高于DTC组和WGTBP组,分别为4.99%和2.72%。Kondo等[16]研究在常规燕麦青贮饲料中添加不同比例的WGTBP对山羊的饲喂价值的影响,结果表明,添加20%的WGTBP组CP含量达到8.14%,显著高于添加5%的WGTBP的6.09%与对照组(不添加WGTBP)的5.62%,但NDF和ADF含量并没有显著差异。目前有关于茶副产物的加工方式主要就集中在青贮上,还需要探究更多的加工方式以便于使用这种非常规饲料。

3.2 茶副产物对反刍动物采食量的影响

采食量是评价反刍动物对于饲料利用率的一个关键指标,对动物生长性能至关重要[44]。不同类型的茶副产物作为反刍动物饲料对采食量的影响各研究结果并不一致,这可能与茶副产物的类型、质量、动物的品种以及基础饲粮的配制等有关。Almahdawi[45]报道,添加不同比例的WGTBP能够影响阿华西(Awassi)羊的采食量,添加0、7.5%和15%的WGTBP所对应的采食量分别为1.468、1.517和1.542 kg/d,但无显著差异。在Nasehi等[23]的研究中,用成品茶厂的DGTBP替代苜蓿干草饲喂Chall公羔羊,使用0、2%、4%和6%的DGTBP,所对应的干物质采食量分别为1.371 7、1.481 1、1.453 3和1.325 6 kg/d;当DGTBP用量达到6%时,采食量出现了下降,这可能由于这类干燥并且未经过处理的绿茶副产物包含部分茶梗,而茶梗质地较硬,在添加量高时,影响了适口性。以上报道的试验结果存在差异,因此需要进行更多的研究来准确评价茶副产物的各种因素对于反刍动物采食量的影响。

3.3 茶副产物对营养物质消化率的影响

茶副产物应用在不同研究中所表现出来的营养物质消化率存在差异。表 3汇总了关于茶副产物应用在反刍动物饲粮中对营养物质消化率的影响数据[17, 19, 23]。饲粮蛋白质既被宿主动物利用,也被瘤胃微生物利用[46-47],通过优化饲粮配方提高蛋白质消化率,可以提高反刍动物饲粮的利用效率。在Xu等[17]和Nasehi等[23]的研究中,CP消化率随着茶副产物添加量的增加而下降,这可能与茶副产物中含有单宁成分有关。单宁具有不同的结构,主要分为3类:水解单宁、缩合单宁和多酚单宁,是一种天然存在的酚类化合物,具有结合和沉淀蛋白质的能力,使CP不能在瘤胃中得到充分降解[48]。Kondo等[49]的研究中也证实了WGTBP含有9.57% DM的单宁,由于单宁的作用,WGTBP中瘤胃不可降解蛋白质含量较高。

表 3 茶副产物应用在反刍动物饲粮中对营养物质消化率的影响 Table 3 Effects of tea by-product application on nutrient digestibility in ruminant diets 
3.4 茶副产物对反刍动物生产性能的影响

关于茶副产物对于反刍动物生产性能的报道结果不尽一致。Kondo等[19]在青贮饲料中添加WGTBP对于泌乳奶牛的产奶量、乳中乳蛋白含量和乳脂率无不良影响。Almahdawi[45]在Awassi羊饲粮中分别添加0(对照组)、7.5%和15%的WGTBP,试验期100 d结束后,羔羊分别增重了20.60和22.80 kg,显著高于对照组的17.70 kg。Ahmed等[50]在饲粮中分别添加0、0.5%、1%和2% WGTBP饲喂山羊,试验期90 d结束后分别增重10.3、10.7、10.4和11.7 kg,这与WGTBP中含有丰富的儿茶素有关,儿茶素能够促进瘤胃微生物的生长,从而促进营养物质的消化吸收;后期进行的屠宰试验发现,饲喂WGTBP可以改变山羊肉中的脂肪酸组成,提高肉品质以及肌肉氧化稳定性,这可能是因为儿茶素通过清除机体内的活性氧和氮,整合氧化还原活性的过渡金属离子,发挥了抗氧化的作用[51];此外,该研究还表明,儿茶素还能降低血浆葡萄糖、胆固醇和尿素氮含量,增加脾脏细胞的增殖[50]。在Nasehi等[23]的研究中,在伊朗Chall羔羊饲粮中添加0、2%、4%和6%的DGTBP,试验期结束后,4个组分别增重了13.4、14.2、12.2和10.1 kg。在此研究中,饲喂高添加量的DGTBP,动物增重反而出现了下降趋势,而低、中添加量对动物增重没有影响,这有2方面潜在因素:一方面,DGTBP木质素含量高,影响了动物对于营养物质的消化利用;另一方面,由于DGTBP中含有单宁成分,单宁可以抑制瘤胃内蛋白分解微生物的活性。高含量的单宁成分会对采食量以及营养物质吸收产生不利的影响。Raju等[52]研究发现,添加高剂量的单宁影响了动物的采食量,而低、中剂量的单宁显著降低了瘤胃可溶性蛋白质的降解率,增加了小肠对蛋氨酸和必需氨基酸的吸收,从而提高动物对这些氨基酸的利用率促进生长发育。Almahdawi[45]、Ahmed等[50]和Nasehi等[23]的试验中,都在反刍动物饲粮中添加了不同含量、品种的茶副产物,结果都表明添加茶副产物比不添加茶副产物对动物增重有积极影响,可以部分替代反刍动物常规饲料原料。

4 小结与展望

茶副产物营养成分丰富,并且富含活性物质,具有重要的饲用价值,但相关研究仍然存在不足,尤其是DTBP鲜有报道,这部分茶副产物保有量大,具有开发潜力。茶副产物应用方式单一,主要集中于青贮,且青贮的发酵条件、添加量尚未统一标准。此外,关于茶副产物活性成分的研究都集中于单一活性物质的作用,忽略了多个活性物质共同作用的整体效应,并且对于瘤胃代谢机制的影响尚未明确。

综上所述,未来研究方向建议从以下几点开展:1)进一步研究茶副产物活性物质对于动物生长性能的影响以及相关代谢机制;2)研究茶副产物的使用前处理,降低其抗营养因子(如木质素)含量;3)明确茶副产物应用在反刍动物生产中的最适使用量,建立标准;4)推进DTBP的相关研究。

参考文献
[1]
郭昕竺, 李美琪, 李辉尚, 等. "十三五"中国饲料产业发展现状和"十四五"策略选择[J]. 农业展望, 2020, 16(7): 63-67, 78.
GUO X Z, LI M Q, LI H S, et al. Development status of China's feed industry since the Thirteenth Five-Year Plan and strategies selection in the Fourteenth Five-Year Plan[J]. Agricultural Outlook, 2020, 16(7): 63-67, 78 (in Chinese). DOI:10.3969/j.issn.1673-3908.2020.07.013
[2]
CORREDDU F, LUNESU M F, BUFFA G, et al. Can agro-industrial by-products rich in polyphenols be advantageously used in the feeding and nutrition of dairy small ruminants?[J]. Animals, 2020, 10(1): 131. DOI:10.3390/ani10010131
[3]
冷杨, 童杰文, 黄萍, 等. 我国茶产业发展"十三五"回顾及"十四五"展望[J]. 中国茶叶, 2021, 43(9): 25-30.
LENG Y, TONG J W, HUANG P, et al. The development of tea industry in China during the 13th Five-Year Plan period and prospects for the 14th Five-Year Plan period[J]. China Tea, 2021, 43(9): 25-30 (in Chinese). DOI:10.3969/j.issn.1000-3150.2021.09.004
[4]
陈宗懋. 茶叶质量安全和茶产业的绿色发展[J]. 科技导报, 2021, 39(19): 1.
CHEN Z M. Tea quality and safety and green development of tea industry[J]. Science & Technology Review, 2021, 39(19): 1 (in Chinese).
[5]
王伟伟, 施莉婷, 俞露婷, 等. 不同茶类加工副产物的化学成分分析[J]. 食品工业科技, 2018, 39(24): 260-265.
WANG W W, SHI L T, YU L T, et al. Analysis of the chemical compositions in processing by-products from different tea[J]. Science and Technology of Food Industry, 2018, 39(24): 260-265 (in Chinese).
[6]
YANG C J, YANG I Y, OH D H, et al. Effect of green tea by-product on performance and body composition in broiler chicks[J]. Asian-Australasian Journal of Animal Sciences, 2003, 16(6): 867-872. DOI:10.5713/ajas.2003.867
[7]
SUI W J, XIAO Y, LIU R, et al. Steam explosion modification on tea waste to enhance bioactive compounds' extractability and antioxidant capacity of extracts[J]. Journal of Food Engineering, 2019, 261: 51-59. DOI:10.1016/j.jfoodeng.2019.03.015
[8]
TSUNEKI H, ISHIZUKA M, TERASAWA M, et al. Effect of green tea on blood glucose levels and serum proteomic patterns in diabetic (db/db) mice and on glucose metabolism in healthy humans[J]. BMC Pharmacology, 2004, 4: 18. DOI:10.1186/1471-2210-4-18
[9]
MA Y F, FENG Y, SONG L W, et al. Green tea polyphenols supplementation alters immunometabolism and oxidative stress in dairy cows with hyperketonemia[J]. Animal Nutrition, 2021, 7(1): 206-215. DOI:10.1016/j.aninu.2020.06.005
[10]
MCGINN S M, BEAUCHEMIN K A, COATES T, et al. Methane emissions from beef cattle: effects of monensin, sunflower oil, enzymes, yeast, and fumaric acid[J]. Journal of Animal Science, 2004, 82(11): 3346-3356. DOI:10.2527/2004.82113346x
[11]
MAO H L, WANG J K, ZHOU Y Y, et al. Effects of addition of tea saponins and soybean oil on methane production, fermentation and microbial population in the rumen of growing lambs[J]. Livestock Science, 2010, 129(1/3): 56-62.
[12]
GUO S S, KUMAR AWASTHI M, WANG Y F, et al. Current understanding in conversion and application of tea waste biomass: a review[J]. Bioresource Technology, 2021, 338: 125530. DOI:10.1016/j.biortech.2021.125530
[13]
WANG R R, WANG H L, LIU X, et al. Effects of different additives on fermentation characteristics and protein degradation of green tea grounds silage[J]. Asian-Australasian Journal of Animal Sciences, 2011, 24(5): 616-622. DOI:10.5713/ajas.2011.10346
[14]
KONDO M, HIRANO Y, IKAI N, et al. Assessment of anti-nutritive activity of tannins in tea by-products based on in vitro rumen fermentation[J]. Asian-Australasian Journal of Animal Sciences, 2014, 27(11): 1571-1576. DOI:10.5713/ajas.2014.14204
[15]
NISHIDA T, ERUDEN B, HOSODA K, et al. Effects of green tea (Camellia sinensis) waste silage and polyethylene glycol on ruminal fermentation and blood components in cattle[J]. Asian-Australasian Journal of Animal Sciences, 2006, 19(12): 1728-1736. DOI:10.5713/ajas.2006.1728
[16]
KONDO M, KITA K, YOKOTA H O. Feeding value to goats of whole-crop oat ensiled with green tea waste[J]. Animal Feed Science and Technology, 2004, 113(1/4): 71-81.
[17]
XU C C, CAI Y M, MORIYA N, et al. Nutritive value for ruminants of green tea grounds as a replacement of brewers' grains in totally mixed ration silage[J]. Animal Feed Science and Technology, 2007, 138(3/4): 228-238.
[18]
NISHINO N, KAWAI T, KONDO M. Changes during ensilage in fermentation products, tea catechins, antioxidative activity and in vitro gas production of green tea waste stored with or without dried beet pulp[J]. Journal of the Science of Food and Agriculture, 2007, 87(9): 1639-1644. DOI:10.1002/jsfa.2842
[19]
KONDO M, NAKANO M, KANEKO A, et al. Ensiled green tea waste as partial replacement for soybean meal and alfalfa hay in lactating cows[J]. Asian-Australasian Journal of Animal Sciences, 2004, 17(7): 960-966. DOI:10.5713/ajas.2004.960
[20]
CAO Y, TAKAHASHI T, HORIGUCHI K I. Effects of addition of food by-products on the fermentation quality of a total mixed ration with whole crop rice and its digestibility, preference, and rumen fermentation in sheep[J]. Animal Feed Science and Technology, 2009, 151(1/2): 1-11.
[21]
KONDO M, KITA K, YOKOTA H O. Effects of tea leaf waste of green tea, oolong tea, and black tea addition on sudangrass silage quality and in vitro gas production[J]. Journal of the Science of Food and Agriculture, 2004, 84(7): 721-727. DOI:10.1002/jsfa.1718
[22]
VAN KUIJK S J A, SONNENBERG A S M, BAARS J J P, et al. Fungal treated lignocellulosic biomass as ruminant feed ingredient: a review[J]. Biotechnology Advances, 2015, 33(1): 191-202. DOI:10.1016/j.biotechadv.2014.10.014
[23]
NASEHI M, TORBATINEJAD N M, REZAIE M, et al. Effects of partial substitution of alfalfa hay with green tea waste on growth performance and in vitro methane emission of fat-tailed lambs[J]. Small Ruminant Research, 2018, 168: 52-59. DOI:10.1016/j.smallrumres.2018.09.006
[24]
DEBNATH B, HALDAR D, PURKAIT M K. Potential and sustainable utilization of tea waste: a review on present status and future trends[J]. Journal of Environmental Chemical Engineering, 2021, 9(5): 106179. DOI:10.1016/j.jece.2021.106179
[25]
WASEWAR K L, ATIF M, PRASAD B, et al. Adsorption of zinc using tea factory waste: kinetics, equilibrium and thermodynamics[J]. Clean-Soil Air Water, 2008, 36(3): 320-329. DOI:10.1002/clen.200700139
[26]
TANAKA T, MATSUO Y. Production mechanisms of black tea polyphenols[J]. Chemical & Pharmaceutical Bulletin, 2020, 68(12): 1131-1142.
[27]
YAN Z M, ZHONG Y Z, DUAN Y H, et al. Antioxidant mechanism of tea polyphenols and its impact on health benefits[J]. Animal Nutrition, 2020, 6(2): 115-123. DOI:10.1016/j.aninu.2020.01.001
[28]
WINKLER A, GESSNER D K, KOCH C, et al. Effects of a plant product consisting of green tea and curcuma extract on milk production and the expression of hepatic genes involved in endoplasmic stress response and inflammation in dairy cows[J]. Archives of Animal Nutrition, 2015, 69(6): 425-441. DOI:10.1080/1745039X.2015.1093873
[29]
GLADINE C, ROCK E, MORAND C, et al. Bioavailability and antioxidant capacity of plant extracts rich in polyphenols, given as a single acute dose, in sheep made highly susceptible to lipoperoxidation[J]. British Journal of Nutrition, 2007, 98(4): 691-701.
[30]
SAǦLAM AG, ŞAHIN M, ÇELIK E, et al. The role of staphylococci in subclinical mastitis of cows and lytic phage isolation against to Staphylococcus aureus[J]. Veterinary World, 2017, 10(12): 1481-1485. DOI:10.14202/vetworld.2017.1481-1485
[31]
RAHIMI H, DASTMALCHI SAEI H, AHMADI M. Nasal carriage of Staphylococcus aureus: frequency and antibiotic resistance in healthy ruminants[J]. Jundishapur Journal of Microbiology, 2015, 8(10): e22413.
[32]
SHIMAMURA T, ZHAO W H, HU Z Q. Mechanism of action and potential for use of tea catechin as an antiinfective agent[J]. Anti-Infective Agents in Medicinal Chemistry, 2007, 6(1): 57-62. DOI:10.2174/187152107779314124
[33]
BAKOWSKI M, KICZOROWSKA B. Probiotic microorganisms and herbs in ruminant nutrition as natural modulators of health and production efficiency-a review[J]. Annals of Animal Science, 2021, 21(1): 3-28. DOI:10.2478/aoas-2020-0081
[34]
WANG B, TU Y, ZHAO S P, et al. Effect of tea saponins on milk performance, milk fatty acids, and immune function in dairy cow[J]. Journal of Dairy Science, 2017, 100(10): 8043-8052. DOI:10.3168/jds.2016-12425
[35]
GUYADER J, EUGENE M, DOREAU M, et al. Tea saponin reduced methanogenesis in vitro but increased methane yield in lactating dairy cows[J]. Journal of Dairy Science, 2017, 100(3): 1845-1855. DOI:10.3168/jds.2016-11644
[36]
JAFARI S, MENG G Y, RAJION M A, et al. The use of plant by-products as non-conventional feedstuff for livestock feeding with reference to rumen methanogenesis[J]. Agroforestry Systems, 2020, 94(4): 1491-1500. DOI:10.1007/s10457-019-00426-z
[37]
ZHOU Y Y, MAO H L, JIANG F, et al. Inhibition of rumen methanogenesis by tea saponins with reference to fermentation pattern and microbial communities in Hu sheep[J]. Animal Feed Science and Technology, 2011, 166/167: 93-100. DOI:10.1016/j.anifeedsci.2011.04.007
[38]
LIU Y L, MA T, CHEN D D, et al. Effects of tea saponin supplementation on nutrient digestibility, methanogenesis, and ruminal microbial flora in dorper crossbred ewe[J]. Animals, 2019, 9(1): 29. DOI:10.3390/ani9010029
[39]
WANG B, MA M P, DIAO Q Y, et al. Saponin-induced shifts in the rumen microbiome and metabolome of young cattle[J]. Frontiers in Microbiology, 2019, 10: 356. DOI:10.3389/fmicb.2019.00356
[40]
HE J, CHEN J, HE Q, et al. Oral L-theanine administration promotes fat browning and prevents obesity in mice fed high-fat diet associated with the modulation of gut microbiota[J]. Journal of Functional Foods, 2021, 81: 104476. DOI:10.1016/j.jff.2021.104476
[41]
SUMATHI T, ASHA D, NAGARAJAN G, et al. L-theanine alleviates the neuropathological changes induced by PCB (aroclor 1254) via inhibiting upregulation of inflammatory cytokines and oxidative stress in rat brain[J]. Environmental Toxicology and Pharmacology, 2016, 42: 99-117. DOI:10.1016/j.etap.2016.01.008
[42]
孔志伟, 揭红东, 陈亮, 等. L-茶氨酸对过氧化氢诱导山羊瘤胃上皮细胞凋亡的保护作用[J]. 动物营养学报, 2018, 30(8): 3125-3133.
KONG Z W, JIE H D, CHEN L, et al. Protection of L-theanine on apoptosis of rumen epithelial cells induced by Hydrogen peroxide H2O2 in goats[J]. Chinese Journal of Animal Nutrition, 2018, 30(8): 3125-3133 (in Chinese). DOI:10.3969/j.issn.1006-267x.2018.08.030
[43]
WANG Z, ZHANG L M, LI Z C, et al. Alterations of endotoxin distribution across different biofluids and relevant inflammatory responses by supplementing L-theanine in dairy cows during heat stress[J]. Animal Nutrition, 2021, 7(4): 1253-1257. DOI:10.1016/j.aninu.2021.03.012
[44]
SEYMOUR D J, CÁNOVAS A, BAES C F, et al. Invited review: determination of large-scale individual dry matter intake phenotypes in dairy cattle[J]. Journal of Dairy Science, 2019, 102(9): 7655-7663. DOI:10.3168/jds.2019-16454
[45]
ALMAHDAWI M. Using tea waste as a source of protein in the ration and its impact on productive performance, growth and some blood parameters of Awassi lambs[J]. Advances in Animal and Veterinary Sciences, 2018, 6(11): 499-508.
[46]
TAN P, LIU H, ZHAO J, et al. Amino acids metabolism by rumen microorganisms: nutrition and ecology strategies to reduce nitrogen emissions from the inside to the outside[J]. Science of the Total Environment, 2021, 800: 149596. DOI:10.1016/j.scitotenv.2021.149596
[47]
PUTRI E M, ZAIN M, WARLY L, et al. Effects of rumen-degradable-to-undegradable protein ratio in ruminant diet on in vitro digestibility, rumen fermentation, and microbial protein synthesis[J]. Veterinary World, 2021, 14(3): 640-648. DOI:10.14202/vetworld.2021.640-648
[48]
HUANG Q Q, LIU X L, ZHAO G Q, et al. Potential and challenges of tannins as an alternative to in-feed antibiotics for farm animal production[J]. Animal Nutrition, 2018, 4(2): 137-150.
[49]
KONDO M, HIRANO Y, KITA K, et al. Nutritive evaluation of spent green and black tea leaf silages by in vitro gas production characteristics, ruminal degradability and post-ruminal digestibility assessed with inhibitory activity of their tannins[J]. Animal Science Journal, 2018, 89(12): 1656-1662.
[50]
AHMED S T, LEE J W, MUN H S, et al. Effects of supplementation with green tea by-products on growth performance, meat quality, blood metabolites and immune cell proliferation in goats[J]. Journal of Animal Physiology and Animal Nutrition, 2015, 99(6): 1127-1137.
[51]
FREI B, HIGDON J V. Antioxidant activity of tea polyphenols in vivo: evidence from animal studies[J]. The Journal of Nutrition, 2003, 133(10): 3275S-3284S.
[52]
RAJU J, SAHOO B, CHANDRAKAR A, et al. Effect of feeding oak leaves (Quercus semecarpifolia vs Quercus leucotricophora) on nutrient utilization, growth performance and gastrointestinal nematodes of goats in temperate sub Himalayas[J]. Small Ruminant Research, 2015, 125: 1-9.