动物营养学报    2022, Vol. 34 Issue (8): 5000-5010    PDF    
水飞蓟素对快大型黄羽肉鸡生长性能、屠宰性能、脂质代谢和胆汁酸代谢相关基因表达的影响
周昭彬1 , 丁亚南2 , 白心亮3 , 宋泽和2 , 贺喜2 , 刘自逵1     
1. 湖南农业大学动物医学院, 长沙 410128;
2. 湖南农业大学动物科学技术学院, 长沙 410128;
3. 内蒙古昶辉生物科技股份有限公司, 通辽 028400
摘要: 本试验旨在研究水飞蓟素对快大型黄羽肉鸡生长性能、屠宰性能、脂质代谢和胆汁酸代谢相关基因表达的影响。试验选取288羽1日龄的快大型黄羽肉鸡母雏, 随机分为4个组, 每组6个重复, 每个重复12羽。对照组饲喂基础饲粮, 试验组分别饲喂在基础饲粮中添加250(低剂量)、500(中剂量)和750 g/t(高剂量)水飞蓟素的饲粮。试验期56 d, 其中1~28日龄为试验前期, 29~56日龄为试验后期。结果表明: 1)与对照组相比, 饲粮中添加水飞蓟素可以显著提高黄羽肉鸡各阶段的末重、平均日增重以及前期平均日采食量(P<0.05), 并显著降低各阶段料重比(P<0.05)。2)与对照组相比, 饲粮中添加中、高剂量水飞蓟素能够显著降低黄羽肉鸡腹脂率(P<0.05)。3)与对照组相比, 饲粮中添加水飞蓟素能够显著提高黄羽肉鸡28日龄血清高密度脂蛋白胆固醇含量(高剂量除外), 显著降低28和56日龄血清低密度脂蛋白胆固醇含量(P<0.05);饲粮中添加低、中剂量水飞蓟素能够显著降低黄羽肉鸡56日龄血清甘油三酯含量(P<0.05)。4)与对照组相比, 饲粮中添加水飞蓟素可以显著降低黄羽肉鸡28日龄肝脏胆固醇7α-羟化酶(CYP7A1)mRNA相对表达量(P<0.05), 显著提高28日龄肝脏法尼酯X受体(FXR)、胆汁酸盐输出泵(BSEP)和多药耐药蛋白2(MRP2)(低剂量除外)mRNA相对表达量(P<0.05);饲粮中添加水飞蓟素能够显著提高黄羽肉鸡56日龄肝脏BSEPMRP2(低剂量除外)mRNA相对表达量(P<0.05), 饲粮中添加中、高剂量水飞蓟素能够显著降低56日龄肝脏CYP7A1 mRNA相对表达量(P<0.05), 饲粮中添加低、高剂量水飞蓟素能显著提高56日龄肝脏FXR mRNA相对表达量(P<0.05)。综上所述, 饲粮中添加水飞蓟素可以通过调节肝脏胆汁酸合成和转运, 改善脂质代谢, 进而降低黄羽肉鸡腹脂率并提高屠宰率和全净膛率, 并提升肉鸡生长性能, 其中以前期添加高剂量(750 g/t)、后期添加中剂量(500 g/t)为宜。
关键词: 水飞蓟素    快大型黄羽肉鸡    生长性能    屠宰性能    脂质代谢    胆汁酸代谢    
Effects of Silymarin on Growth Performance, Slaughter Performance, Lipid Metabolism and Bile Acid Metabolism Related Gene Expression of Fast Growth Yellow Feather Broilers
ZHOU Zhaobin1 , DING Yanan2 , BAI Xinliang3 , SONG Zehe2 , HE Xi2 , LIU Zikui1     
1. College of Animal Medicine, Hunan Agricultural University, Changsha 410128, China;
2. College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China;
3. Inner Mongolia Ever Brilliance Biotechnology Co., Ltd., Tongliao 028400, China
Abstract: This experiment was conducted to investigate the effects of silymarin on growth performance, slaughter performance, lipid metabolism and bile acid metabolism related gene expression of fast growth yellow feather broilers. A total of 288 fast growth yellow feather female chicks of 1-day-old were randomly divided into 4 groups with 6 replicates in each group and 12 chicks in each replicate. The control group was fed a basal diet, and the experimental groups were fed the basal diets supplemented with silymarin at low dose of 250 g/t, medium dose of 500 g/t and high dose of 750 g/t, respectively. The experiment lasted for 56 days, with 1 to 28 days of age as the early stage and 29 to 56 days of age as the late stage. The results showed as follows: 1) compared with the control group, dietary silymarin significantly increased the final body weight and average daily gain of yellow feather broilers at all stages and the average daily feed intake in the early stage (P < 0.05), and significantly decreased the ratio of feed to gain at all stages (P < 0.05). 2) Compared with the control group, the medium and high doses of dietary silymarin significantly reduced the abdominal fat percentage of yellow feather broilers (P < 0.05). 3) Compared with the control group, dietary silymarin significantly increased the serum high-density lipoprotein cholesterol content (except high dose) of yellow feather broilers at 28 days of age, and significantly decreased the serum low-density lipoprotein cholesterol content at 28 and 56 days of age (P < 0.05). The low and medium doses of dietary silymarin significantly reduced the serum triglyceride content of yellow feather broilers at 56 days of age (P < 0.05). 4) Compared with the control group, dietary silymarin significantly reduced the cholesterol 7α-hydroxylase (CYP7A1) mRNA relative expression level in liver of yellow feather broilers at 28 days of age (P < 0.05), and significantly increased the mRNA relative expression levels of farnesoid X receptor (FXR), bile salt export pump (BSEP) and multidrug resistant protein 2 (MRP2) (except low dose) in liver at 28 days of age (P < 0.05). Dietary silymarin significantly increased the mRNA relative expression levels of BSEP and MRP2 (except low dose) in liver of yellow feather broilers at 56 days of age (P < 0.05), the medium and high doses of dietary silymarin significantly decreased the CYP7A1 mRNA relative expression level in liver at 56 days of age (P < 0.05), and the low and high doses of dietary silymarin significantly increased the FXR mRNA relative expression level in liver at 56 days of age (P < 0.05). In conclusion, dietary silymarin can improve the lipid metabolism by regulating liver bile acid synthesis and transport, thereby reducing abdominal fat percentage, increasing slaughter yield and all eviscerated yield, and improving growth performance of yellow feather broilers, and the high dose of 750 g/t in the early stage and medium dose of 500 g/t in the later stage are appropriate.
Key words: silymarin    fast growth yellow feather broilers    growth performance    slaughter performance    lipid metabolism    bile acid metabolism    

自2020年起,我国禁止在畜禽饲料中添加抗生素,因此作为抗生素替代品的各种植物添加剂的开发变得愈加重要。水飞蓟素是从水飞蓟干燥成熟果实中提取得到的黄酮类天然化合物,其主要成分是水飞蓟宾、异水飞蓟宾、水飞蓟亭和水飞蓟宁[1]。药理学研究发现,水飞蓟素具有保护肝脏[2]、调节免疫功能[3]、抗氧化[4]以及降血脂[5]等作用。近年来,水飞蓟素在养殖业上的用途愈加广泛。研究发现,饲料中添加100 mg/kg水飞蓟素能够调节吉富罗非鱼幼鱼肝脏脂肪代谢和抗氧化功能[6],饲粮中添加1 000 mg/kg水飞蓟素能够提高黄曲霉毒素攻毒肉鸡平均日采食量(average daily feed intake,ADFI)和平均日增重(average daily gain,ADG)[7]。黄羽肉鸡是我国优质肉鸡品类,但目前缺少水飞蓟素对黄羽肉鸡的作用探索。因此,本试验旨在研究饲粮中添加不同剂量水飞蓟素对快大型黄羽肉鸡生长性能、屠宰性能、脂质代谢和胆汁酸代谢相关基因表达的影响,从而为水飞蓟素作为快大型黄羽肉鸡饲料添加剂提供理论参考和技术支持。

1 材料与方法 1.1 试验材料

本试验所用的水飞蓟素由内蒙古某生物科技股份有限公司提供,其有效成分含量≥80%。

1.2 试验动物和试验设计

试验选取288羽1日龄体质健康的快大型黄羽肉鸡母雏,随机分成4个组,每组6个重复,每个重复12只鸡。对照组(CON组)饲喂基础饲粮,低剂量组(S250组)、中剂量组(S500组)和高剂量组(S750组)分别饲喂在基础饲粮的基础上添加250、500和750 g/t水飞蓟素的饲粮。试验期56 d,其中1~28日龄为试验前期,29~56日龄为试验后期。

1.3 试验饲粮

试验所用基础饲粮为玉米-豆粕型,参照《鸡饲养标准》(NY/T 33—2004)进行配制,其组成及营养水平见表 1

表 1 基础饲粮组成及营养水平(风干基础) Table 1 Composition and nutrient levels of basal diets (air-dry basis)  
1.4 饲养管理

试验鸡采用3层笼养。试验前对鸡舍进行充分冲洗和严格消毒,入雏前24 h将鸡舍升温至32~35 ℃,此后温度每周降低2~3 ℃,直至保持在22~24 ℃为止。采用连续光照、自然通风。试验期舍内光照、相对湿度和温度根据常规饲养管理要求进行控制,鸡只按正常免疫程序进行免疫。整个试验期鸡只自由采食和饮水。

1.5 样品采集

分别于29和57日龄(空腹8 h),每个重复选取体重相近的1只肉鸡进行屠宰取样。采取颈静脉血于促凝管中,室温放置30 min,3 000 r/min离心10 min,取上清液分装于离心管中,-80 ℃冰箱中保存待测。采集适量肝脏于液氮中速冻后,-80 ℃冰箱中保存待测。

1.6 测定指标及方法 1.6.1 生长性能

每天记录各个重复的采食量和鸡只健康状况,在1、29和57日龄,对每个重复的所有肉鸡进行称重,计算ADFI、ADG和料重比(feed to gain ratio, F/G)。

1.6.2 屠宰性能

分别于29和57日龄(空腹8 h),每个重复选取体重相近的1只肉鸡进行屠宰,测定屠体重、半净膛重、全净膛重、腹脂重、胸肌重和腿肌重,计算屠宰率、半净膛率、全净膛率、腹脂率、胸肌率和腿肌率。

1.6.3 血清脂质代谢

采用迈瑞BS-200全自动生化分析仪测定血清中总胆固醇(total cholesterol,TC)(氧化酶法)、甘油三酯(triglyceride, TG)(甘油磷酸氧化酶法)、高密度脂蛋白胆固醇(high-density liptein cholesterol, HDL-C)(直接法)和低密度脂蛋白胆固醇(low-density lipoprotein cholesterol, LDL-C)(直接法)含量,试剂盒均购自深圳迈瑞生物医疗电子股份有限公司,所有指标严格按照相关试剂盒说明书进行操作。

1.6.4 实时荧光定量PCR(RT-qPCR)测定

将肝脏组织与TRIzol匀浆后,按照SteadyPure通用型RNA提取试剂盒(AG21022,购自湖南艾科瑞生物工程有限公司)说明书操作进行肝脏RNA提取。得到RNA后,按照Evo M-MLV反转录试剂盒(AG11706,购自湖南艾科瑞生物工程有限公司)说明书操作进行反转录得到cDNA,采用SYBR Green(AG11701,购自湖南艾科瑞生物工程有限公司)嵌合荧光法进行RT-qPCR检测。引物序列见下表 2,其中以β-肌动蛋白(β-actin)作为内参基因,根据2-ΔΔCt法对定量结果进行计算分析。

表 2 RT-qPCR引物序列 Table 2 Primer sequences for RT-qPCR
1.7 数据统计分析

试验数据经Excel 2007初步整理后,采用SPSS 22.0软件进行单因素方差分析,并采用Duncan氏法进行组间多重比较,P<0.05表示差异显著。

2 结果 2.1 水飞蓟素对黄羽肉鸡生长性能的影响

表 3可知,与CON组相比,饲粮中添加水飞蓟素可以显著提高黄羽肉鸡各阶段的末重、ADG以及前期ADFI(P<0.05),并显著降低各阶段F/G(P<0.05),但对后期和全期ADFI无显著影响(P>0.05)。

表 3 水飞蓟素对黄羽肉鸡生长性能的影响 Table 3 Effects of silymarin on growth performance of yellow feather broilers
2.2 水飞蓟素对黄羽肉鸡屠宰性能的影响

表 4可知,与CON组相比,饲粮中添加水飞蓟素对黄羽肉鸡屠宰率、半净膛率、全净膛率、胸肌率和腿肌率均无显著影响(P>0.05),但饲粮中添加中、高剂量水飞蓟素能显著降低肉鸡腹脂率(P<0.05)。

表 4 水飞蓟素对黄羽肉鸡屠宰性能的影响 Table 4 Effects of silymarin on slaughter performance of yellow feather broilers  
2.3 水飞蓟素对黄羽肉鸡血清脂质代谢的影响

表 5可知,与CON组相比,饲粮中添加水飞蓟素显著提高黄羽肉鸡28日龄血清HDL-C含量(P<0.05)(S750组除外),显著降低28和56日龄血清LDL-C含量(P<0.05);饲粮中添加中剂量水飞蓟素显著提高黄羽肉鸡28日龄血清TG含量(P < 0.05),饲粮中添加低、中剂量水飞蓟素显著降低56日龄血清TG含量(P<0.05)。

表 5 水飞蓟素对黄羽肉鸡血清脂质代谢的影响 Table 5 Effects of silymarin on serum lipid metabolism of yellow feather broilers  
2.4 水飞蓟素对黄羽肉鸡肝脏胆汁酸代谢相关基因表达的影响

表 6可知,与CON组相比,饲粮中添加水飞蓟素可以显著降低黄羽肉鸡28日龄肝脏胆固醇7α-羟化酶(CYP7A1)mRNA相对表达量(P<0.05),显著提高28日龄肝脏法尼酯X受体(FXR)、胆汁酸盐输出泵(BSEP)和多药耐药蛋白2(MRP2)(S250组除外)mRNA相对表达量(P<0.05),且中、高剂量比低剂量提升效果更为显著(P<0.05);与CON组相比,饲粮中添加水飞蓟素可以显著提高黄羽肉鸡56日龄肝脏BSEPMRP2(S250组除外)mRNA相对表达量(P<0.05),饲粮中添加中、高剂量水飞蓟素能显著降低56日龄肝脏CYP7A1 mRNA相对表达量(P<0.05),饲粮中添加低、高剂量水飞蓟素能显著提高56日龄肝脏FXR mRNA相对表达量(P<0.05)。

表 6 水飞蓟素对黄羽肉鸡肝脏胆汁酸代谢相关基因表达的影响 Table 6 Effects of silymarin on expression of genes related to bile acid metabolism in liver of yellow feather broilers
3 讨论 3.1 水飞蓟素对黄羽肉鸡生长性能的影响

水飞蓟素在畜牧业上的应用逐渐广泛,有研究表明饲粮中添加水飞蓟素可以改善畜禽生长性能。何玉华等[8]在饲粮中添加20%固态发酵的水飞蓟残渣提升了鸡只营养物质消化率,改善了生长性能。Jahanian等[7]在饲粮中添加1 000 g/t水飞蓟素改善了黄曲霉毒素攻毒肉鸡肠道形态,提高了肉鸡ADFI和ADG。Ahmad等[9]通过在饲粮中添加15 g/kg水飞蓟缓解了夏季肉鸡应激,提高了肉鸡ADFI和ADG。本试验中,饲粮中添加水飞蓟素显著提高了黄羽肉鸡ADG,显著降低了F/G,与前人研究结果一致,表明饲粮中添加水飞蓟素可以提高黄羽肉鸡生长性能。

3.2 水飞蓟素对黄羽肉鸡屠宰性能的影响

屠宰性能是肉鸡生产中的重要指标,能衡量肉鸡净肉生产能力,也是用于评估肉类生产性能和动物饲养效果的参数[10]。研究表明,屠宰率在80%以上、全净膛率在60%以上,则表明肉鸡净肉生产率高[11-12]。本试验中,各组黄羽肉鸡屠宰率均在88%以上,全净膛率均在60%以上,且饲粮中添加低、中剂量水飞蓟素肉鸡屠宰率高达91%,低、中和高剂量水飞蓟素组全净膛率也分别比对照组提高了7.02%、4.07%和2.32%,结果表明,饲粮中添加水飞蓟素可在一定程度上提高肉鸡屠宰率和全净膛率,这与王英伟[13]的研究结果类似,其在猪饲粮中添加水飞蓟残渣后屠宰率提高了2.38%。水飞蓟素是黄酮类化合物,尤明珍[14]研究表明,大豆异黄酮主要通过降脂作用提高谷鸭屠宰率;李垚等[15]也研究表明,饲粮中添加0.2%沙棘黄酮能升高肉鸡屠宰率,并且沙棘黄酮也降低了肉鸡腹脂率和血清TG含量。以上研究表明,水飞蓟素或是通过减少脂肪含量以提升肉鸡屠宰率和全净膛率。吕梦云[16]研究发现,饲粮中添加葛藤黄酮能抑制肉鸡脂肪蓄积;周萍芳[17]的研究也表明,饲粮中添加苜蓿黄酮可以减少肉鸡胸肌及腿肌中的脂肪积聚。与上述研究结果类似,本试验结果表明,饲粮中添加中、高剂量水飞蓟素可显著降低黄羽肉鸡腹脂率。Li等[18]通过给肉鸡饲喂微生物发酵水飞蓟素工业生产过程中产生的废料证实,水飞蓟素可以降低肉鸡腹脂率。因此,饲粮中添加水飞蓟素能降低肉鸡腹脂率,改善屠宰性能,其机理可能与脂质代谢的改善相关。

3.3 水飞蓟素对黄羽肉鸡血清脂质代谢的影响

血清中TG和TC含量可以反映肉鸡的脂肪合成强度[19]。研究表明,水飞蓟素及其他黄酮类化合物具有调节动物机体脂质代谢的作用[20-21]。本试验中,饲粮中添加低、中剂量水飞蓟素显著降低黄羽肉鸡56日龄血清TG含量,这与Kheiripour等[22]的研究结果具有相似性,其通过建立糖尿病大鼠模型发现水飞蓟素能降低肝脏TG含量。萧培珍[23]进一步研究表明,水飞蓟素通过抑制肝细胞脂肪酸合成酶(FAS)和固醇辅酶A去饱和酶1(SCD1)基因的表达以降低TG含量。此外,本试验中,饲粮中添加中剂量水飞蓟素显著提高黄羽肉鸡28日龄血清TG含量,可能是由于前期饲养环境温度偏低,水飞蓟素加快脂质代谢造成机体TG积累。HDL-C含量提高和LDL-C含量降低是拮抗动脉粥样硬化的重要因素[24]。高洁丽[25]研究表明,水飞蓟宾可提高大鼠血清HDL-C含量,降低血清LDL-C含量。Jiang等[26]也通过网络药理学分析发现,水飞蓟素可降低LDL-C含量。水飞蓟素可能是通过促进ABC转运蛋白表达继而调节脂蛋白含量,Vecera等[27]通过高甘油三酯血症大鼠的代谢综合征模型证实了这一点。与高洁丽[25]、Jiang等[26]的研究结果类似,本试验中,饲粮中添加低、中剂量水飞蓟素能显著提高黄羽肉鸡28日龄血清HDL-C含量,添加3种不同剂量的水飞蓟素能显著降低28和56日龄血清LDL-C含量。因此,饲粮中添加水飞蓟素能提高黄羽肉鸡血清HDL-C含量,降低血清TG、LDL-C含量,改善脂质代谢,这也证实水飞蓟素能通过改善脂质代谢继而提升肉鸡屠宰性能。

3.4 水飞蓟素对黄羽肉鸡肝脏胆汁酸代谢相关基因表达的影响

胆汁酸在肝脏细胞中由胆固醇合成而来,CYP7A1是其合成的关键限速酶[28],FXR可以通过活化下游微小异源二聚体伙伴(SHP)基因负调控CYP7A1的表达[27, 29]。Gu等[30]研究发现,水飞蓟素可以激活HepG2细胞FXR,并下调其下游基因CYP7A1的表达;Suguro等[31]研究发现,水飞蓟宾能下调非酒精性脂肪肝炎模型小鼠肝脏中CYP7A1表达;但Xiao等[32]研究发现,饲料中添加100 g/t水飞蓟素上调了草鱼肝脏中CYP7A1 mRNA表达。以上研究表明水飞蓟素调节动物体肝脏中FXRCYP7A1表达的作用具有物种差异。本试验中,饲粮中添加水飞蓟素提升了黄羽肉鸡28和56日龄肝脏中FXR mRNA相对表达量,降低了肝脏中CYP7A1 mRNA相对表达量,表明水飞蓟素可能通过调节肉鸡肝脏中FXRCYP7A1的表达以减少肝脏胆汁酸合成,而肝脏胆汁酸合成的减少可能与肝-肠循环回流至肝脏的胆汁酸含量升高有关。BSEP能将肝脏中合成的胆汁酸逆浓度梯度泵入毛细胆管[33];MRP2是肝脏重要的胆汁酸转运蛋白,能促进胆汁酸排泄进肠道[34]。本试验中,饲粮中添加水飞蓟素提升了黄羽肉鸡28和56日龄肝脏中BSEPMRP2 mRNA相对表达量。有研究表明,水飞蓟素能恢复胆汁淤积剂造成的BSEP损伤[35],MRP2是参与胆汁排泄水飞蓟素-黄酮醇结合物的主要小管转运蛋白[36]。与前人研究一致,本试验中,饲粮中添加水飞蓟素可以通过上调肉鸡肝脏中BSEPMRP2 mRNA表达以促进胆汁酸排泄至肠道,这也证明本研究中添加水飞蓟素使得肝脏胆汁酸合成减少,可能是由于肠道回流至肝脏的胆汁酸含量增加所致。胆汁酸代谢可对机体脂质代谢产生重要影响[37]。动物机体内的脂质代谢始终处于动态平衡之中,脂肪组织、血清和肝脏中的脂质水平是相互影响的[38]。本试验中,饲粮中添加水飞蓟素能促进肝脏胆汁酸排泄继而减少肝脏胆汁酸合成,从而调节血清HDL-C、LDL-C和TG含量,降低腹脂率,减少肌肉中脂肪蓄积以提高肉鸡屠宰率和全净膛率。

4 结论

饲粮中添加水飞蓟素可以通过调节肝脏胆汁酸合成和转运,改善脂质代谢,进而降低肉鸡腹脂率并提高屠宰率和全净膛率,并提升肉鸡生长性能,其中以前期(1~28日龄)添加高剂量(750 g/t)、后期(29~56日龄)添加中剂量(500 g/t)为宜。

参考文献
[1]
贾睿, 曹丽萍, 杜金梁, 等. 水飞蓟素对四氯化碳致鲫肝(细胞)损伤的保护和抗氧化作用[J]. 中国水产科学, 2013, 20(3): 551-560.
JIA R, CAO L P, DU J L, et al. In vitro and in vivo hepatoprotective and antioxidant effects of silymarin against carbon tetrachloride-induced hepatocyte damage in crucian carp Carassius auratus[J]. Journal of Fishery Sciences of China, 2013, 20(3): 551-560 (in Chinese).
[2]
陈继铭, 吴晓静, 刘田丰, 等. 水飞蓟素对四氯化碳致小鼠肝损伤和骨代谢的影响[J]. 中国组织工程研究, 2021, 25(8): 1224-1228.
CHEN J M, WU X J, LIU T F, et al. Effects of silymarin on liver injury and bone metabolism induced by carbon tetrachloride in mice[J]. Chinese Journal of Tissue Engineering Research, 2021, 25(8): 1224-1228 (in Chinese).
[3]
SCHVMANN J, PROCKL J, KIEMER A K, et al. Silibinin protects mice from T cell-dependent liver injury[J]. Journal of Hepatology, 2003, 39(3): 333-340. DOI:10.1016/S0168-8278(03)00239-3
[4]
胡俊, 饶紫兰, 陈江木, 等. 水飞蓟素通过调控Nrf2抗氧化通路抑制NLRP3炎症小体改善非酒精性脂肪性肝病[J]. 中国药理学通报, 2020, 36(7): 971-977.
HU J, RAO Z L, CHEN J M, et al. Silymarin inhibits NLRP3 inflammasome to improve nonalcoholic fatty liver disease via regulating Nrf2 antioxidant pathway[J]. Chinese Pharmacological Bulletin, 2020, 36(7): 971-977 (in Chinese). DOI:10.3969/j.issn.1001-1978.2020.07.016
[5]
计慧. 水飞蓟素和虎杖提取物对高脂血症模型小鼠脂质代谢的影响及其机制[J]. 世界华人消化杂志, 2014, 22(21): 3072-3076.
JI H. Effect of silymarin and Polygonum cuspidatum extract on lipid metabolism in mice with hyperlipidemia[J]. World Chinese Journal of Digestology, 2014, 22(21): 3072-3076 (in Chinese).
[6]
苟庚午, 蒋明, 文华, 等. 饲料中添加水飞蓟素对吉富罗非鱼生长性能、肝脏脂肪代谢酶和抗氧化能力的影响[J]. 水产学报, 2016, 40(9): 1309-1320.
GOU G W, JIANG M, WEN H, et al. Effects of dietary silymarin on growth performance, enzymes of hepatic lipid metabolism and antioxidant ability in GIFT Oreochromis niloticus[J]. Journal of Fisheries of China, 2016, 40(9): 1309-1320 (in Chinese).
[7]
JAHANIAN E, MAHDAVI A H, ASGARY S, et al. Effects of dietary inclusion of silymarin on performance, intestinal morphology and ileal bacterial count in aflatoxin-challenged broiler chicks[J]. Journal of Animal Physiology and Animal Nutrition, 2017, 101(5): e43-e54. DOI:10.1111/jpn.12556
[8]
何玉华, 赵凤明. 固态发酵水飞蓟残渣对雉鸡生长性能的影响[J]. 中国兽医杂志, 2014, 50(11): 56-58.
HE Y H, ZHAO F M. Effects of silymarin residue from solid-state fermentation on growth performance of pheasants[J]. Chinese Journal of Veterinary Medicine, 2014, 50(11): 56-58 (in Chinese). DOI:10.3969/j.issn.0529-6005.2014.11.018
[9]
AHMAD M, CHAND N, KHAN R U, et al. Dietary supplementation of milk thistle (Silybum marianum): growth performance, oxidative stress, and immune response in natural summer stressed broilers[J]. Tropical Animal Health and Production, 2020, 52(2): 711-715. DOI:10.1007/s11250-019-02060-4
[10]
LIU H H, LI J L, LIN S Q, et al. Effects of dietary fennel (Foeniculum vulgare Mill.) seed powder supplementation on growth performance, nutrient digestibility, small intestinal morphology, and carcass traits of broilers[J]. PeerJ, 2021, 9: e10308. DOI:10.7717/peerj.10308
[11]
从光雷, 王强, 肖蕴祺, 等. 饲粮添加橡椀单宁对肉鸡生长性能、屠宰性能、肉品质、抗氧化功能和肠道发育的影响[J]. 动物营养学报, 2020, 32(12): 5948-5957.
CONG G L, WANG Q, XIAO Y Q, et al. Effects of dietary Quercus acutissima Carruth tannin on growth performance, slaughter performance, meat quality, antioxidant function and intestinal development of broilers[J]. Chinese Journal of Animal Nutrition, 2020, 32(12): 5948-5957 (in Chinese).
[12]
岳远西, 史彬林, 赵启龙, 等. 黑沙蒿提取物对肉仔鸡生长性能和屠宰性能及肉品质的影响[J]. 中国畜牧杂志, 2015, 51(17): 39-43.
YUE Y X, SHI B L, ZHAO Q L, et al. Effects of Artemisia ordosica extract on growth performance, slaughter performance and meat quality of broilers[J]. Chinese Journal of Animal Science, 2015, 51(17): 39-43 (in Chinese). DOI:10.3969/j.issn.0258-7033.2015.17.009
[13]
王英伟. 水飞蓟残渣在育肥猪生产上的应用[D]. 硕士学位论文. 延吉: 延边大学, 2006: 39-40.
WANG Y W. Application of silythistle residue in finishing pig production[D]. Master's Thesis. Yanji: Yanbian University, 2006: 39-40. (in Chinese)
[14]
尤明珍. 大豆异黄酮对樱桃谷鸭生长和屠宰性能的影响[J]. 粮食与饲料工业, 2007(12): 27-28.
YOU M Z. Effects of Soy-isoflavone on growth of Cherry Valley duck and slaughtering performance[J]. Cereal & Feed Industry, 2007(12): 27-28 (in Chinese). DOI:10.3969/j.issn.1003-6202.2007.12.013
[15]
李垚, 付晶, 王宝东, 等. 沙棘黄酮对AA肉仔鸡胴体和肉品质的影响[J]. 畜牧兽医学报, 2008, 39(9): 1217-1223.
LI Y, FU J, WANG B D, et al. Effect of flavones of sea buckthorn on carcass characteristics and meat quality of Arbor Acres broilers[J]. Acta Veterinaria et Zootechnica Sinica, 2008, 39(9): 1217-1223 (in Chinese). DOI:10.3321/j.issn:0366-6964.2008.09.012
[16]
吕梦云. 葛藤黄酮提取物对肉鸡生产性能和脂肪代谢的影响[D]. 硕士学位论文. 南昌: 江西农业大学, 2017: 16-17.
LYU M Y. Effects of kudzu vine flavonoids extract on growth performance and lipid metabolism of broilers[D]. Master's Thesis. Nanchang: Jiangxi Agricultural University, 2017: 16-17. (in Chinese)
[17]
周萍芳. 苜蓿黄酮提取物对麻鸡生产性能及脂肪沉积的影响[D]. 硕士学位论文. 南昌: 江西农业大学, 2011: 30-34.
ZHOU P F. Effects of crude extracts of alfalfa flavone on growth performance and lipid deposit of broilers[D]. Master's Thesis. Nanchang: Jiangxi Agricultural University, 2011: 30-34. (in Chinese)
[18]
LI F, LI F, ZHAO T, et al. Solid-state fermentation of industrial solid wastes from the fruits of milk thistle Silybum marianum for feed quality improvement[J]. Applied Microbiology and Biotechnology, 2013, 97(15): 6725-6737. DOI:10.1007/s00253-013-5002-y
[19]
常枨, 耿爱莲, 张倩倩, 等. 饲粮赖氨酸水平对北京油鸡产蛋高峰期生产性能、蛋品质和血清生化指标的影响[J/OL]. 动物营养学报: 1-11(2022-02-26)[2022-03-18]. http://kns.cnki.net/kcms/detail/11.5461.s.20220223.1010.010.html.
CHANG C, GENG A L, ZHANG Q Q, et al. Effects of dietary lysine level on performance, egg quality and serum biochemical indices of Beijing You chickens during peak laying period[J]. Chinese Journal of Animal Nutrition: 1-11(2022-02-26)[2022-03-18]. http://kns.cnki.net/kcms/detail/11.5461.s.20220223.1010.010.html. (in Chinese)
[20]
王永庆. 水飞蓟素对团头鲂(Megalobrama amblycephala)氧化油脂肝损伤的保护作用[D]. 硕士学位论文. 上海: 上海海洋大学, 2012: 60-62.
WANG Y Q. Protection of silymarine to liver injury of Megalobrama amblycephala induced by oxidized oil[D]. Master's Thesis. Shanghai: Shanghai Ocean University, 2012: 60-62. (in Chinese)
[21]
石佳. 花楸黄酮抗氧化及降血糖、降血脂的评价研究[D]. 硕士学位论文. 沈阳: 辽宁大学, 2015: 33-34.
SHI J. Evaluation research of antioxidant、hypoglycemic and hypercholesterolemia-induced of flavonoids from sorbus[D]. Master's Thesis. Shenyang: Liaoning University, 2015: 33-34. (in Chinese)
[22]
KHEIRIPOUR N, KARIMI J, KHODADADI I, et al. Silymarin prevents lipid accumulation in the liver of rats with type 2 diabetes via sirtuin1 and SREBP-1c[J]. Journal of Basic and Clinical Physiology and Pharmacology, 2018, 29(3): 301-308. DOI:10.1515/jbcpp-2017-0122
[23]
萧培珍. 日粮中添加水飞蓟素对草鱼脂质代谢的影响及其机制研究[D]. 博士学位论文. 杨凌: 西北农林科技大学, 2017: 76-88.
XIAO P Z. Effect of dietary silymarin on lipid metabolism of grass carp(Ctenopharygodon idellus)[D]. Ph. D. Thesis. Yangling: Northwest A&F University, 2017: 76-88. (in Chinese)
[24]
高书锋, 雷平, 李咏梅, 等. 黄芩素对22~63日龄湘黄肉鸡生长性能、免疫功能、抗氧化能力、血脂状态及肉品质的影响[J]. 动物营养学报, 2022, 34(1): 215-227.
GAO S F, LEI P, LI Y M, et al. Effects of baicalein on growth performance, immune function, antioxidant ability, blood lipid status and meat quality of Hunan yellow chickens during 22 to 63 days of age[J]. Chinese Journal of Animal Nutrition, 2022, 34(1): 215-227 (in Chinese). DOI:10.3969/j.issn.1006-267x.2022.01.021
[25]
高洁丽. 水飞蓟宾的分离鉴定、质量控制及其片剂降血脂作用研究[D]. 硕士学位论文. 南京: 南京中医药大学, 2014: 66-70.
GAO J L. Study on isolation and identification, quality control of silibinin and hypolipidemic effects of tablets[D]. Master's Thesis. Nanjing: Nanjing University of Chinese Medicine, 2014: 66-70. (in Chinese)
[26]
JIANG G Y, SUN C H, WANG X D, et al. Hepatoprotective mechanism of Silybum marianum on nonalcoholic fatty liver disease based on network pharmacology and experimental verification[J]. Bioengineered, 2022, 13(3): 5216-5235. DOI:10.1080/21655979.2022.2037374
[27]
VECERA R, ZACHAROVA A, OROLIN J, et al. The effect of silymarin on expression of selected ABC transporters in the rat[J]. Veterinární Medicína, 2011, 56: 59-62. DOI:10.17221/1579-VETMED
[28]
高广亮, 张庆秋, 李辉, 等. 鸡肝细胞中L-BABP基因表达对脂类代谢基因及甘油三酯和总胆固醇的影响[J]. 畜牧兽医学报, 2015, 46(1): 32-40.
GAO G L, ZHANG Q Q, LI H, et al. The effect of L-BABP gene expression on the lipid metabolism genes and cholesterol and triglyceride in chicken hepatocytes[J]. Acta Veterinaria et Zootechnica Sinica, 2015, 46(1): 32-40 (in Chinese).
[29]
MIAO J, CHOI S E, SEOK S M, et al. Ligand-dependent regulation of the activity of the orphan nuclear receptor, small heterodimer partner (SHP), in the repression of bile acid biosynthetic CYP7A1 and CYP8B1 genes[J]. Molecular Endocrinology, 2011, 25(7): 1159-1169. DOI:10.1210/me.2011-0033
[30]
GU M, ZHAO P, HUANG J W, et al. Silymarin ameliorates metabolic dysfunction associated with diet-induced obesity via activation of farnesyl X receptor[J]. Frontiers in Pharmacology, 2016, 7: 345.
[31]
SUGURO R, PANG X C, YUAN Z W, et al. Combinational applicaton of silybin and tangeretin attenuates the progression of non-alcoholic steatohepatitis (NASH) in mice via modulating lipid metabolism[J]. Pharmacological Research, 2020, 151: 104519. DOI:10.1016/j.phrs.2019.104519
[32]
XIAO P Z, JI H, YE Y T, et al. Dietary silymarin supplementation promotes growth performance and improves lipid metabolism and health status in grass carp (Ctenopharyngodon idellus) fed diets with elevated lipid levels[J]. Fish Physiology and Biochemistry, 2017, 43(1): 245-263.
[33]
王晓霞, 占海兵, 高青, 等. 姜黄素联合黄芩苷对乙醇诱导的大鼠胆汁淤积性肝损伤的保护作用研究[J]. 毒理学杂志, 2021, 35(2): 140-145.
WANG X X, ZHAN H B, GAO Q, et al. Protective effect of curcumin combined with baicalin on ethanol-induced cholestatic liver injury in rats[J]. Journal of Toxicology, 2021, 35(2): 140-145 (in Chinese).
[34]
张国强, 魏玉辉, 文苑洁, 等. 栀子水提物对雌激素诱导的胆汁淤积大鼠中硫酸化胆酸盐的影响及机制研究[J]. 中国药学杂志, 2020, 55(20): 1680-1685.
ZHANG G Q, WEI Y H, WEN Y J, et al. Effect of water extract of fructus gardenia on sulfated bile acids in rats with estrogen-induced cholestasis and its mechanism[J]. Chinese Pharmaceutical Journal, 2020, 55(20): 1680-1685 (in Chinese).
[35]
CROCENZI F A, BASIGLIO C L, PÉREZ L M, et al. Silibinin prevents cholestasis-associated retrieval of the bile salt export pump, Bsep, in isolated rat hepatocyte couplets: possible involvement of cAMP[J]. Biochemical Pharmacology, 2005, 69(7): 1113-1120.
[36]
MIRANDA S R, LEE J K, BROUWER K L R, et al. Hepatic metabolism and biliary excretion of silymarin flavonolignans in isolated perfused rat livers: role of multidrug resistance-associated protein 2 (Abcc2)[J]. Drug Metabolism and Disposition, 2008, 36(11): 2219-2226.
[37]
吴维达, 尹畅, 张宏福. 胆汁酸对机体糖脂代谢的影响机制[J]. 动物营养学报, 2020, 32(10): 4565-4576.
WU W D, YIN C, ZHANG H F. Mechanism of effects of bile acids on glycolipid metabolism[J]. Chinese Journal of Animal Nutrition, 2020, 32(10): 4565-4576 (in Chinese). DOI:10.3969/j.issn.1006-267x.2020.10.010
[38]
黄骆镰. 竹青素在高品质肉鸡养殖中的应用试验研究[D]. 硕士学位论文. 杭州: 浙江大学, 2013.
HUANG L. Applied studies of bamboo extract in high-quality meat chicken cultivation[D]. Master's Thesis. Hangzhou: Zhejiang University, 2013. (in Chinese)