动物营养学报    2022, Vol. 34 Issue (8): 5156-5167    PDF    
全株水稻与平菇菌糠共发酵料对浏阳黑山羊生长性能、养分表观消化率和血液指标的影响
黄丽琴1 , 闫景彩2 , 袁振中2 , 李松桥1 , 唐晶2     
1. 湖南农业大学农学院, 长沙 410128;
2. 湖南农业大学动物科学技术学院, 长沙 410128
摘要: 本试验旨在研究全株水稻与平菇菌糠共发酵料对浏阳黑山羊生长性能、养分表观消化率和血液指标的影响,为全株水稻与平菇菌糠共发酵料的开发提供理论依据。试验选取27只体重为(15.53±2.22) kg的浏阳黑山羊,根据性别相同、体重相近原则随机分成3个组,每组3个重复,每个重复2母1公共3只羊;各组饲粮分别为65%混合精料+35%全株水稻与平菇菌糠共发酵料(Ⅰ组)、65%混合精料+35%全株水稻青贮料(Ⅱ组)、65%混合精料+35%全株玉米青贮料(Ⅲ组)。其中,全株水稻与平菇菌糠共发酵料中全株水稻与平菇菌糠的比例为83 ∶ 17(干物质基础)。试验预试期10 d,正试期60 d。结果表明:1)各组山羊干物质采食量之间无显著差异(P>0.05);Ⅰ组平均日增重最高,为121.11 g/d,较Ⅱ组和Ⅲ组分别提高了58.62%(P < 0.05)和18.33%(P>0.05);Ⅰ组料重比最低,为5.20,较Ⅱ组和Ⅲ组分别降低了27.07%(P < 0.05)和12.01%(P>0.05);Ⅰ组总能和钙的摄入量最高,分别为10 425.33 kJ/d和7.37 g/d,显著高于Ⅱ组(P < 0.05)。2)Ⅰ组总能和酸性洗涤木质素的表观消化率显著低于Ⅱ组(P < 0.05)。3)Ⅰ组血液血红蛋白含量显著低于Ⅲ组(P < 0.05)。4)Ⅰ组血清白蛋白含量显著高于Ⅱ组(P < 0.05),血清碱性磷酸酶活性显著高于Ⅱ组和Ⅲ组(P < 0.05);Ⅰ组和Ⅱ组血清高密度脂蛋白胆固醇含量显著高于Ⅲ组(P < 0.05)。综上所述,在本试验条件下,与全株水稻青贮相比,全株水稻与平菇菌糠共发酵料可提高浏阳黑山羊平均日增重,降低料重比,同时还可提高血清白蛋白含量和碱性磷酸酶活性
关键词: 全株水稻    菌糠    浏阳黑山羊    生长性能    养分表观消化率    血常规指标    血清生化指标    
Effects of Whole Plant Rice and Spent Mushroom Substrate of Pleurotus ostreatus Co-Fermented Feed on Growth Performance, Nutrient Apparent Digestibility and Blood Indices of Liuyang Black Goats
HUANG Liqin1 , YAN Jingcai2 , YUAN Zhenzhong2 , LI Songqiao1 , TANG Jing2     
1. College of Agronomy, Hunan Agricultural University, Changsha 410128, China;
2. College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
Abstract: The objective of this experiment was to evaluate the effect of whole plant rice and spent mushroom substrate of Pleurotus ostreatus co-fermented feed on growth performance, nutrient apparent digestibility and blood indices of Liuyang black goats, and to provide a theoretical basis for the exploitation of whole plant rice and spent mushroom substrate of Pleurotus ostreatus co-fermented feed. According to the same sex and similar body weight principle, twenty-seven Liuyang black goats with a body weight of (15.53±2.22) kg were randomly divided into 3 groups with 3 replicates per group and 3 goats of 2 females and 1 male per replicate. Goats in group Ⅰ were fed 65% concentrate+35% whole plant rice and spent mushroom substrate of Pleurotus ostreatus co-fermented feed, meanwhile the goats in groups Ⅱ and Ⅲ were fed 65% concentrate+35% whole plant rice silage and 65% concentrate+35% whole plant corn silage, respectively. The ratio of whole plant rice to spent mushroom substrate of Pleurotus ostreatus in co-fermented feed was 83 ∶ 17 (DM basis). Following 10 days for diet adaptation and the trial itself lasted for 60 days. The results showed as follows: 1) there was no significant difference in the dry matter intake of goats among 3 groups(P>0.05). The average daily gain in group Ⅰ was the highest at 121.11 g/d, which was increased by 58.62% (P < 0.05) and 18.33% (P>0.05) compared with groups Ⅱ and Ⅲ, respectively. The feed to gain ratio in group Ⅰ was the lowest at 5.20, which was decreased by 27.07% (P < 0.05) and 12.01% (P>0.05) compared with groups Ⅱ and Ⅲ, respectively. The intakes of gross energy and calcium in group Ⅰ were the highest at 10 425.33 kJ/d and 7.37 g/d, respectively, which were significantly higher than those in group Ⅱ (P < 0.05). 2) The apparent digestibility of gross energy and acid detergent lignin in group Ⅰ was significantly lower than that in group Ⅱ (P < 0.05). 3) The blood hemoglobin content in group Ⅰ was significantly lower than that in group Ⅲ (P < 0.05). 4) The serum albumin content in group Ⅰ was significantly higher than that in group Ⅱ (P < 0.05), and the serum alkaline phosphatase activity was significantly higher than that in groups Ⅱ and Ⅲ (P < 0.05). The serum high-density lipoprotein cholesterol content in groups Ⅰ and Ⅱ was significantly higher than that in group Ⅲ (P < 0.05). To sum up, under the conditions of this experiment, compared with whole plant rice silage, whole plant rice and spent mushroom substrate of Pleurotus ostreatus co-fermented feed can increase the average daily gain, reduce the feed to gain ratio, and enhance the serum albumin content and alkaline phosphatase activity of Liuyang black goats.
Key words: whole plant rice    spent mushroom substrate    Liuyang black goats    growth performance    nutrient apparent digestibility    blood routine indices    serum biochemical indices    

青贮是青绿饲料贮存的常用方法,全株水稻饲料也主要利用青贮技术进行贮存。不过,全株水稻由于自身贮藏性碳水化合物含量较低,中性洗涤纤维(NDF)、酸性洗涤纤维(ADF)含量高,制作的普通青贮品质较差,饲用效果较全株玉米青贮尚有一定差距[1]。对于木质纤维素含量较高的饲料原料,酶解法处理可以较好地改善饲用品质[1-4]。但酶制剂价格普遍昂贵,酶制剂的使用无疑增加了饲料的成本。因此,充分利用潜在的饲料资源以及摸索反刍动物粗饲料的加工提质方法,有助于解决因使用酶制剂而增加饲料成本和我国南方地区饲草短缺的问题。近年来,食用菌菌糠越来越多被用作动物饲料。研究表明,菌糠中的粗蛋白质(CP)、粗纤维和木质纤维素等营养指标均优于作物秸秆[5],且香菇菌糠中的纤维素酶、平菇菌糠中的木聚糖酶以及秀珍菇菌糠中的漆酶活性分别达到16.56、11和3 602 U/g[6-8]。已有研究表明,饲喂25%和30%的菌糠均可显著改善反刍动物的生长性能[9-11],饲喂15%和25%的菌糠可显著提高养分的表观消化率[12],饲喂27%和30%的菌糠对血液生理指标均无负面影响[9, 13-14]。但也有研究显示,山羊饲粮中添加30%、45%和60%的菌糠对山羊生长性能无显著影响,当使用含有6.5%和13%菌糠的全混合日粮(TMR)青贮料饲喂羯羊时发现CP、ADF等养分表观消化率显著降低[15]。目前,食用菌菌糠饲料的利用方式主要有菌糠直接饲喂[9]和在菌糠中添加复合菌等进行厌氧发酵12[16]、14[11]、30[17]和45 d[15]等一定天数后制成菌糠发酵饲料,但将菌糠用作发酵剂直接利用到饲草料发酵中去的研究尚未见报道。为此,本文研究了全株水稻与平菇菌糠共发酵料对浏阳黑山羊生长性能、养分表观消化率和血液指标的影响,以探索提升全株水稻饲用价值的技术,同时为食用菌菌糠作为饲料资源的利用提供参考依据。

1 材料与方法 1.1 试验时间和地点

本试验于2019年10月至2019年12月在浏阳市淳口镇淳丰养殖专业合作社进行,试验期70 d,其中预试期10 d,正试期60 d。

1.2 试验材料

平菇菌糠:购自长沙市黄兴镇某食用菌公司的三潮末期新菌棒,经阴晾调节水分至60%左右,再用锤片式粉碎机粉碎,然后用单向阀聚乙烯塑料袋盛装,密封保藏备用。全株水稻:种植于浏阳市淳口镇的再生稻头季稻,收获时处于蜡熟期。全株水稻青贮料:收获上述“全株水稻”,自然晾晒将水分调至60%左右,经牧草粉碎机粉碎至5 cm左右,用单向阀聚乙烯塑料袋盛装,密封,贮藏60 d后开始饲用,随用随开袋。全株水稻与平菇菌糠共发酵料:在预试验的基础上,将上述收获的“全株水稻”经自然晾晒,水分调至60%左右,通过牧草粉碎机粉碎至5 cm左右后与平菇菌糠按重量比83 ∶ 17(干物质基础)混匀,用单向阀聚乙烯塑料袋盛装,密封,贮藏60 d后开始饲用,随用随开袋。全株玉米青贮:长度约为5 cm,购自湖南德人牧业有限公司。粗饲料及粗饲料原料营养成分见表 1

表 1 粗饲料及粗饲料原料营养成分 Table 1 Nutrients in roughage and roughage ingredients 
1.3 试验设计

试验选取27只体重为(15.53±2.22) kg的浏阳黑山羊,根据性别相同、体重相近原则随机分成3个组,每组3个重复,每个重复2只母羊、1只公羊,3只羊同一栏饲养。各组饲粮分别为65%混合精料+35%全株水稻与平菇菌糠共发酵料(Ⅰ组)、65%混合精料+35%全株水稻青贮料(Ⅱ组)和65%混合精料+35%全株玉米青贮料(Ⅲ组)。根据我国《肉羊饲养标准》(NY/T 816—2004)配制试验饲粮,试验饲粮组成及营养水平见表 2

表 2 试验饲粮组成及营养水平(干物质基础) Table 2 Composition and nutrient levels of experimental diets (DM basis) 
1.4 饲养管理

试验开始前,对所有羊只进行体内驱虫,并对羊舍进行全面消毒。于每日08:00和17:00饲喂,先粗后精,羊只自由采食粗料和饮水,且保证每栏有5%的剩料;根据粗料采食量确定精料投量,使各组精粗料比例控制在65 ∶ 35(干物质基础)左右。

1.5 样品采集和指标测定

于试验末期,采用全收粪法对各组的每个重复连续收集4 d的新鲜粪样,按100 g鲜粪加入10 mL 10%的硫酸固定氮,于-20 ℃低温保存;试验结束后,将每一栏的所有粪便混匀,取适量于65 ℃烘干进行初水分测定,后经粉碎过0.425 mm筛,自封袋保存用于常规养分的分析。饲粮和粪样中的粗脂肪(EE)、粗灰分(Ash)、CP含量和总能(GE)的测定依照AOAC(2003)[18]的方法测定;NDF、ADF和酸性洗涤木质素(ADL)含量的测定依照Van Soest[19]的方法测定。利用酸不溶灰分(AIA)作为本次试验的内源指示剂来计算饲粮中各养分的表观消化率,计算公式如下:

正试期第60天所有羊只空腹采集颈静脉血,分2份装于试管中,一份于3 000 r/min条件下离心15 min后取上清液,用于血清生化指标的测定;另一份用肝素钠抗凝,用于血常规指标的测定。

在正试期开始日和结束日对羊只进行空腹称重记作初重和末重,计算平均日增重;每日准确记录投料量和剩料量,计算平均日采食量,并根据平均日采食量和平均日增重计算料重比(F/G)。根据平均日采食量和饲粮的营养成分计算羊的养分摄入量。

血常规指标送至湖南农业大学贝斯特动物医院测定。血清总蛋白、白蛋白、尿素、肌酐、葡萄糖、总胆固醇、甘油三酯、高密度脂蛋白胆固醇、低密度脂蛋白胆固醇含量以及谷草转氨酶、谷丙转氨酶、碱性磷酸酶活性采用迈瑞BS-200全自动生化分析仪测定,测定试剂盒购自深圳迈瑞生物医疗电子股份有限公司;血清球蛋白含量为血清总蛋白含量与血清白蛋白含量之差。

1.6 数据统计分析

利用Excel 2007软件对试验数据进行初步整理,采用SPSS 23.0软件中的ANOVA程序进行单因素方差分析,并用Duncan氏法进行多重比较,结果用“平均值±标准差”表示,P < 0.05为差异显著。

2 结果与分析 2.1 全株水稻与平菇菌糠共发酵料对浏阳黑山羊生长性能和养分摄入量的影响

表 3可知,Ⅰ组浏阳黑山羊平均日增重数值上高于Ⅲ组(P>0.05),显著高于Ⅱ组(P < 0.05);Ⅰ组干物质采食量(DMI)最高,Ⅲ组次之,Ⅱ组最低,但各组间无显著差异(P>0.05);Ⅰ组料重比低于Ⅲ组(P>0.05),显著低于Ⅱ组(P < 0.05);Ⅰ组GE摄入量最高,Ⅱ组最低,两者差异显著(P < 0.05);Ⅰ组钙(Ca)摄入量显著高于Ⅱ组和Ⅲ组(P < 0.05);Ⅰ组ADL摄入量最高,Ⅲ组最低,两者差异显著(P < 0.05);各组间其余养分的摄入量无显著差异(P>0.05)。

表 3 全株水稻与平菇菌糠共发酵料对浏阳黑山羊生长性能和养分摄入量的影响 Table 3 Effects of whole plant rice and spent mushroom substrate of Pleurotus ostreatus co-fermented feed on growth performance and nutrient intakes of Liuyang black goats
2.2 全株水稻与平菇菌糠共发酵料对浏阳黑山羊养分表观消化率的影响

表 4可知,Ⅰ组GE和ADL表观消化率最低,显著低于Ⅱ组(P < 0.05);Ⅱ组CP表观消化率最高,显著高于Ⅲ组(P < 0.05);各组间其余养分的表观消化率无显著差异(P>0.05)。

表 4 全株水稻与平菇菌糠共发酵料对浏阳黑山羊养分表观消化率的影响 Table 4 Effects of whole plant rice and spent mushroom substrate of Pleurotus ostreatus co-fermented feed on nutrient apparent digestibility of Liuyang black goats 
2.3 全株水稻与平菇菌糠共发酵料对浏阳黑山羊血常规指标的影响

表 5可知,Ⅰ组浏阳黑山羊血液血红蛋白含量最低,显著低于Ⅲ组(P < 0.05);各组间其余血常规指标无显著差异(P>0.05)。

表 5 全株水稻与平菇菌糠共发酵料对浏阳黑山羊血常规指标的影响 Table 5 Effects of whole plant rice and spent mushroom substrate of Pleurotus ostreatus co-fermented feed on blood routine indices of Liuyang black goats
2.4 全株水稻与平菇菌糠共发酵料对浏阳黑山羊血清生化指标的影响

表 6可知,Ⅰ组浏阳黑山羊血清白蛋白含量高于Ⅲ组(P>0.05),显著高于Ⅱ组(P < 0.05);Ⅰ组和Ⅱ组血清高密度脂蛋白胆固醇含量显著高于Ⅲ组(P < 0.05);Ⅰ组血清碱性磷酸酶活性最高,显著高于Ⅱ组和Ⅲ组(P < 0.05);各组间其余血清生化指标无显著差异(P>0.05)。

表 6 全株水稻与平菇菌糠共发酵料对浏阳黑山羊血清生化指标的影响 Table 6 Effects of whole plant rice and spent mushroom substrate of Pleurotus ostreatus co-fermented feed on serum biochemical indices of Liuyang black goats
2.5 浏阳黑山羊平均日增重、饲粮GE水平、主要养分摄入量、主要养分表观消化率和血清碱性磷酸酶活性间相关性分析

以每栏为1个样本共9个样本进行相关分析,由表 7可知,各栏羊平均日增重与干物质(DM)摄入量、GE摄入量、CP摄入量、Ca摄入量和钙磷比呈显著正相关(P < 0.05),与ADL表观消化率呈显著负相关(P < 0.05);CP、GE、ADL摄入量与各自对应的表观消化率均呈负相关趋势(P>0.05);Ca摄入量与ADL表观消化率呈显著负相关(P < 0.05);饲粮钙磷比与GE、ADL表观消化率呈显著负相关(P < 0.05);GE表观消化率与CP表观消化率呈显著正相关(P < 0.05);饲粮GE水平与CP表观消化率呈显著负相关(P < 0.05),与GE表观消化率负相关度也较高,但不显著(P>0.05);血清碱性磷酸酶活性与ADL摄入量、Ca摄入量以及饲粮钙磷比呈显著正相关(P < 0.05),与ADL表观消化率呈显著负相关(P < 0.05)。

表 7 浏阳黑山羊平均日增重、饲粮GE水平、主要养分摄入量、主要养分表观消化率和血清碱性磷酸酶活性间相关性 Table 7 Correlation among average daily gain, dietary GE level, main nutrient intake, apparent digestibility of main nutrient and serum alkaline phosphatase activity of Liuyang black goats
3 讨论 3.1 全株水稻与平菇菌糠共发酵料对浏阳黑山羊生长性能的影响

动物的生长性能影响着经济效益,因此饲料价值评价中动物平均日增重的提高和料重比的降低显得尤为重要。许多研究发现,菌糠用作动物饲料对畜禽的生长性能有积极的影响。王霞等[20]在羔羊饲粮中添加12%的金针菇菌糠,替代部分玉米青贮和大麦草,平均日增重提高了18.29%。王宇等[9]在肉牛饲粮中添加30%的金针菇菌糠,替代部分玉米青贮,平均日增重提高了37.78%,料重比降低了38.49%。以上这些研究的菌糠是在饲喂时才作为原料组合到饲粮中的,而本试验是提前将菌糠与全株水稻混合进行发酵,且菌糠在饲粮中的占比(5.95%)相对较小,也提高了平均日增重和降低了料重比。本试验中,Ⅰ组浏阳黑山羊的平均日增重与Ⅱ组和Ⅲ组相比,分别提高了58.62%和18.33%,料重比较Ⅱ组和Ⅲ组分别降低了27.07%和12.01%。结合本试验全株水稻与平菇菌糠共发酵料在NDF、CP含量及GE上的变化(表 1),表明全株水稻与平菇菌糠经过共同发酵后对浏阳黑山羊生长性能与全株水稻青贮饲用价值相比,有提高和改善作用,但是此过程的具体作用机制还不清楚,需要进一步探究,包括NDF含量的降低是否因平菇菌糠中的酶起了作用也仍有待进一步验证。

动物的生长在很大程度上取决于DM的摄入量以及饲粮的蛋白质和能量水平[21]。本试验中,浏阳黑山羊的平均日增重与DM、GE、CP和Ca摄入量呈显著正相关,同时与CP和GE的表观消化率呈负相关趋势,而CP、GE、Ca摄入量与DMI呈高度正相关,由此可见,本试验中3组浏阳黑山羊平均日增重的差异在很大程度上来自组间采食量的差异,表明全株水稻与平菇菌糠共发酵料的适口性优于全株玉米青贮和全株水稻青贮。

3.2 全株水稻与平菇菌糠共发酵料对浏阳黑山羊养分表观消化率的影响

动物对营养物质的消化和利用情况与动物种类、采食量、饲粮组成及饲料的加工方式等多种因素密切相关。本试验中,Ⅰ组GE和ADL的表观消化率显著低于Ⅱ组,而GE的表观消化率与摄入量间、ADL的表观消化率与摄入量间都有较大程度负相关。另外,本试验中ADL的表观消化率与Ca摄入量呈显著负相关,提示过高的Ca摄入量对ADL的消化有抑制作用,这可能是瘤胃中较高水平的钙离子(Ca2+)抑制了瘤胃微生物所产阿魏酶酸酯酶等木质素降解酶类活性所致[22-23]。因此推断,Ⅰ组GE和ADL的表观消化率显著低于Ⅱ组与Ⅰ组山羊GE、ADL和Ca的摄入量较高有关。现有研究认为,在饲粮中磷充足的情况下,反刍动物能耐受很宽范围的钙磷比(1 ∶ 1~7 ∶ 1)[24]。本试验中,饲粮磷水平满足山羊需要,且钙磷比在2.6 ∶ 1~3.8 ∶ 1,但却发现钙磷比与饲粮GE表观消化率呈显著负相关,而与此同时Ca或磷的摄入量与GE表观消化率的相关性都未达到显著水平。这表明,即使在Ca、磷水平都满足山羊营养需要的情况下,钙磷比偏高仍然会对山羊消化产生显著不利影响。

菌糠的Ca含量通常较高,本次试验所用的平菇菌糠Ca含量达到5.36%,但在本次试验的饲粮配制过程中忽略了该问题,导致Ⅰ组饲粮Ca含量过高。而将预混料中的钙扣除后发现,Ⅰ组饲粮Ga水平与Ⅱ组饲粮相当。且不同Ca、磷水平饲粮对反刍动物生长性能和血清骨代谢指标无显著影响[25-27],对营养物质消化率影响的报道不一致[25, 28]。因此,可增加通过调整预混料中Ca添加量使各组饲粮Ca含量和钙磷比达到相当水平的试验,进行进一步探究。

3.3 全株水稻与平菇菌糠共发酵料对浏阳黑山羊血常规指标的影响

通常情况下,动物血液中的血红蛋白含量保持相对恒定,而血红蛋白含量的差异往往是由血容量差异引起的;白蛋白是血浆胶体渗透压的主要影响因素,血液中白蛋白含量高可能会使动物血容量增加,而血容量增加则会导致血液中某些物质的含量降低[29]。本试验中,Ⅰ组山羊血液血红蛋白含量显著低于Ⅲ组,同时其血清白蛋白含量高于Ⅱ组,因此推测该组山羊血液容量可能相对较大。另外,各组血液平均红细胞血红蛋白浓度之间无显著差异,且都在正常范围以内[30],表明各组山羊均未发生贫血或多血。而造成Ⅰ组山羊血液血红蛋白含量低的原因还可能是全株水稻与平菇菌糠共发酵料中Ca含量偏高,造成Ca2+和铁离子在吸收上出现了拮抗效应[31]

3.4 全株水稻与平菇菌糠共发酵料对浏阳黑山羊血清生化指标的影响

血清生化指标受动物的种类、品种、性别、年龄、饲粮营养和季节变化等多种因素的影响,可在一定程度上对机体健康、机体代谢和机体营养水平做出客观反映[32]。血清白蛋白是由肝脏合成的,它在维持血浆渗透压、机体代谢物质转运以及营养等方面起着重要的作用。除严重脱水外,目前尚未发现致使血清白蛋白含量升高的疾病[33]。机体免疫力得到提高,血清白蛋白含量也会升高[34]。本试验中,Ⅰ组山羊血清白蛋白含量显著Ⅱ组,可能与全株水稻与平菇菌糠共发酵料中的菌糠富含铁和多糖提高了机体的免疫能力[35]有关。

高密度脂蛋白对动物脂质及胆固醇代谢起着积极而重要的作用[33]。研究表明,与酪蛋白相比,饲喂稻米蛋白质能够促进试验鼠体内高密度脂蛋白生成,提高动物血浆高密度脂蛋白与总胆固醇及甘油三酯比值,促进脂质及胆固醇代谢[36-37];不过水稻茎叶是否具有调节动物体内高密度脂蛋白的作用目前尚未见报道。本研究中,Ⅰ组和Ⅱ组山羊血清高密度脂蛋白胆固醇含量无显著差异,且均显著高于Ⅲ组,表明全株水稻有促进山羊体内高密度脂蛋白形成的作用,并有利于山羊体内脂质代谢。而这个功效可能来自于全株水稻中稻米的蛋白质,而与全株水稻的调制方式无关。也有研究显示,饲喂食用菌菌糠可提高动物血清高密度脂蛋白胆固醇含量[38-40]。但本试验未体现出平菇菌糠对试验羊血清高密度脂蛋白胆固醇含量的提升作用。

血清碱性磷酸酶的活性与成骨细胞、肝细胞以及毛细胆管、肠、肾小管、胎盘等上皮细胞的功能活动有密切关系,也与动物物种、品种、发育阶段及生理阶段等有关。某些疾病,如肝胆病变、骨质增生、肠梗阻等会导致血清碱性磷酸酶活性不同程度地升高[41]。已有研究表明,不同品种不同月龄的山羊,其血清碱性磷酸酶活性有较大的差别[42-44],而浏阳黑山羊血清碱性磷酸酶活性的正常水平尚未见报道。本试验中,Ⅰ组血清碱性磷酸酶活性显著高于其余2组,但3组间血清谷丙转氨酶、谷草转氨酶活性无显著差异且都在正常范围。本试验中,Ⅰ组平均日增重较高,由此推断Ⅰ组血清碱性磷酸酶活性显著升高是羊骨组织代谢较旺盛的表现[45]

4 结论

在本试验条件下,与全株水稻青贮相比,全株水稻与平菇菌糠共发酵料可提高浏阳黑山羊的平均日增重,降低料重比,同时还可提高血清白蛋白含量和碱性磷酸酶活性。

参考文献
[1]
兴丽. 乳酸菌与纤维素酶制剂对不同青贮饲料质量影响的试验研究[D]. 硕士学位论文. 北京: 中国农业大学, 2005.
XING L. Study on the effects of Lactobacillus and cellulase additives on the quality of different silages[D]. Master's Thesis. Beijing: China Agricultural University, 2005. (in Chinese)
[2]
LI L Z, LIU C J, QU M R, et al. Characteristics of a recombinant Lentinula edodes endoglucanase and its potential for application in silage of rape straw[J]. International Journal of Biological Macromolecules, 2019, 139: 49-56. DOI:10.1016/j.ijbiomac.2019.07.199
[3]
TIAN J P, XU N X, LIU B Y, et al. Interaction effect of silo density and additives on the fermentation quality, microbial counts, chemical composition and in vitro degradability of rice straw silage[J]. Bioresource Technology, 2020, 297: 122412. DOI:10.1016/j.biortech.2019.122412
[4]
SHAHZAD F, ABDULLAH M, CHAUDHRY A S, et al. Effects of varying levels of fungal (Arachniotus sp.) treated wheat straw as an ingredient of total mixed ration on growth performance and nutrient digestibility in Nili Ravi buffalo calves[J]. Asian-Australasian Journal of Animal Sciences, 2016, 29(3): 359-364. DOI:10.5713/ajas.15.0429
[5]
刘成财. 食用菌菌糠饲料在养殖业中的应用及展望[J]. 中国畜牧兽医文摘, 2013, 29(4): 178.
LIU C C. Application and prospect of edible fungus residue feed in breeding industry[J]. Chinese Abstracts of Animal Husbandry and Veterinary Medicine, 2013, 29(4): 178 (in Chinese).
[6]
刘莹莹, 张坚, 王红兵, 等. 不同菌糠酶活力测定及微生物菌种发酵效果比较[J]. 农业科技与信息, 2010(3): 59-60.
LIU Y Y, ZHANG J, WANG H B, et al. Enzyme activity determination of different spent mushroom substrate and comparison of fermentation effect of microorganism strains[J]. Agricultural Science-Technology and Information, 2010(3): 59-60 (in Chinese). DOI:10.3969/j.issn.1003-6997.2010.03.039
[7]
马怀良, 龚振杰, 陈鑫, 等. 3种食用菌菌糠纤维素酶和木聚糖酶部分酶学性质[J]. 安徽农业科学, 2010, 38(28): 15479-15480.
MA H L, GONG Z J, CHEN X, et al. Research on partial enzymological property of crude cellulase and xylanase from three kinds of edible fungus residues[J]. Journal of Anhui Agricultural Sciences, 2010, 38(28): 15479-15480 (in Chinese). DOI:10.3969/j.issn.0517-6611.2010.28.012
[8]
王德汉, 项钱彬, 陈广银. 蘑菇渣资源的生态高值化利用研究进展[J]. 有色冶金设计与研究, 2007, 28(2): 262-266.
WANG D H, XIANG Q B, CHEN G Y. Research progress of ecological higher value application of spent mushroom compost[J]. Nonferrous Metals Engineering & Research, 2007, 28(2): 262-266 (in Chinese). DOI:10.3969/j.issn.1004-4345.2007.02.063
[9]
王宇, 李晗, 高景, 等. 金针菇菌糠营养价值评定及其对肉牛生产性能的影响[J]. 华中农业大学学报, 2020, 39(5): 115-122.
WANG Y, LI H, GAO J, et al. Nutrients assessments of Flammulina velutipes substrate and its effects on production performance of beef cattle[J]. Journal of Huazhong Agricultural University, 2020, 39(5): 115-122 (in Chinese).
[10]
史陈博, 安世钰, 赵洁, 等. 日粮中添加杏鲍菇菌糠对湖羊生长性能、瘤胃发酵和瘤胃发育的影响[J]. 南京农业大学学报, 2020, 43(6): 1063-1071.
SHI C B, AN S Y, ZHAO J, et al. Effects of adding Pleurotus eryngii substrate to diet on growth performance, rumen fermentation characteristics and rumen development of Hu sheep[J]. Journal of Nanjing Agricultural University, 2020, 43(6): 1063-1071 (in Chinese).
[11]
GAL S W, MOON Y H, CHO S J. Effect of the dietary supplementation of fermented spent mushroom (Pleurotus eryngii) substrates on the growth performance and carcass characteristics in Hanwoo steers[J]. Journal of Life Science, 2011, 21(12): 1705-1709. DOI:10.5352/JLS.2011.21.12.1705
[12]
孟梅娟, 白云峰, 高立鹏, 等. 金针菇菌渣日粮对山羊养分表观消化率及血清生化指标的影响[J]. 家畜生态学报, 2017, 38(5): 31-37.
MENG M J, BAI Y F, GAO L P, et al. Effects of enoki mushroom residue diet on nutrient apparent digestibility and blood biochemical indices in goats[J]. Acta Ecologae Animalis Domastici, 2017, 38(5): 31-37 (in Chinese). DOI:10.3969/j.issn.1673-1182.2017.05.007
[13]
魏涛. 杏鲍菇菌糠的营养价值及其在肉牛育肥上的应用[D]. 硕士学位论文. 扬州: 扬州大学, 2018.
WEI T. Nutrition of spent Pleurotus eryngii substrate and its application on the fattening performance of beef cattle[D]. Master's Thesis. Yangzhou: Yangzhou University, 2018. (in Chinese)
[14]
KIM M K, LEE H G, PARK J A, et al. Recycling of fermented sawdust-based oyster mushroom spent substrate as a feed supplement for postweaning calves[J]. Asian-Australasian Journal of Animal Sciences, 2011, 24(4): 493-499. DOI:10.5713/ajas.2011.10333
[15]
XU C C, CAI Y M, ZHANG J G, et al. Feeding value of total mixed ration silage with spent mushroom substrate[J]. Animal Science Journal, 2010, 81(2): 194-198. DOI:10.1111/j.1740-0929.2009.00728.x
[16]
高旭红. 饲用微生物的分离鉴定及其发酵杏鲍菇菌糠饲用效果的研究[D]. 硕士学位论文. 杨凌: 西北农林科技大学, 2018.
GAO X H. Isoiation and identification of feeding microorganisms and application effect of fermented Pleurotus eryngii feeds[D]. Master's Thesis. Yangling: Northwest AƃF University, 2018. (in Chinese)
[17]
何祥波, 李毅冉, 苗景, 等. 碱贮真姬菇菌糠对育肥羊生产性能、屠宰性能及血液生化指标的影响[J]. 福建农林大学学报(自然科学版), 2020, 49(3): 354-359.
HE X B, LI Y R, MIAO J, et al. Effect of alkali-stored Hypsizigus marmoreus Myzus persicae residue on production performance, slaughter performance and blood biochemical parameters of finishing goat[J]. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2020, 49(3): 354-359 (in Chinese).
[18]
AOAC. Official methods of analysis[S]. 17th ed. Washington, D.C. : Association of Official Analytical Chemists, 2003.
[19]
VAN SOEST P J. Use of detergents in the analysis of fibrous feeds.Ⅱ.A rapid method for the determination of fiber and lignin[J]. Journal of Association of Official Agricultural Chemists, 1963, 46(5): 829-835.
[20]
王霞, 张玉洁, 李讨讨, 等. 金针菇菌渣对羔羊生长性能、体尺指标、采食行为及反刍行为的影响[J]. 动物营养学报, 2020, 32(8): 3944-3951.
WANG X, ZHANG Y J, LI T T, et al. Influences of Flammulina velutipes residue on growth performance, body size indexes, feed behavior and ruminant behavior of lambs[J]. Chinese Journal of Animal Nutrition, 2020, 32(8): 3944-3951 (in Chinese). DOI:10.3969/j.issn.1006-267x.2020.08.053
[21]
RÍOS-RINCÓN F G, ESTRADA-ANGULO A, PLASCENCIA A, et al. Influence of protein and energy level in finishing diets for feedlot hair lambs: growth performance, dietary energetics and carcass characteristics[J]. Asian-Australasian Journal of Animal Sciences, 2014, 27(1): 55-61. DOI:10.5713/ajas.2013.13307
[22]
邢岩. 降解木质素厌氧菌株筛选及其转化秸秆作用研究[D]. 硕士学位论文. 长春: 吉林大学, 2012.
XING Y. Screening lignin-degrading anaerobic bacterial strains and its bioconversion of crop residues[D]. Master's Thesis. Changchun: Jilin University, 2012. (in Chinese)
[23]
杨红建, 岳群, 曹阳春. 荷斯坦阉牛瘤胃液中阿魏酸酯酶和乙酰酯酶的酶学特性研究[J]. 中国农业大学学报, 2011, 16(1): 73-78.
YANG H J, YUE Q, CAO Y C. Enzymological characterization of feruloyl and acetyl esterases in the rumen fluids of Holstein steers[J]. Journal of China Agricultural University, 2011, 16(1): 73-78 (in Chinese).
[24]
NRC. Nutrients requirements of dairy cattle[S]. 6th ed. Washington, D.C. : National Research Council, 1989.
[25]
孙伟丽. 梅花鹿钙磷代谢规律及鹿茸功效的物质基础研究[D]. 博士学位论文. 吉林: 中国农业科学院, 2016.
SUN W L. Calcium and phosphorus metabolism of sika deer and effective ingredients of velvet antler[D]. Ph. D. Thesis. Jilin: Chinese Academy of Agricultural Sciences, 2016. (in Chinese)
[26]
司丙文, 王杰, 张帆, 等. 精料补充料钙、磷水平对牧区冬春季羔羊生长性能、血清生化指标及骨成分的影响[J]. 动物营养学报, 2016, 28(9): 2742-2748.
SI B W, WANG J, ZHANG F, et al. Effects of calcium and phosphorus levels of supplementary concentrate on growth performance, serum biochemical indices and bone composition of lambs in pastoral areas during winter and spring season[J]. Chinese Journal of Animal Nutrition, 2016, 28(9): 2742-2748 (in Chinese). DOI:10.3969/j.issn.1006-267x.2016.09.011
[27]
BUENABAD L, LATACK B C, ZINN R A. Effect of supplemental calcium levels on feedlot growth performance and dietary net energy utilization during the receiving feeding period of calf-fed Holstein steers[J]. Open Journal of Animal Sciences, 2020, 10: 1-9.
[28]
陈月丽. 不同钙、磷水平日粮对11~14月龄奶水牛生长性能、养分消化率和血液指标的影响[D]. 硕士学位论文. 南宁: 广西大学, 2016.
CHEN Y L. Effect of different calcium and phosphorus levels on growth performance, digestive rate, blood indicators of 11 to 14 months growing buffalo[D]. Master's Thesis. Nanning: Guangxi University, 2016. (in Chinese)
[29]
杨秀平, 肖向红, 李大鹏. 动物生理学[M]. 3版. 北京: 高等教育出版社, 2016.
YANG X P, XIAO X H, LI D P. Animal physiology[M]. 3rd ed. Beijing: Higher Education Press, 2016 (in Chinese).
[30]
东北农业大学. 兽医临床诊断学[M]. 3版. 北京: 中国农业出版社, 2009.
Northeast Agricultural University. Veterinary clinical diagnostics[M]. 3rd ed. Beijing: China Agriculture Press, 2009 (in Chinese).
[31]
LYNCH S R. The effect of calcium on iron absorption[J]. Nutrition Research Reviews, 2000, 13(2): 141-158. DOI:10.1079/095442200108729043
[32]
PICCIONE G, CASELLA S, LUTRI L, et al. Reference values for some haematological, haematochemical, and electrophoretic parameters in the Girgentana goat[J]. Turkish Journal of Veterinary and Animal Sciences, 2010, 34(2): 197-204.
[33]
林钧材. 血液生物化学[M]. 北京: 人民卫生出版社, 1988.
LIN J C. Blood biochemistry[M]. Beijing: People's Medical Publishing House, 1988 (in Chinese).
[34]
闫一博, 丁小玲, 陈美琪, 等. 枯草芽孢杆菌KG109对肉鸡饲喂效果的研究[J/OL]. 动物营养学报: 1-15. (2020-12-15)[2021-11-10]. http://kns.cnki.net/kcms/detail/11.5461.S.20201214.1538.002.html.
YAN Y B, DING X L, CHEN M Q, et al. Study on feeding effects of Bacillus subtilis KG109 on broilers[J]. Chinese Journal of Animal Nutrition: 1-15. (2020-12-15)[2021-11-10]. http://kns.cnki.net/kcms/detail/11.5461.S.20201214.1538.002.html. (in Chinese)
[35]
韩朋伟, 卜小丽, 刘世操, 等. 发酵杏鲍菇菌糠对肉鸡生长性能和血清生化指标的影响[J]. 粮食与饲料工业, 2016(3): 48-51, 55.
HAN P W, BU X L, LIU S C, et al. Effects of fermented spent substrate of Pleurotus eryngii on growth performance and serum biochemical parameters of broilers[J]. Cereal & Feed Industry, 2016(3): 48-51, 55 (in Chinese).
[36]
LI H, YANG L, YANG H K, et al. Rice protein regulates HDL metabolism-related gene expression and enzyme activity in adult rats[J]. Food Bioscience, 2014, 8: 1-7. DOI:10.1016/j.fbio.2014.08.001
[37]
蔡亮. 大米蛋白调控Wistar鼠血浆HDL水平作用效果的研究[D]. 硕士学位论文. 哈尔滨: 哈尔滨工业大学, 2016.
CAI L. Study on the regulatory effect of rice protein on plasma HDL level in Wistar rat[D]. Master's Thesis. Harbin: Harbin Institute of Technology, 2016. (in Chinese)
[38]
PARK J H, KIM S W, DO Y J, et al. Spent mushroom substrate influences elk (Cervus elaphus canadensis) hematological and serum biochemical parameters[J]. Asian-Australasian Journal of Animal Sciences, 2012, 25(3): 320-324. DOI:10.5713/ajas.2011.11329
[39]
KIM J E, PARK S K, KIM T W, et al. Effects of feeding fermentation of spent mushroom substrate (FSMS) on growth performance in broiler chicks[J]. Korean Journal of Veterinary Service, 2010, 33(4): 387-392.
[40]
SONG Y M, LEE S D, CHOWDAPPA R, et al. Effects of fermented oyster mushroom (Pleurotus ostreats) by-product supplementation on growth performance, blood parameters and meat quality in finishing Berkshire pigs[J]. Animal, 2007, 1(2): 301-307. DOI:10.1017/S1751731107683785
[41]
吴维芬, 史德浩. 兽医血清酶学检验技术[M]. 北京: 农业出版社, 1987.
WU W F, SHI D H. Veterinary serum enzyme test technology[M]. Beijing: Agricultural Press, 1987 (in Chinese).
[42]
黄维, 文勇立, 吴小燕, 等. 金堂黑山羊不同年龄、性别及不同温湿度指数下的血液生化指标测定[J]. 黑龙江畜牧兽医, 2021(1): 5-11.
HUANG W, WEN Y L, WU X Y, et al. Determination of blood biochemical indexes of Jintang black goats at different ages, genders and temperature humidity index[J]. Heilongjiang Animal Science and Veterinary Medicine, 2021(1): 5-11 (in Chinese).
[43]
沈华伟. 福清山羊血液生化指标的测定分析[J]. 中国草食动物科学, 2018, 38(6): 64-66.
SHEN H W. Determination and analysis of Fuqing goat's blood biochemical index[J]. China Herbivore Science, 2018, 38(6): 64-66 (in Chinese). DOI:10.3969/j.issn.2095-3887.2018.06.019
[44]
杨前平, 索效军, 张年, 等. 乌骨山羊与湖北黑头羊血液生化指标比较分析[J]. 黑龙江畜牧兽医, 2018(14): 71-73.
YANG Q P, SUO X J, ZHANG N, et al. Comparison and analysis of blood biochemical indexes of black-bone goats and Hubei black-headed goats[J]. Heilongjiang Animal Science and Veterinary Medicine, 2018(14): 71-73 (in Chinese).
[45]
马生妍, 扈登强, 周曼莉, 等. 肌肉注射维生素ADE对育成牛血清生化指标的影响[J]. 中国奶牛, 2019(7): 32-36.
MA S Y, HU D Q, ZHOU M L, et al. Effect of intramuscular injection of vitamin ADE on serum biochemical parameters of heifer[J]. China Dairy Cattle, 2019(7): 32-36 (in Chinese).