动物营养学报    2022, Vol. 34 Issue (8): 5206-5218    PDF    
岩藻多糖对断奶羔羊小肠组织形态、消化酶活性和抗氧化指标的影响
郭广振 , 陈佳怡 , 彭苏 , 邱晓媛 , 牛志力 , 吴卓明 , 兰瑞霞 , 高振华 , 赵志辉 , 尹福泉     
广东海洋大学滨海农业学院, 湛江 524088
摘要: 本试验旨在探讨代乳粉添加岩藻多糖对断奶羔羊小肠通透性、组织形态、消化酶活性及抗氧化指标的影响。选择24只平均体重为(7.32±0.37) kg的30日龄健康川中黑山羊公羔, 随机分为4个组, 每组6个重复, 每个重复1只羊。Ⅰ组(对照组)饲喂不含岩藻多糖的代乳粉, Ⅱ组、Ⅲ组和Ⅳ组分别在代乳粉中添加0.1%、0.3%和0.6%的岩藻多糖。试验预试期7 d, 正试期30 d。结果表明: 1)Ⅲ组和Ⅳ组羔羊血清二胺氧化酶活性和D-乳酸含量显著低于Ⅰ组(P < 0.05);各组间血清内毒素含量差异不显著(P>0.05)。2)Ⅲ组羔羊小肠各肠段绒毛高度、绒毛高度/隐窝深度(V/C)以及肌层和黏膜厚度显著高于Ⅰ组(P < 0.05);各组小肠隐窝深度之间无显著差异(P>0.05)。3)Ⅲ组和Ⅳ组羔羊空肠α-淀粉酶和乳糖酶活性显著高于Ⅰ组(P < 0.05);各组间空肠脂肪酶、胰蛋白酶和糜蛋白酶活性差异不显著(P>0.05)。4)随着代乳粉中岩藻多糖添加水平的提高, 羔羊小肠抗氧化酶活性呈先升后降趋势, 小肠丙二醛(MDA)含量则呈先降后升趋势。Ⅲ组和Ⅳ组羔羊十二指肠、空肠总抗氧化能力(T-AOC)、过氧化氢酶(CAT)活性显著高于Ⅰ组(P < 0.05);Ⅱ组空肠T-AOC、CAT活性显著高于Ⅰ组(P < 0.05);Ⅲ组十二指肠、空肠谷胱甘肽过氧化物酶(GSH-Px)活性以及Ⅲ组和Ⅳ组空肠超氧化物歧化酶(SOD)活性显著高于Ⅰ组(P < 0.05);岩藻多糖添加组小肠各肠段(Ⅱ组回肠除外)MDA含量显著低于Ⅰ组(P < 0.05)。综上所述, 代乳粉中添加岩藻多糖能有效降低断奶羔羊血清D-乳酸含量和二胺氧化酶活性, 提高小肠黏膜厚度、肌层厚度、绒毛高度及V/C, 并提高空肠α-淀粉酶和乳糖酶活性以及小肠抗氧化能力, 改善小肠肠道屏障结构与功能, 从而在一定程度上提高断奶羔羊的肠道健康; 在本试验条件下, 代乳粉中岩藻多糖的适宜添加水平为0.3%。
关键词: 岩藻多糖    早期断奶羔羊    肠道通透性    消化酶活性    抗氧化    
Effects of Fucoidan on Small Intestinal Tissue Morphology, Digestive Enzyme Activity and Antioxidant Indices of Weaned Lambs
GUO Guangzhen , CHEN Jiayi , PENG Su , QIU Xiaoyuan , NIU Zhili , WU Zhuoming , LAN Ruixia , GAO Zhenhua , ZHAO Zhihui , YIN Fuquan     
College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
Abstract: This experiment was conducted to determine the effects of fucoidan supplementation in milk replacer on intestinal permeability, tissue morphology, digestive enzyme activity and antioxidant indices of weaned lambs. Twenty-four healthy 30-day-old Chuanzhong black male lambs with similar body weight of (7.32±0.37) kg were randomly divided into 4 groups with 6 replicates per group and 1 lamb per replicate. Lambs in group Ⅰ (control group) were fed the milk replacer without fucoidan, and the others in group Ⅱ, group Ⅲ and group Ⅳ were fed the milk replacer supplemented with 0.1%, 0.3% and 0.6% fucoidan, respectively. The pre-experimental period lasted for 7 days, and the experimental period lasted for 30 days. The results showed as follows: 1) the serum diamine oxidase activity and D-lactic acid content of lambs in group Ⅲ and group Ⅳ were significantly lower than those in group Ⅰ (P < 0.05), and there was no significant difference in serum endotoxin content among all groups (P>0.05). 2) The villus height, ratio of villus height to crypt depth (V/C), and thickness of muscularis and mucosa in segments of the small intestine of lambs in group Ⅲ were significantly higher than those in group Ⅰ (P < 0.05), and there was no significant difference in crypt depth of small intestine among all groups (P>0.05). 3) The activity of α-amylase and lactase in jejunum of lambs in group Ⅲ and group Ⅳ was significantly higher than that in group Ⅰ (P < 0.05), and there was no significant difference in activity of lipase, trypsin and chymotrypsin in jejunum among all groups (P>0.05). 4) With the increasing of fucoidan supplemental level in milk replacer, the antioxidant enzyme activity in small intestine of lambs firstly increased and then decreased, and the malonaldehyde (MDA) content in small intestine firstly decreased and then increased. In addition, the total antioxidant capacity (T-AOC) and catalase (CAT) activity in duodenum and jejunum of lambs in group Ⅲ and group Ⅳ were significantly higher than those in group Ⅰ (P < 0.05), the T-AOC and CAT activity in jejunum in group Ⅱ were significantly higher than those in group Ⅰ (P < 0.05), the glutathione peroxidase (GSH-Px) activity in duodenum and jejunum in group Ⅲ and the superoxide dismutase (SOD) activity in jejunum in group Ⅲ and group Ⅳ were significantly higher than those in group Ⅰ (P < 0.05), and the MDA content in segments of the small intestine in fucoidan supplemental groups (except for the ileum in group Ⅱ) was significantly higher than that in group Ⅰ(P < 0.05). In conclusion, the fucoidan supplementation in milk replacer can effectively decrease the serum D-lactic acid content and diamine oxidase activity of lambs, increase the small intestine mucosa thickness, muscularis thickness, villus height and V/C, enhance the activity of α-amylase and lactase in jejunum and small intestinal antioxidant capacity, and improve the small intestinal barrier structure and function, thus improving the intestinal health of weaned lambs; under the experimental condition, the suitable supplemental level of fucoidan in milk replacer is 0.3%.
Key words: fucoidan    early-weaned lambs    intestinal permeability    digestive enzyme activity    antioxidant    

集约化养殖模式是我国畜禽养殖的必然趋势,其中幼龄动物早期断奶是牛羊产业高质量发展的必要环节。在羔羊断奶前,液体乳是其主要的营养和免疫来源,因其瘤胃功能尚未健全和食管沟闭合作用,真胃和肠道成为机体消化吸收营养物质的主要场所,也是机体最大的免疫器官[1]。尤其在断奶过程中,小肠形态结构的完整性和功能性直接或间接地影响机体的生长发育和健康状况,如小肠绒毛高度变短、隐窝深度加深及其比值(绒毛高度/隐窝深度,V/C)下降,同时肠道中有害菌骤增等,会加剧肠道结构和功能损伤,从而降低饲粮营养物质的消化吸收,并导致发病率上升[2-8]。传统上应用抗生素能很好地缓解羔羊断奶应激;但长期使用抗生素的后遗症日趋严峻,加之2020年我国已施行“全面禁抗”措施[9]。因此,寻找新的替抗物质对建立羔羊健康养殖、提高母羊繁殖率等方面具有重要意义。

随着研究的不断深入,研究人员发现植物多糖能有效改善幼龄动物的肠道健康[10-13]。而海藻是一类药食同源的植物,因其长期生长在高盐、高压、低温和缺氧等恶劣水环境中,其细胞壁产生了与陆地植物明显不同结构和功能的生物活性成分,如岩藻多糖等,其微生物降解速度慢于其他多糖[14],同时具有抗病毒[15]、抗氧化[16-17]及肠道屏障保护作用[13]等生物学功能。目前,关于幼龄反刍动物早期断奶的研究多集中于断奶日龄、营养水平对瘤胃发育的影响等方面[18-19],而关于岩藻多糖对早期断奶幼龄反刍动物的小肠形态和功能的影响则鲜有报道。

鉴于本团队前期结果发现,相比于未添加岩藻多糖组,饲喂岩藻多糖后,羔羊在试验第1~30天内平均日增重的增长率超过34%,其中0.3%和0.6%岩藻多糖添加组在试验第1~30天的开食料采食量增长率超过30%,可见,代乳粉中添加岩藻多糖能提高断奶羔羊生长性能;另外,饲喂0.3%和0.6%岩藻多糖后,提高了断奶羔羊血清球蛋白含量和碱性磷酸酶、抗氧化酶活性以及抗炎因子白细胞介素-10含量,抑制了血清丙二醛和促炎因子肿瘤坏死因子-α、白细胞介素-1β含量,改善了血清生化指标,提高了血清抗氧化能力和免疫性能,在一定程度上缓解了断奶应激[20]。本研究进一步提出假设,认为代乳粉中添加岩藻多糖能改善早期断奶羔羊的小肠结构和功能。因此,本试验在前期研究基础上[20],进一步研究代乳粉中添加岩藻多糖对早期断奶羔羊小肠通透性、组织形态、消化酶活性及抗氧化指标的影响,为幼龄反刍动物肠道健康养殖提供参考。

1 材料与方法 1.1 试验材料

试验用岩藻多糖来源某公司,生产日期为2021年1月5日,为淡黄色粉末,具有海藻气味,纯度为98%,其中水分含量为7.87%、总糖含量为66.3%、岩藻糖含量为24.9%、硫酸基含量为28.9%。

1.2 试验设计

选取体重相近、健康状况良好的30日龄去势川中黑山羊公羔24只,平均初始重为(7.32±0.37) kg。采用单因素试验设计,按照同质原则将试验羔羊随机分为4个组,每组6个重复,每个重复1只羊。4组羔羊分别饲喂代乳粉(对照组,Ⅰ组)、代乳粉+0.1%岩藻多糖(Ⅱ组)、代乳粉+0.3%岩藻多糖(Ⅲ组)和代乳粉+0.6%岩藻多糖(Ⅳ组)。羔羊自由采食开食料。试验预试期7 d,正试期30 d。

1.3 试验饲粮

代乳粉购自北京精准动物营养研究中心,营养水平(干物质基础):粗蛋白质23%、粗脂肪12%、粗纤维3%、粗灰分10%、钙1.5%和磷1.2%。开食料配方根据《肉羊饲养标准》(NY/T 816—2004)设计,其组成及营养水平见表 1,精粗比为80 ∶ 20。

表 1 开食料组成及营养水平(干物质基础) Table 1 Composition and nutrient levels of the starter (DM basis) 
1.4 饲养管理

试验地点在广东省雷州市某养殖场,时间为2021年4月至2021年6月。29日龄前的羔羊随母羊哺乳,30日龄进行强制断奶,并单笼饲养。根据体重的1.2%饲喂代乳粉,代乳粉和温开水按照重量与体积1 ∶ 6比例进行稀释冲调,搅拌摇匀至充分溶解后,室温晾至40 ℃使用奶瓶(250 mL)进行饲喂。每天分4次等量饲喂,饲喂时间分别为08:00、11:00、14:00和17:00。各组的代乳粉采食量无显著差异[20]。饲粮饲喂程序:首先少量开食料(记录重量),其次代乳粉,最后自由采食开食料。羊圈卫生按照养殖场管理措施,进行定期打扫与消毒。

1.5 检测指标及方法 1.5.1 肠道通透性指标

样品采集:正试期结束当天(即第30天)20:00开始禁食、禁水12 h。次日08:00,将所有羔羊保定后,通过颈静脉采集羔羊血液10 mL,将采血管在4 ℃下倾斜60°静置20 min后,4 ℃、1 789×g离心10 min,将上清液分装至1.5 mL Ep管中,置于-20 ℃冰箱保存,待测。

肠道通透性指标:血清中二胺氧化酶(diamine oxidase, DAO)活性、内毒素(endotoxin, ET)和D-乳酸(D-lactic acid, DLA)含量采用酶联免疫吸附测定(ELISA)试剂盒测定。

1.5.2 小肠组织和食糜采集

小肠组织采集:当天采集完血液样品后,立即采用颈动脉放血法屠宰。羔羊屠宰后采集小肠组织中段样品(十二指肠、空肠、回肠,约1 cm肠管),并用磷酸缓冲液(PBS)冲洗之后,将每只羔羊肠段分成2份,一份固定在4%多聚甲醛中用于组织形态学分析;另一份装入2 mL无酶离心管,液氮速冻,之后转移至-80 ℃冰箱保存,待测。

食糜采集:在采集肠道组织同时,紧接马上采集空肠中段食糜样品,装于已高压灭菌的15 mL离心管中,液氮速冻,之后转移至-80 ℃冰箱保存,待测。

1.5.3 小肠组织形态学指标

苏木精-伊红(HE)染色:小肠组织切片经苏木素染色、伊红染色、不同浓度梯度酒精脱水和二甲苯透明处理后,中性树胶封片。染色完成后,在光学显微镜镜下观察组织,并利用TCapture images软件采集图像,每张切片观察10个视野,统计肠道组织绒毛高度、隐窝深度及V/C以及黏膜厚度和肌层厚度。

1.5.4 小肠组织抗氧化指标

样品前处理:准确称取小肠组织重量,按照重量(g) ∶体积(mL)=1 ∶ 9的比例,加入9倍体积的预冷PBS(pH 7.4),在冰水浴中充分匀浆后,1 732×g低温离心20 min取上清,制成10%组织提取液,置于-80 ℃冰箱保存,待测。

小肠组织抗氧化指标:总抗氧化能力(T-AOC)、过氧化氢酶(CAT)、超氧化物歧化酶(SOD)、谷胱甘肽过氧化物酶(GSH-Px)活性及丙二醛(MDA)含量采用试剂盒测定。

1.5.5 空肠食糜消化酶活性

样品前处理:取出冷冻的食糜,解冻后用冷冻离心机在4 ℃条件下6 928×g离心10 min,取上清后与4 ℃ 0.4 mol/L的KCl溶液按体积比1 ∶ 4进行稀释分装至2 mL无酶离心管,置于-80 ℃冰箱保存,待测。

消化酶活性:α-淀粉酶、乳糖酶、脂肪酶、胰蛋白酶和糜蛋白酶活性采用试剂盒测定。

以上指标测定所用试剂盒均购自南京建成生物工程研究所,具体操作步骤按照产品说明书进行。

1.6 数据处理与统计分析

试验数据采用Excel 2019进行整理和计算,用SPSS 23.0软件中的ANOVA程序进行单因素方差分析,并采用Duncan氏法进行多重比较,数据用平均值和均值标准误(SEM)表述,P < 0.05为差异显著。

2 结果与分析 2.1 岩藻多糖对断奶羔羊血清DAO活性、DLA和ET含量的影响

表 2可知,与对照组(Ⅰ组)相比,Ⅱ组、Ⅲ组和Ⅵ组断奶羔羊血清DLA含量分别降低了15.43%(P=0.057)、26.60%(P=0.002)和20.94%(P=0.012),血清DAO活性分别降低了8.21%(P=0.130)、14.28%(P=0.011)和12.95%(P=0.020);随着岩藻多糖添加水平的提高,各组血清ET含量呈先下降后上升的趋势(P=0.051)。这表明饲喂岩藻多糖可降低断奶羔羊肠道黏膜的通透性。

表 2 岩藻多糖对断奶羔羊血清DAO活性、DLA和ET含量的影响 Table 2 Effects of fucoidan on DAO activity, contents of DLA and ET in serum of weaned lambs (n=6)
2.2 岩藻多糖对断奶羔羊小肠组织形态的影响

表 3可知,Ⅲ组和Ⅳ组断奶羔羊空肠、回肠的绒毛高度显著高于Ⅰ组(P < 0.05),且与Ⅱ组差异不显著(P>0.05);Ⅲ组十二指肠绒毛高度较Ⅰ组显著提高了14.36%(P=0.002)。各组之间的小肠组织隐窝深度差异不显著(P>0.05)。Ⅲ组和Ⅳ组小肠各段V/C显著高于Ⅰ组(P < 0.05),Ⅱ组、Ⅲ组和Ⅳ组十二指肠、空肠V/C差异不显著(P>0.05),Ⅲ组回肠V/C显著高于Ⅱ组和Ⅳ组(P < 0.05);Ⅱ组和Ⅳ组回肠V/C差异不显著(P> 0.05),且都显著高于Ⅰ组(P < 0.05)。Ⅲ组小肠各段黏膜厚度均显著高于Ⅰ组(P < 0.05);Ⅱ组、Ⅲ组和Ⅳ组小肠各段黏膜厚度差异均不显著(P>0.05);Ⅱ组和Ⅳ组十二指肠、Ⅳ组回肠黏膜厚度显著高于Ⅰ组(P < 0.05);Ⅰ组、Ⅱ组和Ⅳ组空肠黏膜厚度差异不显著(P>0.05)。Ⅲ组和Ⅳ组小肠各段肌层厚度均显著高于Ⅰ组(P < 0.05),且与Ⅱ组相比差异均不显著(P>0.05);Ⅰ组和Ⅱ组小肠各段肌层厚度差异均不显著(P>0.05)。

表 3 岩藻多糖对断奶羔羊小肠组织形态的影响 Table 3 Effects of fucoidan on small intestinal tissue morphology of weaned lambs (n=6)

图 1所示,羔羊早期断奶后,Ⅰ组小肠绒毛排列紊乱、不整齐、粗短不均、形状不规则、稀疏,肠绒毛出现脱落和黏连等现象。而饲喂岩藻多糖后,小肠绒毛外形纤细呈指状,较为整齐完整,长度明显增加;相比于Ⅲ组,Ⅱ组和Ⅳ组的空肠和回肠绒毛粗细不均、肠绒毛出现断裂和黏连现象;而各组小肠的隐窝深而不明显;同时,岩藻多糖添加组小肠黏膜厚度和肌层厚度明显厚于Ⅰ组。

图 1 岩藻多糖对断奶羔羊小肠组织形态的影响 Fig. 1 Effects of fucoidan on small intestinal tissue morphology of weaned lambs (n=6, 40×)
2.3 岩藻多糖对断奶羔羊空肠消化酶活性的影响

表 4可知,与Ⅰ组相比,Ⅱ组、Ⅲ组和Ⅵ组断奶羔羊空肠α-淀粉酶活性分别提高了4.56%(P=0.493)、36.50%(P < 0.001)和26.67%(P=0.001);Ⅲ组和Ⅳ组空肠乳糖酶活性显著高于Ⅰ组(P < 0.05),分别提高了72.52%(P=0.003)和51.15%(P=0.026),岩藻多糖添加组间(即Ⅱ组、Ⅲ组和Ⅳ组)、Ⅰ组和Ⅱ组之间空肠乳糖酶活性差异不显著(P>0.05)。各组间空肠脂肪酶、胰蛋白酶和糜蛋白酶活性差异均不显著(P>0.05)。

表 4 岩藻多糖对断奶羔羊空肠消化酶活性的影响 Table 4 Effects of fucoidan on digestive enzyme activities in jejunum of weaned lambs (n=6)
2.4 岩藻多糖对断奶羔羊小肠抗氧化指标的影响

表 5可知,代乳粉添加不同水平的岩藻多糖,不同程度提高了断奶羔羊十二指肠、空肠和回肠的抗氧化能力。与Ⅰ组相比,Ⅲ组和Ⅳ组十二指肠、空肠T-AOC和GSH-Px活性均显著提高(P < 0.05);Ⅱ组十二指肠的T-AOC和GSH-Px活性差异不显著(P>0.05)。与Ⅰ组相比,Ⅲ组和Ⅳ组空肠SOD活性分别提高了30.90%(P < 0.001)和22.33%(P=0.001)。随着岩藻多糖添加水平的提高,各组间回肠T-AOC(P=0.076)、GSH-Px (P=0.070)和SOD(P=0.088)活性和十二指肠SOD活性(P=0.074)均呈现先升后降趋势。与Ⅰ组相比,Ⅲ组和Ⅳ组十二指肠、空肠CAT活性均显著提高(P < 0.05),Ⅳ组回肠CAT活性显著提高了34.74%(P=0.007),Ⅱ组组十二指肠、回肠CAT活性差异不显著(P>0.05)。与Ⅰ组相比,Ⅲ组和Ⅳ组十二指肠、空肠和回肠MDA含量均显著降低(P < 0.05),但Ⅲ组和Ⅳ组小肠各段MDA含量差异不显著(P>0.05);Ⅱ组十二指肠、空肠MDA含量分别显著降低了42.03%(P=0.005)和22.20%(P < 0.001)。

表 5 岩藻多糖对断奶羔羊小肠抗氧化指标的影响 Table 5 Effects of fucoidan on antioxidant indices in small intestine of weaned lambs (n=6)
3 讨论 3.1 岩藻多糖对断奶羔羊血清DAO活性、DLA和ET含量的影响

在早期断奶过程中,羔羊肠道屏障的损伤是实施早期断奶的最大技术障碍。断奶过早,断奶应激作用强烈,对小肠组织破坏增强,其后期的恢复能力较慢,肠道通透性增加[21-22],易导致羔羊肠道屏障功能紊乱等[8, 23-24],严重抑制羔羊生长;而断奶过晚,则延迟了母羊发情周期和降低繁殖率,增加饲养成本[25]。因此,缓解断奶应激,提高断奶期间羔羊小肠消化吸收功能是羔羊培育和育肥的关键。DAO是位于动物小肠黏膜上层绒毛中具有高度活性的细胞结构酶,参与细胞核酸和蛋白质的合成,调控肠黏膜细胞增殖,其活性与黏膜细胞代谢密切相关[26]。DLA和ET是肠腔内多种微生物的代谢产物。由于机体缺乏降解DLA的关键酶,因此血清中DLA含量升高预示了肠道通透性增加,肠上皮细胞受损,导致大量DLA进入血液中[27]。而ET多存在于革兰氏阴性菌细胞壁中,肠道屏障受损后,ET通过血液循环可诱发全身性炎症反应,因此血清中DAO活性以及DLA和ET含量均可反映机体肠道屏障的完整性和损伤程度[26-28]。岩藻多糖具有广泛的生物学功能[13, 15-17],受其提取工艺的影响,岩藻多糖纯度越高、提取的成本越高等缺点限制[29],未能在畜禽养殖中大规模的推广。本研究结果中,饲喂岩藻多糖能有效降低断奶羔羊血清DAO活性以及DLA和ET含量,其中0.3%和0.6%岩藻多糖能显著降低血清DAO活性和DLA含量。这与杨晋[30]、陈丽玲等[31]的研究结果一致。适量的植物多糖能降低断奶对羔羊小肠黏膜的损伤,从而缓解断奶应激,但肠道通透性并未随岩藻多糖的增加而降低。这可能与岩藻多糖的复杂结构,不易被微生物所降解有关[14],过量植物多糖则降低了肠道微生物的多样性及改变了微生物群落结构,造成机体代谢紊乱,从而影响了肠道微生物屏障[32-33]

3.2 岩藻多糖对断奶羔羊小肠组织形态的影响

肠道黏膜屏障能将肠道内容物与机体内环境分隔开、阻止致病菌进入机体,通常将其分为机械屏障、化学屏障、微生物屏障和免疫屏障。机械屏障是肠道黏膜屏障的结构基础,是由肠上皮细胞和细胞间连接复合物构成的完整结构,在营养物质消化吸收和调节肠道通透性方面发挥重要作用。研究表明,断奶初期对肠道组织形态的影响尤为明显,且影响其后期生长发育与健康状况[2-7]。本试验中,各组断奶羔羊小肠绒毛均出现黏连和粗细不均的现象,但相比于对照组,岩藻多糖添加组的小肠绒毛形状较为规则整齐,肠绒毛长度、黏膜和肌层厚度明显增大。而且,随着岩藻多糖添加水平的提高,各组小肠绒毛高度、V/C、黏膜和肌层厚度均呈现先升后降趋势,其中0.3%和0.6%岩藻多糖添加组绒毛高度、V/C、黏膜和肌层厚度均明显增加。这与杨晋[30]、Yang等[34]、Xue等[35]的研究结果一致。可见,适量的岩藻多糖能有效缓解小肠组织损伤,降低肠道通透性,抵御肠道内的致病菌侵袭和有害物质进入血液循环,缓解断奶应激[13, 30]

3.3 岩藻多糖对断奶羔羊空肠消化酶活性的影响

化学屏障,又称黏液屏障,由肠上皮细胞和消化腺分泌的凝胶状黏液构成,是肠道黏膜屏障中重要组成部分。其中,消化酶既是肠道黏液的组成成分,因其大量分泌能稀释毒素和冲洗肠腔,使潜在的条件性致病菌难以黏附于肠上皮表面;又是反映动物采食量的重要指标,其活性高低直接影响机体对饲粮的消化吸收程度。乳糖酶是饲粮碳水化合物消化吸收的关键酶;淀粉酶主要是由胰腺合成并分泌至肠液中的溶解性酶,其消化作用主要集中在十二指肠和空肠[36];空肠内容物的乳糖酶和淀粉酶活性最高[37-38]。本团队前期研究结果显示,0.3%和0.6%岩藻多糖显著提高了羔羊开食料采食量。在本研究中,0.3%和0.6%岩藻多糖同样促进了断奶羔羊空肠内容物乳糖酶和α-淀粉酶活性的提高。这与杨晋[30]、冯士彬等[39]、董金金等[40]的研究结果较为一致。这可能与岩藻多糖的组成成分和结构有关。岩藻多糖主要由含硫酸基岩藻糖组成,并伴有少量半乳糖、甘露糖等天然杂多糖,能改善肠道内环境,如降低pH、吸附有害物质并加速排出体外等,降低肠道黏膜损伤和提高肠道消化酶活性,从而提高羔羊的生长性能[30, 41]

胰脏分泌的胰蛋白酶和糜蛋白酶是机体分解蛋白质的2种重要消化酶。小肠内容物脂肪酶主要是由胰脏分泌的胰脂肪酶,它能将母乳或代乳粉中的脂肪分解为脂肪酸和甘油供机体利用。本研究结果中,各组羔羊空肠内容物的脂肪酶、胰蛋白酶和糜蛋白酶活性无显著差异。这与郭江鹏等[42]的研究结果较为一致。郭江鹏等[42]研究发现,不同断奶日龄(即28和42日龄)羔羊在断奶初期(即7 d内),断奶抑制了羔羊小肠部分消化酶活性,如十二指肠和回肠的脂肪酶、胰蛋白酶和糜蛋白酶等活性;而断奶14 d后,由于羔羊对饲粮的逐渐适应,小肠脂肪酶、胰蛋白酶和糜蛋白酶活性恢复如初。可见,断奶对羔羊小肠脂肪酶、胰蛋白酶和糜蛋白酶的影响较小。这可能是因为动物饲粮更换引发暂时性应激,但饲粮的主要营养成分和含量与母乳相近,机体能进行自我调节,以适应饲粮转变。

3.4 岩藻多糖对断奶羔羊小肠抗氧化指标的影响

在畜禽生产中,肠道的氧化应激加剧及其抗氧化能力减弱与早期断奶造成的肠道损伤密切相关[8, 43-45]。在氧化应激状态下,幼龄动物肠道黏膜会产生大量高活性分子,如氧自由基(reactiveoxygenspecies, ROS),打破机体抗氧化系统的平衡,致使清除速率远低于产生速率,抑制抗氧化酶活性;同时高浓度ROS也将诱导DNA双链断裂进而激活DNA的损伤,引起黏膜中的细胞膜脂质过氧化,最终导致肠道组织形态结构的损伤及其通透性增加,破坏机体的肠道黏膜屏障,加重消化道疾病[8, 43-47]。肠道抗氧化酶是化学屏障中由肠上皮细胞分泌的黏液成分,可阻止有害物质的入侵。大量研究表明,岩藻多糖具有很强的抗氧化活性和抗炎作用,其作用机理包括:1)岩藻多糖能与肠道内的细菌膜蛋白结合,改变、破坏细胞膜的完整性,同时抑制病毒的吸附作用,从而维持肠道黏膜屏障完整性[15, 48];2)岩藻多糖能与自由基形成所需的金属离子发生络合反应,间接抑制ROS产生[49];3)通过提高SOD、GSH-Px等抗氧化酶的活性发挥清除过量ROS作用[16-17, 50];4)岩藻多糖可改善因环磷酰胺引起的小肠黏膜炎,通过对核因子E2相关因子2(Nrf2)/抗氧化原件(ARE)信号通路的上调,改善小肠的细胞凋亡能力[51-52]

本研究结果显示,断奶羔羊小肠抗氧化酶活性随岩藻多糖添加水平的提高呈先升后降的趋势,小肠MDA含量则呈先降后升的趋势。其中,Ⅲ组和Ⅳ组羔羊十二指肠、空肠的T-AOC、CAT活性显著高于Ⅰ组;Ⅲ组十二指肠、空肠的GSH-Px活性以及Ⅲ组和Ⅳ组空肠的SOD活性显著高于Ⅰ组;岩藻多糖添加组小肠各肠段(Ⅱ组回肠除外)MDA含量显著低于Ⅰ组。这表明代乳粉中添加岩藻多糖对断奶羔羊的小肠抗氧化能力产生了积极作用,缓解了羔羊的断奶应激。同时,本试验也发现,0.1%岩藻多糖对羔羊的十二指肠和回肠的抗氧化指标并未表现显著作用。可能的原因有2个方面:一方面与岩藻多糖的分子质量有关,王莹等[53]在研究岩藻聚糖硫酸酯(岩藻多糖)及其酶解产物对氧化损伤小鼠血清和肝脏的抗氧化作用中发现,酶解后低分子质量的岩藻聚糖硫酸酯比高分子质量岩藻聚糖硫酸酯有更显著的抗氧化作用;另一方面与羔羊自身小肠各肠段的长度和结构有关,其中羔羊各肠段长度排名:空肠>十二指肠>回肠,空肠长度占其后肠道总长度的80%以上,且空肠环形皱襞发达,空肠排空速度减慢,这意味着岩藻多糖与空肠黏膜的接触时间相对增加[54]。基于岩藻多糖的积极影响,本课题组后续将进一步对岩藻多糖对断奶羔羊空肠免疫屏障和相关屏障基因表达量的影响进行研究。

4 结论

① 代乳粉中添加岩藻多糖能有效降低断奶羔羊血清DLA含量和DAO活性,提高小肠黏膜厚度、肌层厚度、绒毛高度以及V/C,并提高空肠α-淀粉酶和乳糖酶活性及小肠抗氧化能力,改善小肠肠道屏障结构与功能,在一定程度上改善断奶羔羊的肠道健康。

② 在本试验条件下,代乳粉中岩藻多糖的适宜添加水平为0.3%。

参考文献
[1]
孙德文, 詹勇, 许梓荣. 日粮营养调控动物肠道黏膜免疫研究[J]. 中国畜牧杂志, 2004, 40(5): 36-39.
SUN D W, ZHAN Y, XU Z R, et al. Study on dietary nutrients regulation animal intestinal mucosal immune[J]. Chinese Journal of Animal Science, 2004, 40(5): 36-39 (in Chinese). DOI:10.3969/j.issn.0258-7033.2004.05.015
[2]
ZHANG Q, LI C, NIU X L, et al. An intensive milk replacer feeding program benefits immune response and intestinal microbiota of lambs during weaning[J]. BMC Veterinary Research, 2018, 14(1): 366. DOI:10.1186/s12917-018-1691-x
[3]
EKIZ B, KOCAK O, YALCINTAN H, et al. Effects of suckling duration on growth, slaughtering and carcass quality characteristics of Kivircik lambs[J]. Tropical Animal Health and Production, 2016, 48(2): 395-401. DOI:10.1007/s11250-015-0964-7
[4]
BHATT R S, SARKAR S, SAHOO A, et al. Growth performance, rumen fermentation and economic analysis of Malpura lambs raised on milk replacer at different weaning age under semiarid conditions[J]. Journal of Animal Physiology and Animal Nutrition, 2022, 106(2): 250-257. DOI:10.1111/jpn.13609
[5]
YU C H, CHEN C Y, CHANG C C. The immediate effects of weaning stress on the hypothalamus-pituitary-adrenal alteration of newly weaned piglets[J]. Journal of Animal Physiology and Animal Nutrition, 2019, 103(4): 1218-1223.
[6]
FAZIO E, MEDICA P, CRAVANA C, et al. Short- and long-term effects of weaning on adrenocortical and functional response of lambs[J]. Acta Scientiae Veterinariae, 2014, 42: 1193.
[7]
KNIGHTS M, SIEW N, RAMGATTIE R, et al. Effect of time of weaning on the reproductive performance of Barbados Blackbelly ewes and lamb growth reared in the tropics[J]. Small Ruminant Research, 2012, 103(2/3): 205-210.
[8]
李冲. 断奶应激对羔羊消化道结构与功能发育的影响及其机理研究[D]. 博士学位论文. 兰州: 兰州大学, 2019: 48-58.
LI C. Effects of weaning stress on the structural and functional development of digestive tract of lamb and its mechanism[D]. Ph. D. Thesis. Lanzhou: Lanzhou University, 2019: 48-58. (in Chinese)
[9]
农业农村部. 中华人民共和国农业农村部公告第194号[EB/OL]. (2019-07-10)[2021-09-11]. http://www.moa.gov.cn/govpublic/xmsyj/201907/t20190710_6320678.htm.
Ministry of Agriculture and Rural Affairs of the People's Republic of China. Announcement No. 194 of the Ministry of Agriculture and Rural Affairs of the People's Republic of China[EB/OL]. (2019-07-10)[2021-09-11]. http://www.moa.gov.cn/govpublic/xmsyj/201907/t20190710_6320678.htm. (in Chinese)
[10]
谢红兵, 邹云, 刘丽莉, 等. 植物多糖对断奶仔猪小肠黏膜形态及肠黏膜屏障功能的影响[J]. 中国兽医学报, 2019, 39(1): 150-157, 187.
XIE H B, ZOU Y, LIU L L, et al. Effects of botanic polysaccharides on intestinal mucosal morphology and intestinal barrier function in weaned piglets[J]. Chinese Journal of Veterinary Science, 2019, 39(1): 150-157, 187 (in Chinese).
[11]
PAONE P, CANI P D. Mucus barrier, mucins and gut microbiota: the expected slimy partners?[J]. Gut, 2020, 69(12): 2232-2243. DOI:10.1136/gutjnl-2020-322260
[12]
WU Y J, JIANG H H, ZHU E P, et al. Hericium erinaceus polysaccharide facilitates restoration of injured intestinal mucosal immunity in Muscovy duck reovirus-infected Muscovy ducklings[J]. International Journal of Biological Macromolecules, 2018, 107(Pt A): 1151-1161.
[13]
张婷, 薛美兰, 刘佳, 等. 褐藻糖胶对乳腺肿瘤大鼠肠道屏障损伤的保护作用[J]. 营养学报, 2018, 40(1): 59-63.
ZHANG T, XUE M L, LIU J, et al. Protective effect of fucoidan on intestinal barrier in rats with breast cancer[J]. Acta Nutrimenta Sinica, 2018, 40(1): 59-63 (in Chinese).
[14]
SICHERT A, CORZETT C H, SCHECHTER M S, et al. Verrucomicrobia use hundreds of enzymes to digest the algal polysaccharide fucoidan[J]. Nature Microbiology, 2020, 5(8): 1026-1039. DOI:10.1038/s41564-020-0720-2
[15]
HANISCH F G, AYDOGAN C, SCHROTEN H. Fucoidan and derived oligo-fucoses: structural features with relevance in competitive inhibition of gastrointestinal norovirus binding[J]. Marine Drugs, 2021, 19(11): 591. DOI:10.3390/md19110591
[16]
ALE M T, MIKKELSEN J D, MEYER A S. Important determinants for fucoidan bioactivity: a critical review of structure-function relations and extraction methods for fucose-containing sulfated polysaccharides from brown seaweeds[J]. Marine Drugs, 2011, 9(10): 2106-2130. DOI:10.3390/md9102106
[17]
HOLDT S L, KRAAN S. Bioactive compounds in seaweed: functional food applications and legislation[J]. Journal of Applied Phycology, 2011, 23(3): 543-597. DOI:10.1007/s10811-010-9632-5
[18]
CARBALLO O C, KHAN M A, KNOL F W, et al. Impact of weaning age on rumen development in artificially reared lambs[J]. Journal of Animal Science, 2019, 97(8): 3498-3510. DOI:10.1093/jas/skz148
[19]
AMIRTEYMOORI E, KHEZRI A, DAYANI O, et al. Effects of linseed processing method (ground versus extruded) and dietary crude protein content on performance, digestibility, ruminal fermentation pattern, and rumen protozoa population in growing lambs[J]. Italian Journal of Animal Science, 2021, 20(1): 1506-1517. DOI:10.1080/1828051X.2021.1984324
[20]
郭广振, 杨伟光, 刘娟, 等. 岩藻多糖对断奶羔羊生长性能、器官指数及血清生化、抗氧化和免疫指标的影响[J]. 动物营养学报, 2022, 34(5): 3122-3131.
GUO G Z, YANG W G, LIU J, et al. Effects of fucoidan on growth performance, organ indices and serum biochemical, antioxidant and immune indices of weaned lambs[J]. Chinese Journal of Animal Nutrition, 2022, 34(5): 3122-3131 (in Chinese). DOI:10.3969/j.issn.1006-267x.2022.05.039
[21]
WOOD K M, PALMER S I, STEELE M A, et al. The influence of age and weaning on permeability of the gastrointestinal tract in Holstein bull calves[J]. Journal of Dairy Science, 2015, 98(10): 7226-7237. DOI:10.3168/jds.2015-9393
[22]
HU C H, XIAO K, LUAN Z S, et al. Early weaning increases intestinal permeability, alters expression of cytokine and tight junction proteins, and activates mitogen-activated protein kinases in pigs[J]. Journal of Animal Science, 2013, 91(3): 1094-1101. DOI:10.2527/jas.2012-5796
[23]
柴建民, 王海超, 刁其玉, 等. 断奶时间对羔羊生长性能和器官发育及血清学指标的影响[J]. 中国农业科学, 2015, 48(24): 4979-4988.
CHAI J M, WANG H C, DIAO Q Y, et al. Effects of weaning stress on growth performance, organ development and serological parameters in lambs[J]. Scientia Agricultura Sinica, 2015, 48(24): 4979-4988 (in Chinese). DOI:10.3864/j.issn.0578-1752.2015.24.012
[24]
李婷. 健康与腹泻羔羊生长发育及肠道菌群变化的相关性研究[D]. 硕士学位论文. 乌鲁木齐: 新疆农业大学, 2018: 10-18.
LI T. Relationship between lamb growth and gastrointestinal flora changes in health and diarrhea[D]. Master's Thesis. Urumqi: Xinjiang Agricultural University, 2018: 10-18. (in Chinese)
[25]
刁其玉, 屠焰, 杨丹. 羔羊代乳品的研制与应用效果研究[J]. 中国草食动物, 2002, 22(4): 9-12.
DIAO Q Y, TU Y, YANG D. A study of milk replacer for kid goats[J]. China Herbivores, 2002, 22(4): 9-12 (in Chinese). DOI:10.3969/j.issn.2095-3887.2002.04.003
[26]
BOUNOUS G, ECHAVÉ V, VOBECKY S J, et al. Acute necrosis of the intestinal mucosa with high serum levels of diamine oxidase[J]. Digestive Diseases and Sciences, 1984, 29(9): 872-874. DOI:10.1007/BF01318436
[27]
LI K Y, WANG J L, XU Y Y, et al. Intestinal barrier disruption in ileal pouchitis after ileal pouch-anal anastomosis in a rat model[J]. Inflammatory Bowel Diseases, 2017, 23(6): 923-931. DOI:10.1097/MIB.0000000000001129
[28]
SHAO T, ZHAO C Q, LI F Y, et al. Intestinal HIF-1α deletion exacerbates alcoholic liver disease by inducing intestinal dysbiosis and barrier dysfunction[J]. Journal of Hepatology, 2018, 69(4): 886-895. DOI:10.1016/j.jhep.2018.05.021
[29]
陈舒桐, 俞珵, 李瑞, 等. 岩藻多糖的提取、化学改性、降血糖活性及机理研究进展[J]. 天然产物研究与开发, 2022, 34(1): 153-163.
CHEN S T, YU C, LI R, et al. Research progress on extraction, chemical modification and hypoglycemic property and mechanism of fucoidans[J]. Natural Product Research and Development, 2022, 34(1): 153-163 (in Chinese).
[30]
杨晋. 海藻多糖替代抗生素对断奶仔猪生长性能和肠道屏障功能的影响[D]. 硕士学位论文. 南昌: 江西农业大学, 2019: 22-34.
YANG J. Effects of seaweed polysaccharide substitute for antibiotics on growth performance and intestinal barrier function of weaned piglets[D]. Master's Thesis. Nanchang: Jiangxi Agricultural University, 2019: 22-34. (in Chinese)
[31]
陈丽玲, 邹田德, 贺琴, 等. 中药复合多糖对断奶仔猪肠道形态结构的调节作用[J]. 中国畜牧杂志, 2020, 56(12): 133-138.
CHEN L L, ZOU T D, HE Q, et al. Effects of polysaccharide compounds from atractylodes macrocephalaon and poriacocos on intestinal morphological structure of weaned piglets[J]. Chinese Journal of Animal Science, 2020, 56(12): 133-138 (in Chinese).
[32]
田威龙, 司景磊, 刘笑笑, 等. 高脂高糖饮食对小型猪肠道微生物的影响[J/OL]. 畜牧兽医学报: 1-11(2021-09-28)[2022-01-31]. http://kns.cnki.net/kcms/detail/11.1985.S.20210927.1143.002.html.
TIAN W L, SI J L, LIU X X, et al. Effects of high-fat and high-sugar diet on intestinalmicrobiota in mini-pigs[J/OL]. Acta Veterinaria et Zootechnica Sinica: 1-11(2021-09-28)[2022-01-31]. http://kns.cnki.net/kcms/detail/11.1985.S.20210927.1143.002.html. (in Chinese)
[33]
GIDEY T T. 高糖和高脂饮食对斑马鱼生长、代谢、器官健康、肠道菌群及水体代谢产物谱的影响[D]. 博士学位论文. 北京: 中国农业科学院, 2021: 42-55.
GIDEY T T. The effect of high sugar and high fat diets on growth, metabolism, organ health, gut microbiota and metabolite profiles of zebrafish(Danio rerio)[D]. Ph. D. Thesis. Beijing: Chinese Academy of Agricultural Sciences, 2021: 42-55. (in Chinese)
[34]
YANG C M, HAN Q J, WANG K L, et al. Astragalus and ginseng polysaccharides improve developmental, intestinal morphological, and immune functional characters of weaned piglets[J]. Frontiers in Physiology, 2019, 10: 418. DOI:10.3389/fphys.2019.00418
[35]
XUE M L, JI X Q, LIANG H, et al. The effect of fucoidan on intestinal flora and intestinal barrier function in rats with breast cancer[J]. Food & Function, 2018, 9(2): 1214-1223.
[36]
陈鼎. 小尾寒羊和滩羊肠道发育及其主要消化酶活性变化规律研究[D]. 硕士学位论文. 杨凌: 西北农林科技大学, 2008: 11-53.
CHEN D. Regulation of intestine and its digestive enzymes activities between small-tailed Han sheep and Tan sheep[D]. Master's Thesis. Yangling: Northwest A & F University, 2008: 11-53. (in Chinese)
[37]
TRACK N S, BOKERMANN M, CREUTZFELDT C, et al. Enzymatic and ultrastructural development of the bovine exocrine pancreas[J]. Comparative Biochemistry and Physiology. B: Comparative Biochemistry, 1972, 43(2): 313-322. DOI:10.1016/0305-0491(72)90290-8
[38]
孙洪新. 羔羊小肠消化酶活性变化规律研究[D]. 硕士学位论文. 保定: 河北农业大学, 2003: 34-36.
SUN H X. Stadies on the change of digestive enzymatic activities of small intestine in lamb[D]. Master's Thesis. Baoding: Hebei Agricultural University, 2003: 34-36. (in Chinese)
[39]
冯士彬, 程连平, 舒迎霜, 等. 黄芪多糖对湖羊羔羊生长性能、血清指标、消化功能和直肠菌群的影响[J]. 江苏农业学报, 2019, 35(1): 122-129.
FENG S B, CHENG L P, SHU Y S, et al. Effect of Astragalus polysaccharide on growth performance, serum indices, digestive function and rectum flora of Hu lambs[J]. Jiangsu Journal of Agricultural Sciences, 2019, 35(1): 122-129 (in Chinese). DOI:10.3969/j.issn.1000-4440.2019.01.018
[40]
董金金. 酵母多糖对哺乳犊牛生长性能及胃肠道发育的影响[D]. 硕士学位论文. 保定: 河北农业大学, 2018.
DONG J J. Effects of yeast polysaccharide on growth performance and gastrointestinal development of pre-weaning calves[D]. Master's Thesis. Baoding: Hebei Agricultural University, 2018. (in Chinese)
[41]
李德远, 徐现波, 熊亮, 等. 海带的保健功效及海带生理活性多糖研究现状[J]. 食品科学, 2002, 23(7): 151-154.
LI D Y, XU X B, XIONG L, et al. Review on health function of laminaria japonica aresch and its biologically active polysaccharides[J]. Food Science, 2002, 23(7): 151-154 (in Chinese).
[42]
郭江鹏, 王俊, 李发弟, 等. 断奶日龄对舍饲羔羊小肠内容物中主要消化酶活性的影响[J]. 中国畜牧兽医, 2017, 44(9): 2603-2612.
GUO J P, WANG J, LI F D, et al. Effect of different weaning ages on main digestive enzymes activities in the small intestinal contents of lamb[J]. China Animal Husbandry & Veterinary Medicine, 2017, 44(9): 2603-2612 (in Chinese).
[43]
LALLÈS J P, BOSI P, SMIDT H, et al. Nutritional management of gut health in pigs around weaning[J]. Proceedings of the Nutrition Society, 2007, 66(2): 260-268.
[44]
CAO S T, WANG C C, WU H, et al. Weaning disrupts intestinal antioxidant status, impairs intestinal barrier and mitochondrial function, and triggers mitophagy in piglets[J]. Journal of Animal Science, 2018, 96(3): 1073-1083.
[45]
WEN J S, XU Q Q, ZHAO W Y, et al. Effects of early weaning on intestinal morphology, digestive enzyme activity, antioxidant status, and cytokine status in domestic pigeon squabs (Columba livia)[J]. Poultry Science, 2022, 101(2): 101613.
[46]
SIES H, BERNDT C, JONES D P. Oxidative stress[J]. Annual Review of Biochemistry, 2017, 86: 715-748.
[47]
WATSON A J, PRITCHARD D M. Lessons from genetically engineered animal models. Ⅶ.Apoptosis in intestinal epithelium: lessons from transgenic and knockout mice[J]. American Journal of Physiology: Gastrointestinal and Liver Physiology, 2000, 278(1): G1-G5.
[48]
LIU M, LIU Y X, CAO M J, et al. Antibacterial activity and mechanisms of depolymerized fucoidans isolated from Laminaria japonica[J]. Carbohydrate Polymers, 2017, 172: 294-305.
[49]
ROCHA DE SOUZA M C, MARQUES C T, GUERRA DORE C M, et al. Antioxidant activities of sulfated polysaccharides from brown and red seaweeds[J]. Journal of Applied Phycology, 2007, 19(2): 153-160.
[50]
辛晓林, 刘长海. 中药多糖抗氧化作用研究进展(综述)[J]. 北京中医药大学学报, 2000, 23(5): 54-55.
XIN X L, LIU C H. Research progress on antioxidant effect of traditional Chinese medicine polysaccharides (review)[J]. Journal of Beijing University of Traditional Chinese Medicine, 2000, 23(5): 54-55 (in Chinese).
[51]
ZUO T, LI X M, CHANG Y G, et al. Dietary fucoidan of Acaudina molpadioides and its enzymatically degraded fragments could prevent intestinal mucositis induced by chemotherapy in mice[J]. Food & Function, 2015, 6(2): 415-422.
[52]
CHEN P, YANG S, HU C, et al. Sargassum fusiforme polysaccharide rejuvenates the small intestine in mice through altering its physiology and gut microbiota composition[J]. Current Molecular Medicine, 2017, 17(5): 350-358.
[53]
王莹, 赵志浩, 高蒙初, 等. 岩藻聚糖硫酸酯及其酶解产物对D-半乳糖氧化损伤小鼠的抗氧化作用[J]. 现代食品科技, 2013, 29(10): 2378-2382.
WANG Y, ZHAO Z H, GAO M C, et al. Antioxidant effects of fucoidan and its hydrolysates on oxidative damage mice induced by D-galactose[J]. Modern Food Science and Technology, 2013, 29(10): 2378-2382 (in Chinese).
[54]
韩铖星, 张成新, 李勇, 等. 湖羊羔羊早期断奶前后胃肠道发育、酶活性及发酵参数的变化研究[J]. 中国畜牧兽医, 2021, 48(12): 4442-4450.
HAN C X, ZHANG C X, LI Y, et al. Study on variations of gastrointestinal development, enzyme activity and fermentation parameters of Hu lambs pre- and post-early weaning[J]. China Animal Husbandry & Veterinary Medicine, 2021, 48(12): 4442-4450 (in Chinese).