动物营养学报    2022, Vol. 34 Issue (8): 5295-5303    PDF    
饲料添加丁酸梭菌对黄颡鱼生长性能及血清生化指标、免疫功能和抗氧化能力的影响
王海瑞 , 莫文艳 *, 赵红霞 , 黄文 , 郑春田 , 曹俊明     
广东省农业科学院动物科学研究所, 农业农村部华南动物营养与饲料重点实验室, 广东省畜禽育种与营养研究重点实验室, 广州 510640
摘要: 本试验旨在研究饲料中添加丁酸梭菌对黄颡鱼(Pelteobagrus fulvidraco)生长性能及血清生化指标、免疫功能和抗氧化能力的影响。选取初始体重为(5.55±0.05) g的黄颡鱼450尾, 随机分成5组, 每组3个重复, 每个重复30尾。在基础饲料中分别添加0、2、20、200、2 000 mg/kg丁酸梭菌配制5种试验饲料, 分别记作G0、G1、G2、G3、G4, 饲料中丁酸梭菌数量分别为0、4.8×106、4.5×107、5.1×108、3.6×109 CFU/kg, 饲养周期为56 d。结果表明: 1)与G0组比较, G1、G2和G3组黄颡鱼的增重率显著增加(P < 0.05), 饲料系数却显著降低(P < 0.05)。与G0组相比, G1、G2、G3和G4组黄颡鱼的脏体比显著降低(P < 0.05), G2、G3组黄颡鱼的肥满度显著升高(P < 0.05)。2)G3、G4组黄颡鱼血清谷丙转氨酶活性显著低于G0组(P < 0.05), G3组黄颡鱼血清谷草转氨酶活性显著低于G0组(P < 0.05)。G1、G2和G3组黄颡鱼血清葡萄糖含量显著高于G0组(P < 0.05)。3)与G0组相比, G3组黄颡鱼血清的谷胱甘肽含量及溶菌酶和超氧化物歧化酶活性显著升高(P < 0.05), G4组黄颡鱼血清中补体3含量和碱性磷酸酶活性显著增加(P < 0.05), G3、G4组黄颡鱼血清免疫球蛋白M含量显著提高(P < 0.05)。G1、G2、G3和G4组黄颡鱼血清总抗氧化能力显著高于G0组(P < 0.05)。4)与G0组相比, G2、G3和G4组肠道短链脂肪酸含量显著升高(P < 0.05)。综上所述, 以生长性能、血清免疫和抗氧化指标为评价标准, 建议黄颡鱼饲料中丁酸梭菌的添加水平为200 mg/kg(5.1×108 CFU/kg)。
关键词: 丁酸梭菌    黄颡鱼    生长    免疫功能    抗氧化能力    
Effects of Adding Clostridium butyricum in Diets on Growth Performance, Serum Biochemical Indices, Immune Function and Antioxidant Ability of Yellow Catfish (Pelteobagrus fulvidraco)
WANG Hairui , MO Wenyan *, ZHAO Hongxia , HUANG Wen , ZHENG Chuntian , CAO Junming     
Guangdong Key Laboratory of Animal Breeding and Nutrition, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
Abstract: This experiment was aimed to study the effects of adding Clostridium butyricum in diets on growth performance, serum biochemical indices, immune function and antioxidant ability of yellow catfish (Pelteobagrus fulvidraco). A total of 450 yellow catfish with an initial body weight of (5.55±0.05) g were randomly divided into 5 groups with 3 replicates per group and 30 fish per replicate. Five experimental diets were prepared by adding 0, 2, 20, 200 and 2 000 mg/kg Clostridium butyricum into the basal diet, named as G0, G1, G2, G3 and G4, respectively. The number of Clostridium butyricum in the diets was 0, 4.8×106, 4.5×107, 5.1×108 and 3.6×109 CFU/kg, respectively. The feeding period was 56 days. Results showed as follows: 1) compared with G0 group, the weight gain rate of yellow catfish in G1, G2 and G3 groups was significantly increased (P < 0.05), but the feed conversion ratio was significantly decreased (P < 0.05). 2) The serum glutamic-pyruvic transaminase activity in G3 and G4 groups was significantly lower than that in G0 group (P < 0.05), and the serum glutamic-pyruvic transaminase activity in G3 group was significantly lower than that in G0 group (P < 0.05). Serum glucose content of yellow catfish in G1, G2 and G3 groups was significantly higher than that in G0 group (P < 0.05). 3) Compared with G0 group, the serum glutathione, lysozyme and superoxide dismutase activities in G3 group were significantly increased (P < 0.05), the serum complement 3 content and alkaline phosphatase activity in G4 group were significantly increased (P < 0.05), and the serum immunoglobulin M content in G3 and G4 groups was significantly increased (P < 0.05). The serum total antioxidant capacity of yellow catfish in Clostridium butyricum group was significantly higher than that in G0 group (P < 0.05). 4) Compared with G0 group, intestinal short-chain fatty acid content in G2, G3 and G4 groups was significantly increased (P < 0.05). In conclusion, it is recommended that the supplemental level of Clostridium butyricum is 200 mg/kg (5.1×108 CFU/kg) based on growth performance, serum immune and antioxidant indexes as evaluation criteria.
Key words: Clostridium butyricum    Pelteobagrus fulvidraco    growth    immune function    antioxidant ability    

黄颡鱼(Pelteobagrus fulvidraco)俗称黄姑子、黄骨鱼等,隶属于硬骨鱼纲、鲿科、黄颡鱼属。黄颡鱼含肉率高、肉质细嫩、味道鲜美、营养丰富,深受消费者的喜爱,在国内外水产市场中需求量大,是我国近年来发展较快的淡水经济型养殖品种。但是随着黄颡鱼高密度以及集约化养殖规模扩大,高密度养殖对黄颡鱼的生长性能和健康产生负面影响[1]。因此,开发天然和友好的抗生素替代品和生长促进剂对于水生动物的健康养殖尤为重要和急迫[2]。研究表明,饲料中添加益生菌有助于提高水产动物的生长性能、减少疾病和增强免疫功能[3-6]

丁酸梭菌是一种专性厌氧的革兰氏阳性益生菌,其具有耐高温、耐酸和耐受多种抗生素等特点,饲料加工过程和动物肠道酸性环境均能保持高度稳定性,是一种应用前景广阔的微生态制剂[7]。在罗非鱼(Oreochromis niloticus×O.aureus)、大黄鱼(Larimichthys crocea)、卵形鲳鲹(Trachinotus ovatus)、珍珠龙胆石斑(Epinephelus lanceolatu ×Epinephelus fuscoguttatus♀)、凡纳滨对虾(Litopenaeus vannamei)、斑节对虾(Penaeus monodon)等水产动物中的研究表明,丁酸梭菌的适宜添加水平为1×107~1×1011 CFU/kg[8-12]。饲料中添加丁酸梭菌能够提高动物生长性能、增强机体免疫功能及维持肠道正常功能等[13-14]。然而,目前在黄颡鱼中尚未见到相关报道。因此,本试验通过在饲料中分别添加0、2、20、200、2 000 mg/kg丁酸梭菌(活菌数6.1×1012 CFU/kg),研究其对黄颡鱼生长性能及血清生化指标、抗氧化能力及免疫功能的影响,评估丁酸梭菌在实用饲料中的适宜添加水平,旨在为丁酸梭菌在黄颡鱼的配合饲料中应用提供相关的理论依据。

1 材料与方法 1.1 试验材料

丁酸梭菌采购于某生物科技股份有限公司,其中活菌数6.1×1012 CFU/kg。

1.2 试验饲料

基础饲料组成及营养水平见表 1。参照水产动物饲料中丁酸梭菌适宜添加水平的相关文献[8-12],在基础饲料中分别添加0、2、20、200、2 000 mg/kg丁酸梭菌原粉,配制成5种试验饲料,试验饲料中丁酸梭菌数量分别为0、1.2×107、1.2×108、1.2×109、1.2×1010 CFU/kg,分别记作G0、G1、G2、G3、G4。

表 1 基础饲料组成及营养水平 Table 1 Composition and nutrient levels of the basal diet  

原料经粉碎通过60目筛,准确称取各个原料,加入鱼油、豆油,丁酸梭菌溶于水中,加水搅拌均匀,使用双螺杆挤压机(SLX-80型,华南理工大学科技实业总厂生产)将原料挤压成条,通过制粒机(G-500,华南理工大学科技实业总厂生产)破碎条状饲料,制成1.5 mm的颗粒饲料,在55 ℃下烘干,自然冷却后放入密封袋中,置于-20 ℃冰箱中保存备用。试验饲料G1、G2、G3、G4中丁酸梭菌活菌数实测值分别为4.8×106、4.5×107、5.1×108、3.6×109 CFU/kg。

1.3 试验设计及饲养管理

试验所用黄颡鱼苗购自广州市白云锦龙渔业有限公司,在室外水泥池中暂养2周,期间投喂试验所用基础饲料,每天采取表观饱食投喂2次。正式试验在室内循环养殖系统进行,由15个玻璃纤维桶构成。水容积达到300 L左右,挑选出原始体重在(5.55±0.05) g、健康、规格均等的黄颡鱼450尾,随机分成5组,每组3个重复,每个重复30尾。

试验期间,每天08:30和18:30各投喂1次,按照体重5%的投饲率进行投喂,后期采用表观饱食投喂,每周换水3次,换水量为养殖用水的1/3。光照为自然光源,水温27~32 ℃,氨氮含量 < 0.2 mg/L,溶氧含量>6.0 mg/L,pH 7.0~7.8。观察并记录黄颡鱼摄食、健康及死亡情况,试验周期为8周。

1.4 样品收集

养殖结束后,试验鱼禁食24 h,每缸鱼称总重并计数,每缸随机选取10尾鱼放入浓度为120 mg/L的MS-222溶液进行麻醉,尾静脉采血,4 ℃下静置6 h,4 000 r/min离心15 min,取上清液分装在2 mL Eppendorf管中,保存在-80 ℃超低温冰箱中。采血后的鱼解剖,采取肝脏和内脏,测定体长、体重、肝脏重和内脏团重。每缸随机选取3尾鱼,剥离全肠的内容物,保存于-80 ℃冰箱,用于短链脂肪酸含量的检测。

1.5 指标测定 1.5.1 生长性能及形体指标
1.5.2 血清生化指标

试验鱼血清中总蛋白(TP)、白蛋白(ALB)、甘油三酯(TG)、尿素(UR)、葡萄糖(GLU)、低密度脂蛋白胆固醇(LDL-C)、高密度脂蛋白胆固醇(HDL-C)含量及谷丙转氨酶(ALT)和谷草转氨酶(AST)活性由广州金域医学检验中心采用日立7600全自动生化分析仪检测。

1.5.3 血清免疫和抗氧化指标

采用南京建成生物工程研究所试剂盒测定血清溶菌酶(LZM)、碱性磷酸酶(AKP)、过氧化氢酶(CAT)、谷胱甘肽过氧化物酶(GSH-Px)、超氧化物歧化酶(SOD)活性,谷胱甘肽(GSH)、补体3(C3)、免疫球蛋白M(IgM)、丙二醛(MDA)含量及总抗氧化能力(T-AOC)。

1.5.4 肠道短链脂肪酸含量

肠道短链脂肪酸含量采用双抗体夹心法进行测定,送生工生物工程(上海)股份有限公司检测。

1.6 数据统计

采用SPSS 22.0软件对数据进行单因素方差分析和Duncan氏多重比较,P < 0.05表示差异显著。结果以平均值±标准差(mean±SD,n=3)表示。

2 结果与分析 2.1 饲料添加丁酸梭菌对黄颡鱼生长性能和形体指标的影响

表 2可知,与G0组相比,随着丁酸梭菌添加水平的增加,WGR先升高后降低,FCR先降低后升高。与G0组相比,G1、G2、G3组黄颡鱼的WGR显著升高(P < 0.05),而FCR却显著降低(P < 0.05)。与G0组相比,G2和G3组黄颡鱼的CF显著升高(P < 0.05),G1、G2、G3和G4组黄颡鱼的脏体比均显著降低(P < 0.05)。各组黄颡鱼肝体比有下降趋势,但差异未达到显著水平(P>0.05)。

表 2 饲料添加丁酸梭菌对黄颡鱼生长性能和形体指标的影响 Table 2 Effects of adding Clostridium butyricum in diets on growth performance and physical indexes of yellow catfish (Pelteobagrus fulvidraco)
2.2 饲料添加丁酸梭菌对黄颡鱼血清生化指标的影响

表 3可知,G3、G4组黄颡鱼血清AST活性显著低于G0组(P < 0.05)。G3组黄颡鱼血清ALT活性显著低于G0组(P < 0.05)。G1、G2、G3组黄颡鱼血清GLU含量显著高于G0组(P < 0.05)。饲料中添加丁酸梭菌对黄颡鱼幼鱼血清LDL-C、TG、HDL-C、ALB、TP含量无显著影响(P>0.05)。

表 3 饲料添加丁酸梭菌对黄颡鱼血清生化指标的影响 Table 3 Effects of adding Clostridium butyricum in diets on serum biochemical indices of yellow catfish (Pelteobagrus fulvidraco)
2.3 饲料添加丁酸梭菌对黄颡鱼血清免疫指标的影响

表 4可知,与G0组比较,G3组黄颡鱼血清的LZM活性显著升高(P < 0.05),G4组黄颡鱼血清中C3含量和AKP活性显著增加(P < 0.05),G3、G4组黄颡鱼血清IgM含量显著提高(P < 0.05)。

表 4 饲料添加丁酸梭菌对黄颡鱼血清免疫指标的影响 Table 4 Effects of adding Clostridium butyricum in diets on serum immune indices of yellow catfish (Pelteobagrus fulvidraco)
2.4 饲料添加丁酸梭菌对黄颡鱼血清抗氧化指标的影响

表 5可知,随着丁酸梭菌添加水平升高,黄颡鱼血清CAT和GSH-Px活性逐渐升高,MDA含量降低,但各组间黄颡鱼血清CAT、GSH-Px活性和MDA含量无显著差异(P>0.05)。各丁酸梭菌添加组黄颡鱼血清T-AOC均显著高于G0组(P < 0.05)。与G0组比较,G3组黄颡鱼血清中GSH含量和SOD活性显著增加(P < 0.05)。

表 5 饲料添加丁酸梭菌对黄颡鱼血清抗氧化指标的影响 Table 5 Effects of adding Clostridium butyricum in diets on serum antioxidant indices of yellow catfish (Pelteobagrus fulvidraco)
2.5 饲料添加丁酸梭菌对黄颡鱼肠道短链脂肪酸含量的影响

图 1可知,与G0组相比,G2、G3和G4组黄颡鱼肠道短链脂肪酸含量均显著高于G0组(P < 0.05)。

数据柱标注不同字母表示差异显著(P < 0.05)。 Value columns with different letters mean significant difference (P < 0.05). 图 1 饲料添加丁酸梭菌对黄颡鱼肠道短链脂肪酸含量的影响 Fig. 1 Effects of adding Clostridium butyricum in diets on intestinal short chain fatty acid contents of yellow catfish (Pelteobagrus fulvidraco)
3 讨论 3.1 饲料添加丁酸梭菌对黄颡鱼生长性能和形体指标的影响

丁酸梭菌作为一种益生菌已广泛应用于畜禽动物[13-14]。近年来,丁酸梭菌的研究在水生动物上逐步开展。研究表明,适当剂量的丁酸梭菌能提高罗非鱼[8]、凡纳滨对虾[10]、斑节对虾[11]、卵形鲳鲹[12]和鲤[15]的生长性能。与上述研究结果相一致,本试验在饲料中添加丁酸梭菌能够提高黄颡鱼的WGR和降低FCR。丁酸梭菌对动物生长性能和饲料利用率的积极作用可能与丁酸梭菌在肠道内代谢产生的丁酸有关,丁酸是上皮细胞的主要能量来源,可以促进肠道绒毛发育和提高消化能力[16]。短链脂肪酸主要包括乙酸、丙酸、异丁酸、丁酸、异戊酸、戊酸等,能够促进动物生长和肠道健康。本试验发现,饲料添加200和2 000 mg/kg丁酸梭菌提高了肠道短链脂肪酸含量,这与WGR的上升趋势相一致,表明丁酸梭菌代谢产生短链脂肪酸促进肠道发育,从而提高黄颡鱼的生长性能。CF可用于衡量鱼体的营养水平,CF越高则表明其生理和营养状况越好[17]。本研究中,饲料添加200 mg/kg丁酸梭菌时,黄颡鱼的CF显著增加,脏体比显著降低,表明适宜水平的丁酸梭菌能够改善黄颡鱼的体形和增加鱼体的可食部分。

3.2 饲料添加丁酸梭菌对黄颡鱼血清生化指标的影响

鱼类的血液指标与机体代谢、健康状况以及疾病关系密切,因此,血清生化指标通常作为衡量鱼体营养状况、健康状况和对环境适应状况的关键指数[18]。TP和ALB与机体的营养状况呈正相关,同时是评价肝脏健康的重要指标,肝脏受损会使血清中的TP和ALB含量降低[19]。在本试验中,随着饲料中丁酸梭菌添加水平的升高,血清TP和ALB含量均无显著变化,表明饲料中添加丁酸梭菌不会对黄颡鱼幼鱼肝脏产生负面影响,这与朱振祥[15]在鲤上的研究结果一致。血糖能够反映机体能量状况,若血液中的GLU含量升高则表明机体能量水平较高,生长速度越快[20]。本研究发现,饲料中添加一定水平的丁酸梭菌能够显著提高黄颡鱼血清GLU含量。血清GLU含量的升高可能与丁酸梭菌刺激产生的短链脂肪酸特别是丁酸有关,研究表明丁酸是上皮细胞的主要能量来源[16]。因此,饲料中添加丁酸梭菌可能通过刺激肠道产生丁酸促进黄颡鱼的能量代谢。血清中AST和ALT是鱼体中2种重要的转氨酶。这2种酶可作为评价肝脏功能和肝脏受损的重要指标,肝细胞受损会使血清中AST和ALT活性升高,低活性的AST和ALT对鱼类的生长有着积极影响[21-22]。本研究显示,丁酸梭菌添加组血清AST和ALT活性显著降低,由此推测饲料添加丁酸梭菌有助于保护黄颡鱼肝脏功能和促进生长。

3.3 饲料添加丁酸梭菌对黄颡鱼血清免疫功能的影响

鱼类具有非特异免疫和特异性免疫,C3和LZM可作为评价鱼类非特异性免疫的重要指标,LZM是可引起细菌的裂解和作为调理素激活补体系统,IgM能在鱼类非特异免疫系统发挥重要作用,维持高水平的IgM能增加鱼类的抗病力[23-25]。本研究结果显示,丁酸梭菌能够提高黄颡鱼血清LZM活性,在凡纳滨对虾[10]、珍珠龙胆石斑鱼[26]和银鲳[27]也出现了相似的结果,说明丁酸梭菌对黄颡鱼有较好的抗菌作用。作为补体系统中的主要成分,C3是体内具有酶原活性的球蛋白,本试验中饲料添加丁酸梭菌显著提高黄颡鱼血清C3含量。鱼类能进行体液和细胞免疫应答,而免疫球蛋白是鱼类特异性体液免疫应答的主要介质,本试验发现饲料添加丁酸梭菌显著提高黄颡鱼血清IgM含量,表明丁酸梭菌对黄颡鱼特异性免疫功能产生积极影响,在银鲳中也出现了相似的报道[27]。AKP是鱼类生理活动及疾病诊断的重要指标之一,可以作为衡量机体免疫状态的指标[28-29]。本试验中,与对照组相比,丁酸梭菌试验组黄颡鱼血清AKP活性显著提高,表明饲料添加丁酸梭菌能够增强黄颡鱼的免疫功能,该结果与杨晓伟[30]在仔猪上的研究结果一致。

3.4 饲料添加丁酸梭菌对黄颡鱼血清抗氧化能力的影响

鱼类在正常生命活动代谢中会产生氧自由基,SOD、CAT和GSH-Px等抗氧化酶可构成抗氧化防御系统。SOD能够将机体内多余的活性氧自由基转化为过氧化氢,而CAT能协同SOD将过氧化氢转化为水,当机体长期处在不良条件下会产生大量的氧自由基,大量氧自由基攻击细胞膜,发生脂质过氧化反应,转化为MDA,造成机体氧化损伤[31]。因此,MDA可作为评价脂质过氧化程度的重要指标[32]。过氧化氢和脂质过氧化物也可被GSH-Px清除,而GSH可以协同GSH-Px清除自由基[31]。因此,抗氧化酶活性的提高可以提高鱼类的抗病力。丁酸梭菌在机体内可产氢气、丁酸,三者皆具有抗氧化功能[13]。杨晓伟[30]发现,饲粮中添加丁酸梭菌可以提高仔猪血清中T-AOC和总SOD活性,显著降低了MDA含量,且随剂量增加仔猪抗氧化效果越好。本研究表明,丁酸梭菌可以提高黄颡鱼血清中的T-AOC,GSH含量和T-SOD活性,这与罗非鱼的研究结果[8]相一致。饲料中添加丁酸梭菌能够提高黄颡鱼抗氧化能力,可能是由于丁酸梭菌能够清除动物体内的活性氧自由基,降低脂质过氧化反应[33]

4 结论

饲料中适宜的丁酸梭菌添加水平显著增加黄颡鱼WGR和CF,降低FCR和脏体比,提高血清LZM、AKP、SOD活性,C3、IgM含量和T-AOC,提高肠道短链脂肪酸含量。综上所述,以生长性能、免疫功能和抗氧化能力为评价标准,建议黄颡鱼饲料中丁酸梭菌的添加水平为200 mg/kg(5.1×108 CFU/kg)。

参考文献
[1]
吴一桂, 马华威, 杨明伟, 等. 养殖密度和抗菌肽含量对网箱养殖的黄颡鱼生长性能的影响[J]. 水产学杂志, 2020, 33(3): 66-71.
WU Y G, MA H W, YANG M W, et al. Effects of stocking density and antimicrobial peptides on growth in yellow catfish Pelteobagrus fulvidraco cultured in net cages[J]. Chinese Journal of Fisheries, 2020, 33(3): 66-71 (in Chinese). DOI:10.3969/j.issn.1005-3832.2020.03.011
[2]
DAWOOD M A O, KOSHIO S, ABDEL-DAIM M M, et al. Probiotic application for sustainable aquaculture[J]. Reviews in Aquaculture, 2019, 11(3): 907-924. DOI:10.1111/raq.12272
[3]
RINGØ E, HOSEINIFAR S H, GHOSH K, et al. Lactic acid bacteria in finfish-an update[J]. Frontiers in Microbiology, 2018, 9: 1818. DOI:10.3389/fmicb.2018.01818
[4]
ZHOU X X, TIAN Z Q, WANG Y B, et al. Effect of treatment with probiotics as water additives on tilapia (Oreochromis niloticus) growth performance and immune response[J]. Fish Physiology and Biochemistry, 2010, 36(3): 501-509. DOI:10.1007/s10695-009-9320-z
[5]
WANG Y B, XU Z R. Effect of probiotics for common carp (Cyprinus carpio) based on growth performance and digestive enzyme activities[J]. Animal Feed Science and Technology, 2006, 127(3/4): 283-292.
[6]
SOLTANI M, GHOSH K, HOSEINIFAR S H, et al. Genus bacillus, promising probiotics in aquaculture: aquatic animal origin, bio-active components, bioremediation and efficacy in fish and shellfish[J]. Reviews in Fisheries Science & Aquaculture, 2019, 27(3): 331-379.
[7]
宋增福, 吴天星, 宋会仪. 丁酸梭菌C2菌株对鱼类肠道致病菌体外抑制作用研究[J]. 水利渔业, 2007, 27(3): 100-101, 115.
SONG Z F, WU T X, SONG H Y. Control of intestine thalli with Clostridium butyricum[J]. Reservoir Fisheries, 2007, 27(3): 100-101, 115 (in Chinese). DOI:10.3969/j.issn.1003-1278.2007.03.042
[8]
POOLSAWAT L, LI X Q, HE M, et al. Clostridium butyricum as probiotic for promoting growth performance, feed utilization, gut health and microbiota community of tilapia (Oreochromis niloticus×O. aureus[J]. Aquaculture Nutrition, 2020, 26(3): 657-670. DOI:10.1111/anu.13025
[9]
YIN Z Y, LIU Q D, LIU Y T, et al. Early life intervention using probiotic Clostridium butyricum improves intestinal development, immune response, and gut microbiota in large yellow croaker (Larimichthys crocea) larvae[J]. Frontiers in Immunology, 2021, 12: 640767. DOI:10.3389/fimmu.2021.640767
[10]
DUAN Y F, ZHANG Y, DONG H B, et al. Effect of dietary Clostridium butyricum on growth, intestine health status and resistance to ammonia stress in Pacific white shrimp Litopenaeus vannamei[J]. Fish & Shellfish Immunology, 2017, 65: 25-33.
[11]
DUAN Y F, ZHANG J S, HUANG J H, et al. Effects of dietary Clostridium butyricum on the growth, digestive enzyme activity, antioxidant capacity, and resistance to nitrite stress of Penaeus monodon[J]. Probiotics and Antimicrobial Proteins, 2019, 11(3): 938-945. DOI:10.1007/s12602-018-9421-z
[12]
吴杨, 杨铿, 黄小林, 等. 饲料中添加丁酸梭菌对卵形鲳鲹幼鱼生长性能和肠道菌群的影响[J/OL]. 南方水产科学(2022-05-12). https://www.schinafish.cn/article/doi/10.12131/20210141.
WU Y, YANG K, HUANG X L, et al. Effects of dietary Clostridium butyricum supplementation on growth performance and intestinal flora of juvenile Trachinotus ovatus[J/OL]. South China Fisheries Science (2022-05-12). https://www.schinafish.cn/article/doi/10.12131/20210141. (in Chinese)
[13]
YU J, DONG B, ZHAO M, et al. Dietary Clostridium butyricum and Bacillus subtilis promote goose growth by improving intestinal structure and function, antioxidative capacity and microbial composition[J]. Animals, 2021, 11(11): 3174-3174. DOI:10.3390/ani11113174
[14]
LIU Y, LIU C, AN K, et al. Effect of dietary Clostridium butyricum supplementation on growth performance, intestinal barrier function, immune function, and microbiota diversity of pekin ducks[J]. Animals, 2021, 11(9): 2514-2514. DOI:10.3390/ani11092514
[15]
朱振祥. 丁酸梭菌对鲤生长、免疫及肠道微生态的影响[D]. 硕士学位论文. 新乡: 河南师范大学, 2019.
ZHU Z X. Effects of Clostridium butyricum on growth, immunity and intestinal microecology of common carp(Cyprinus carpio L. )[D]. Master's Thesis. Xinxiang: Henan Normal University, 2019. (in Chinese)
[16]
JUNGHARE M, SUBUDHI S, LAL B. Improvement of hydrogen production under decreased partial pressure by newly isolated alkaline tolerant anaerobe, Clostridium butyricum TM-9A: optimization of process parameters[J]. International Journal of Hydrogen Energy, 2012, 37(4): 3160-3168.
[17]
戴强, 戴建洪, 李成, 等. 关于肥满度指数的讨论[J]. 应用与环境生物学报, 2006, 12(5): 715-718.
DAI Q, DAI J H, LI C, et al. Discussion on relative fatness[J]. Chinese Journal of Applied & Environmental Biology, 2006, 12(5): 715-718 (in Chinese). DOI:10.3321/j.issn:1006-687X.2006.05.026
[18]
LI M, YU N, QIN J G, et al. Effects of ammonia stress, dietary linseed oil and Edwardsiella ictaluri challenge on juvenile darkbarbel catfish Pelteobagrus vachelli[J]. Fish & Shellfish Immunologyy, 2014, 38(1): 158-165.
[19]
HOSEINI S M, YOUSEFI M, HOSEINIFAR S H, et al. Antioxidant, enzymatic and hematological responses of common carp (Cyprinus carpio) fed with myrcene- or menthol-supplemented diets and exposed to ambient ammonia[J]. Aquaculture, 2019, 506: 246-255. DOI:10.1016/j.aquaculture.2019.03.048
[20]
LI P, HOU D, ZHAO H, et al. Dietary pyridoxine effect on growth performance, physiological metabolic parameters, intestinal enzymatic activities and antioxidant status of juvenile yellow catfish (Pelteobagrus fulvidraco)[J]. Aquaculture Reports, 2022, 24: 101153.
[21]
HOSEINI S M, TAHERI MIRGHAED A, IRI Y, et al. Effects of dietary cineole administration on growth performance, hematological and biochemical parameters of rainbow trout (Oncorhynchus mykiss)[J]. Aquaculture, 2018, 495: 766-772.
[22]
SUÁREZ M D, TRENZADO C E, GARCÍA-GALLEGO M, et al. Interaction of dietary energy levels and culture density on growth performance and metabolic and oxidative status of rainbow trout (Oncorhynchus mykiss)[J]. Aquacultural Engineering, 2015, 67: 59-66.
[23]
JOLLÈS P, JOLLÈS J. What's new in lysozyme research?[J]. Molecular and Cellular Biochemistry, 1984, 63: 165-189.
[24]
周霞. 黄连须及其主要生物碱对非特异性免疫及鲤鱼抗病力的影响[D]. 硕士学位论文. 重庆: 西南大学, 2016.
ZHOU X. Effects of the fibrous root of Rhizoma Coptidis and its main alkaloids on non-specific immunity and disease resistance of common carp[D]. Master's Thesis. Chongqing: Southwest University, 2016. (in Chinese)
[25]
左然涛. 饲料脂肪酸调控大黄鱼免疫力和脂肪酸代谢的初步研究[D]. 博士学位论文. 青岛: 中国海洋大学, 2013.
ZUO R T. Preliminary study about the regulation of dietary fatty acid on immunity and fatty acid metabolism in large yellow croaker (Larmichthys crocea)[D]. Ph. D. Thesis. Qingdao: Ocean University of China, 2013. (in Chinese)
[26]
HE R P, FENG J, TIAN X L, et al. Effects of dietary supplementation of probiotics on the growth, activities of digestive and non-specific immune enzymes in hybrid grouper (Epinephelus lanceolatus ×Epinephelus fuscoguttatus ♀)[J]. Aquaculture Research, 2017, 48(12): 5782-5790.
[27]
GAO Q X, XIAO C F, MIN M H, et al. Effects of probiotics dietary supplementation on growth performance, innate immunity and digestive enzymes of silver pomfret, Pampus argenteus[J]. Indian Journal of Animal Research, 2016, 50(6): 936-941.
[28]
PIPE R K. Hydrolytic enzymes associated with the granular haemocytes of the marine mussel Mytilus edulis[J]. The Histochemical Journal, 1990, 22(11): 595-603.
[29]
DALVI R S, DAS T, DEBNATH D, et al. Metabolic and cellular stress responses of catfish, Horabagrus brachysoma (Günther) acclimated to increasing temperatures[J]. Journal of Thermal Biology, 2017, 65: 32-40.
[30]
杨晓伟. 丁酸梭菌对仔猪生长性能、肠道菌群、抗氧化功能和免疫功能的影响[J]. 饲料研究, 2020, 43(5): 44-48.
YANG X W. Effect of Clostridium butyricum on growth performance, intestinal flora, antioxidant function and immune function of piglets[J]. Feed Research, 2020, 43(5): 44-48 (in Chinese).
[31]
连灵君. 用多项生物标志物评价铅对小鼠的氧化损伤[D]. 硕士学位论文. 杭州: 浙江大学, 2006.
LIAN L J. Evaluation of oxidative damage induced by lead in mice using multi-biomarkers[D]. Master's Thesis. Hangzhou: Zhejiang University, 2006. (in Chinese)
[32]
VIARENGO A, CANESI L, GARCIA MARTINEZ P, et al. Pro-oxidant processes and antioxidant defence systems in the tissues of the Antarctic scallop (Adamussium colbecki) compared with the Mediterranean scallop (Pecten jacobaeus)[J]. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 1995, 111(1): 119-126.
[33]
KAWASAKI S, NAKAGAWA T, NISHIYAMA Y, et al. Effect of oxygen on the growth of Clostridium butyricum (type species of the genus Clostridium), and the distribution of enzymes for oxygen and for active oxygen species in Clostridia[J]. Journal of Fermentation and Bioengineering, 1998, 86(4): 368-372.