动物营养学报    2022, Vol. 34 Issue (9): 5589-5596    PDF    
饲料加工工艺对淀粉消化特性影响的研究进展
雷泽田 , 王金荣 , 许继隆 , 赵宜丰     
河南工业大学生物工程学院, 郑州 450001
摘要: 淀粉作为动物的主要能量来源, 对于动物健康和生长具有至关重要的作用。不同饲料加工工艺及加工条件可以改变饲料中淀粉的理化性质, 进而影响淀粉在动物体内的消化特性。本文综述了粉碎、挤压膨化、调质及制粒等饲料加工工艺对淀粉消化特性的影响。
关键词: 淀粉    消化特性    粉碎    挤压膨化    调质    制粒    
Research Progress on Effects of Feed Processing Technology on Starch Digestion Characteristics
LEI Zetian , WANG Jinrong , XU Jilong , ZHAO Yifeng     
School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
Abstract: As a main energy source for animals, starch plays an important role in animal health and growth. Different feed processing techniques and processing conditions can change the physicochemical properties of starch in feed, and then affect the digestion characteristics of starch in animals. The effects of several feed processing techniques, including grinding, extrusion, conditioning and pelleting, on starch digestion characteristics were reviewed in this paper.
Key words: starch    digestion characteristics    grinding    extrusion    conditioning    pelleting    

作为单胃动物生产的主要能量来源,不同植物来源淀粉的消化率和体内代谢特性受到直链淀粉、支链淀粉组成和淀粉结晶度的影响[1]。直链淀粉是一种线性聚合物,平均由2×103~12×103个葡萄糖单元组成,通过α-1, 4糖苷键相互连接;而支链淀粉则一般由0.4×106~35×106个葡萄糖单元组成,并依靠α-1, 6糖苷键连接[2-4]。支链淀粉分子比直链淀粉具有更大的表面积,可以与淀粉酶更好地结合,而直链淀粉的葡萄糖链则多通过氢键结合在一起,这使得直链淀粉比支链淀粉更难被淀粉酶水解[5]。直链淀粉以及支链淀粉长链主要位于淀粉颗粒的无定形区域,而支链淀粉外链则多分布于淀粉颗粒的结晶区域[6]。根据植物来源以及支链淀粉螺旋堆积方式的不同,淀粉颗粒会表现出3种类型的结晶:A型结晶、B型结晶和C型结晶,其中C型结晶是A型结晶与B型结晶的组合[7-8]。A型结晶结构堆积紧密,可以阻碍淀粉颗粒被分解;B型结晶结构是土豆、香蕉等块茎以及水果类淀粉的典型结晶特征[9];而C型结晶结构主要存在于从豆类或植物根部(如豌豆种子或木薯根部)中所提取的淀粉中[10]。由于淀粉结构和组成的不同,淀粉的消化速度以及在消化道的通过时间等性质也会产生一定差异。根据不同的消化速度,淀粉可以被分为快速消化淀粉、慢速消化淀粉以及抗性淀粉[11]。含较多快速消化淀粉的谷物饲料可以在20 min内被小肠快速消化吸收并大幅提高血糖峰值[11-12]。另外,育肥猪饲喂含快速消化淀粉的预糊化马铃薯可以显著促进猪只对能量的消化利用率[13]。慢速消化淀粉也可在小肠中被完全消化,但与快速消化淀粉相比,慢速消化淀粉有着更慢的消化速度,通常在20~120 min内被水解完全[11, 14]。抗性淀粉则主要在结肠进行微生物发酵,产生短链脂肪酸和丁酸等物质,并可以有效地增强动物饱腹感并减少能量的摄入[15]。对猪饲喂慢速消化淀粉(或抗性淀粉)含量高的饲料不仅可以控制血糖的波动,同时还会延长猪的进食持续时间和采食间隔[16-17]。不同饲料原料中淀粉消化速度的差异还会影响饲粮中其他营养物质的消化特性。Van den Borne等[18]将糊化玉米淀粉和土豆蛋白质、大豆分离蛋白质作为淀粉和蛋白质原料对育肥猪进行了淀粉和蛋白质同时饲喂与分别饲喂的研究,结果发现分别饲喂淀粉和蛋白质所造成的葡萄糖与氨基酸不同步吸收显著降低了育肥猪对饲粮中能量、有机物以及非淀粉多糖的表观消化率。13C富集检测也证明淀粉和蛋白质的不同步消化吸收会增加氨基酸的氧化,并显著降低育肥猪对蛋白质等营养物质的利用。除与饲料原料来源有关外,加工工艺、加工条件等也是影响动物对饲粮中淀粉消化利用的重要因素[19]。在饲料生产中常通过粉碎、挤压膨化、调质及制粒等方法对饲料原料进行加工处理,这些加工技术不仅可以改变谷物饲料的颗粒大小,同时还能够破坏细胞壁并部分糊化淀粉,使淀粉消化速度、消化率等性质发生变化,从而达到改变淀粉消化特性的目的。本文综述了粉碎、挤压膨化、调质及制粒等饲料加工工艺对淀粉消化特性的影响,旨在为后续饲料加工工艺的改善以及淀粉在动物体内消化的研究提供理论依据。

1 粉碎

粉碎是饲料生产的第1道工序,该工艺利用摩擦、碰撞和剪切力等物理作用改变淀粉颗粒的结构和性质[20-22]。粉碎处理会降低天然淀粉的相对结晶度,在淀粉颗粒表面形成疏松多孔的结构,从而可以改变吸水率、溶解度等淀粉理化性质并最终对淀粉的消化率产生影响[23-26]。Lv等[20]研究发现,经球磨机粉碎处理后,马铃薯淀粉结晶度降低,淀粉吸热峰值向低温方向移动,糊化热由992.4 J/g降至835.9 J/g。同时,研究还指出,粉碎过程可以破坏马铃薯淀粉的结晶区域并提高消化酶对淀粉颗粒的作用效果,这使得经粉碎处理的马铃薯淀粉更加容易被消化[20, 27]。此外,粉碎还可以通过破坏谷物结构来影响淀粉酶对淀粉的作用速率。研究表明,对小麦籽粒进行粉碎可以较大程度上破坏其细胞壁,减少细胞壁对淀粉酶的物理屏障作用,促进淀粉与胰淀粉酶的有效接触并提高淀粉消化速率[28-29]。Martens等[30]所进行的13C呼气试验也证实粉碎提高了大麦、玉米等谷物淀粉在猪体内的消化速度以及胃排空速度。

粉碎粒度会影响饲料的消化及动物的营养吸收,不同粉碎粒度饲料中淀粉的理化性质以及消化特性都存在较显著差异。细颗粒淀粉由于其更低的硬度、更大的比表面积以及几乎无定形的构象往往会具备更高的淀粉消化速度及消化程度[23]。Ratanpaul等[31]利用外源α-淀粉酶、葡萄糖苷酶和胰蛋白酶体外模拟猪口腔、胃及小肠环境条件,测定了淀粉酶在粉碎的小麦、大麦和高粱等谷物中的扩散速率和淀粉回肠消化率,发现几种谷物的淀粉酶酶解速率与其粉碎粒度成反比的平方关系。通常认为,不同阶段猪饲料的最佳粉碎粒度区间为500~1 600 μm,过细或过粗的粉碎粒度都可能会影响猪对饲粮中营养物质的消化吸收[32]。Li等[33]报道,当饲粮中糙米粉碎粒度从800 μm提高至600 μm时,断奶仔猪和育肥猪对饲粮中淀粉以及干物质的表观消化率随之提高,但400 μm粉碎粒度的糙米的淀粉消化率与600 μm相比则没有进一步改善。Al-Rabadi等[34]在对不同粉碎粒度高粱与大麦的研究中观察到,最细粉碎颗粒体外酶解释放的葡萄糖约是最粗颗粒的10倍。经24 h酶孵育后,粒径小于1.0 mm的大麦中淀粉被完全消化,而粒径大于1.0 mm的大麦所含淀粉则未被完全酶解。另外,在Al-Rabadi等[34-35]的试验中,不同粉碎粒度的高粱均未能被淀粉酶完全消化,这可能是由于高粱中较多的抗性淀粉、蛋白质以及抗营养因子共同阻碍了淀粉酶的作用,也进一步说明了不同来源淀粉消化特性所存在的差异。值得注意的是,粉碎处理饲料中淀粉的有效利用不仅与消化速率有关,更取决于不同粒度的淀粉在消化道内的通过时长,淀粉在小肠中的停留时间越长,谷物淀粉消化越完全[31]。因此,在未来的研究中应该更加注重研究不同阶段动物对不同饲料的最佳粉碎粒度,探究最佳肠道滞留时间,改善饲料淀粉的消化速率及消化率,以最佳动物生产性能为指征提高饲料的利用率,并实现饲料的精准加工。

2 挤压膨化

挤压膨化可通过高温、高压以及剪切力破坏饲料中淀粉的分子间键,允许氢键位点结合更多的水分子并使淀粉膨胀并糊化,在原本光滑的天然淀粉颗粒表面形成疏松、多孔的结构[36-39]。此外,与粉碎工艺类似,挤压膨化也会破坏天然淀粉的结晶结构[40],并降低玉米[41]和大米[38]等多种谷物淀粉的结晶度。Yang等[42]通过差式扫描量热分析发现,挤压膨化可以通过降低玉米淀粉结晶度并促进淀粉双螺旋结构解离来提高玉米淀粉的糊化温度。对膨化玉米淀粉与普通玉米淀粉进行的热重分析结果显示,在500 ℃时,膨化玉米淀粉的质量损失率(82.08%~91.75%)低于普通玉米淀粉(97.25%);另外,膨化玉米淀粉的残留量和最大分解温度均高于原玉米淀粉,这说明挤压处理后的玉米淀粉与普通玉米淀粉相比具备更好的热稳定性[42]。Spier等[43]认为,挤压膨化后淀粉糊化温度的升高是由于淀粉中的聚合物链发生了重新排列,形成了更为稳定的构型。还有研究指出,挤压膨化处理会导致玉米中的直链淀粉-脂肪复合体平行排列,并使得淀粉晶体结构由A型转变为V型结晶[44]。挤压膨化过程所导致的淀粉内部结构以及淀粉颗粒大小改变会提高淀粉的消化速度和淀粉消化率[45-46]。Martens等[47]指出挤压膨化处理可以通过增加玉米、大麦等谷物中的快速消化淀粉含量显著提高饲料淀粉的消化速度,并且得到与粉碎饲粮相比更高的淀粉消化系数。但不同来源饲料原料挤压膨化后的消化特性也可能存在一定差异。Rodriguez等[48]在试验中发现挤压膨化改善了育肥猪对玉米、小麦和高粱中淀粉的回肠表观消化率以及玉米和高粱中能量的全消化道表观消化率,但未能提高小麦在猪只体内的消化能和代谢能。Zaworska等[49]在猪上的研究表明,挤压处理虽然显著降低了豌豆中抗性淀粉、粗纤维和中性洗涤纤维含量,但未对豌豆中淀粉的消化率产生影响。

作为重要的饲料生产工序,进料水分、温度等工艺参数都会对挤压膨化处理后的淀粉结构和消化率产生影响。适当的进料水分可以提高膨化料的生产效率。Shrestha等[41]证实,在物料含水量较低的条件下,挤压膨化机需要消耗更多的能耗才可使饲料原料中的淀粉糊化。Veum等[50]通过向挤压膨化机机筒内注水,显著促进了挤压膨化玉米淀粉的糊化。还有研究报道,14%~23%的物料水分添加量,可显著提高挤压膨化后玉米淀粉的糊化程度,并促进幼年哺乳动物对玉米淀粉中能量的利用[51-53]。但如果原料含水量过高,则可能阻碍原料中淀粉与螺杆和机筒之间的摩擦,并减少挤压后淀粉表面孔结构的数量,从而降低淀粉的糊化程度并降低淀粉的消化率[54-55]。提高挤压膨化温度往往会在挤出淀粉表面形成更多的孔和更薄的孔壁结构以增加淀粉与酶的接触面积并促进淀粉消化[36, 56]。Ali等[57]报道,于较高温度下挤压的玉米和马铃薯淀粉与较低挤压温度下得到的淀粉相比具有更低的糊化黏度和更高的体外淀粉消化率。除温度与水分外,螺杆转速也会影响膨化饲料中淀粉的性质[58]。Faraj等[59]称挤压膨化大麦中抗性淀粉的含量会随着螺杆转速的增加而减少,而Mahasukhonthachat等[60]的研究中则发现螺杆转速的改变无法对挤压膨化后高粱淀粉的消化动力学产生显著影响。

尽管适宜条件的挤压处理可以促进动物对饲粮中淀粉的消化,但饲喂挤压膨化饲粮却并非一定可以提高动物的生长性能[61]。因此,为了提高动物生产效率,需要进一步对不同来源、不同参数条件下挤压膨化饲料中淀粉的理化性质、消化速度以及消化率进行探索,从而合理利用挤压膨化技术生产出消化特性可控的饲料,为动物精准营养奠定良好的基础。

3 调质、制粒

经调质、制粒工艺制得的颗粒饲料被广泛应用于猪的商业化养殖之中。调质、制粒是利用蒸汽、热量和压力对饲料原料进行加工的工序,加工过程中的高温和蒸汽会破坏谷物原料的胚乳细胞壁以及维持淀粉晶体结构的分子间键,使淀粉吸收水分膨胀,最终经过模口压制形成颗粒饲料[32, 62-63]。这一处理过程可以使经过粉碎以及挤压膨化处理后的淀粉进一步糊化,并可提高动物对淀粉的回肠表观消化率以及饲料转化率[64-66]。另外有研究证实,一定条件下的调质与制粒加工在提高猪对淀粉消化率的同时,还可促进猪对饲粮中蛋白质、能量和干物质等营养成分的利用[67-68]

温度是调质与制粒加工中重要的因素之一。合理的调质制粒温度不仅能有效杀灭原料中的潜在病原体[69],同时还可起到改善饲料颗粒质量,提高淀粉糊化程度以及淀粉消化率的作用[70-71]。较低温度下调质的饲料可能提高初生仔猪的饲料转化率,而提高调质温度并延长处理时间则会有效提高饲料淀粉糊化度[66, 72]。Pace等[73]于研究中观察到,将制粒温度从60 ℃提高至90 ℃可以较好地促进精制甘蔗中的淀粉糊化。但是,过高或过低的处理温度都可能会导致调质制粒后饲料淀粉营养价值降低[75-76]。适宜的调质温度可以提高颗粒饲料的生产效率,并促进动物对颗粒饲料中养分的消化利用。Truelock等[76]发现,随着调质温度的上升(74~85 ℃),玉米淀粉的糊化程度逐渐提高并且在85 ℃时达到最大。Wang等[75]也探讨了不同温度对高粱颗粒饲料理化特性和营养消化率的影响,发现高粱的糊化淀粉含量、淀粉全消化道表观消化率和淀粉回肠表观消化率都于80 ℃时达到最高;但Wang等[75]同时也指出,随着调质温度进一步升高,高粱中抗性淀粉的含量则会显著增加,不利于淀粉消化。值得注意的是,在调质制粒过程中,加工温度还可能与物料水分产生交互作用,对颗粒饲料中淀粉的性质产生影响。研究发现,提高调质温度不利于低含水量玉米中淀粉的糊化,而当玉米含水量超过31.25%时,玉米淀粉的糊化度则会随着调质温度的上升而急剧提高。王德培等[77]指出,在低水分条件下的制粒过程中,一些直链淀粉会形成“高分子直链积聚体”;高温处理只能轻微振动这些“高分子直链积聚体”中的微晶束结构,却无法断裂其分子间的氢键,这会导致淀粉糊化度的降低并最终影响动物对淀粉的消化。除温度与水分外,环模压缩比也是影响颗粒饲料品质以及消化特性的另一重要因素[78]。陈山等[79]报道,提高制粒机环模压缩比可以促进淀粉糊化。而在唐彦杰等[80]的试验中,降低环模压缩比却显著提高了玉米淀粉的糊化程度。这说明调质、制粒加工中环模压缩比对淀粉理化性质的影响可能因淀粉来源而异,对不同来源饲料原料制粒后的理化性质及消化特性差异还有待深入研究。

4 小结

粉碎、挤压膨化、调质及制粒可以显著改善饲料原料中淀粉的理化性质和消化特性并影响动物生产性能。在未来的研究中应继续探寻各加工工艺对多种来源淀粉的消化特性所产生的不同影响,在加工过程中调整工艺参数从而改善加工后淀粉的理化性质,生产出适合不同动物消化特征的饲料,促进营养物质的协同利用,实现动物精准营养。

参考文献
[1]
REGMI P R, VAN KEMPEN T A T G, MATTE J J, et al. Starch with high amylose and low in vitro digestibility increases short-chain fatty acid absorption, reduces peak insulin secretion, and modulates incretin secretion in pigs[J]. The Journal of Nutrition, 2011, 141(3): 398-405. DOI:10.3945/jn.110.132449
[2]
ZHU J, ZHANG S Y, ZHANG B J, et al. Structural features and thermal property of propionylated starches with different amylose/amylopectin ratio[J]. International Journal of Biological Macromolecules, 2017, 97: 123-130. DOI:10.1016/j.ijbiomac.2017.01.033
[3]
GARCIA M C, FRANCO C M L, J U ' NIOR M S S, et al. Structural characteristics and gelatinization properties of sour cassava starch[J]. Journal of Thermal Analysis and Calorimetry, 2016, 123(2): 919-926. DOI:10.1007/s10973-015-4990-5
[4]
STAWSKI D. New determination method of amylose content in potato starch[J]. Food Chemistry, 2008, 110(3): 777-781. DOI:10.1016/j.foodchem.2008.03.009
[5]
SINGH J, DARTOIS A, KAUR L. Starch digestibility in food matrix: a review[J]. Trends in Food Science & Technology, 2010, 21(4): 168-180.
[6]
LI C, GONG B. Relations between rice starch fine molecular and lamellar/crystalline structures[J]. Food Chemistry, 2021, 353: 129467. DOI:10.1016/j.foodchem.2021.129467
[7]
HORNUNG P S, DO PRADO CORDOBA L, DA SILVEIRA LAZZAROTTO S R, et al. Brazilian Dioscoreaceas starches[J]. Journal of Thermal Analysis and Calorimetry, 2017, 127(3): 1869-1877. DOI:10.1007/s10973-016-5747-5
[8]
HERNÁNDEZ-JAIMES C, BELLO-PÉREZ L A, VERNON-CARTER E J, et al. Plantain starch granules morphology, crystallinity, structure transition, and size evolution upon acid hydrolysis[J]. Carbohydrate Polymers, 2013, 95(1): 207-213. DOI:10.1016/j.carbpol.2013.03.017
[9]
KATSUMI N, OKAZAKI M, YONEBAYASHI K, et al. New proposal for "crystalline index" of starch[J]. Sago Palm, 2015, 22(2): 25-30.
[10]
SARKO A, WU H C. The crystal structures of A-, B- and C-polymorphs of amylose and starch[J]. Starch, 1978, 30(3): 73-78. DOI:10.1002/star.19780300302
[11]
ENGLYST H N, KINGMAN S M, CUMMINGS J H. Classification and measurement of nutritionally important starch fractions[J]. European Journal of Clinical Nutrition, 1992, 46(Suppl. 2): S33-S50.
[12]
LI C, YU W W, WU P, et al. Current in vitro digestion systems for understanding food digestion in human upper gastrointestinal tract[J]. Trends in Food Science & Technology, 2020, 96: 114-126.
[13]
BOLHUIS J E, VAN DEN BRAND H, STAALS S T M, et al. Effects of fermentable starch and straw-enriched housing on energy partitioning of growing pigs[J]. Animal, 2008, 2(7): 1028-1036. DOI:10.1017/S175173110800222X
[14]
CORGNEAU M, GAIANI C, PETIT J, et al. Digestibility of common native starches with reference to starch granule size, shape and surface features towards guidelines for starch-containing food products[J]. International Journal of Food Science & Technology, 2019, 54(6): 2132-2140.
[15]
ZHANG G Y, HAMAKER B R. Slowly digestible starch: concept, mechanism, and proposed extended glycemic index[J]. Critical Reviews in Food Science and Nutrition, 2009, 49(10): 852-867. DOI:10.1080/10408390903372466
[16]
SOUZA DA SILVA C, BOSCH G, BOLHUIS J E, et al. Effects of alginate and resistant starch on feeding patterns, behaviour and performance in ad libitum-fed growing pigs[J]. Animal, 2014, 8(12): 1917-1927. DOI:10.1017/S1751731114001840
[17]
GOLOZAR A, KHALILI D, ETEMADI A, et al. White rice intake and incidence of type-2 diabetes: analysis of two prospective cohort studies from Iran[J]. BMC Public Health, 2017, 17(1): 133. DOI:10.1186/s12889-016-3999-4
[18]
VAN DEN BORNE J J G C, SCHRAMA J W, HEETKAMP M J W, et al. Synchronising the availability of amino acids and glucose increases protein retention in pigs[J]. Animal, 2007, 1(5): 666-674. DOI:10.1017/S1751731107736741
[19]
MARTENS B M J. Starch digestion kinetics in pigs: the impact of starch structure, food processing, and digesta passage behaviour[D]. Ph. D. Thesis. Wageningen: Wageningen University, 2019.
[20]
LV Y Z, ZHANG L M, LI M N, et al. Physicochemical properties and digestibility of potato starch treated by ball milling with tea polyphenols[J]. International Journal of Biological Macromolecules, 2019, 129: 207-213. DOI:10.1016/j.ijbiomac.2019.02.028
[21]
WANG Q F, LI L M, ZHENG X L. A review of milling damaged starch: generation, measurement, functionality and its effect on starch-based food systems[J]. Food Chemistry, 2020, 315: 126267. DOI:10.1016/j.foodchem.2020.126267
[22]
MEUSER F, KLINGLER R W, NIEDIEK E A. Characterization of mechanically modified starch[maize][J]. Starch/Staerke, 1978, 30(11): 376-384. DOI:10.1002/star.19780301105
[23]
FAROOQ A M, LI C, CHEN S Q, et al. Particle size affects structural and in vitro digestion properties of cooked rice flours[J]. International Journal of Biological Macromolecules, 2018, 118(Part A): 160-167.
[24]
LU X X, XIAO J, HUANG Q R. Pickering emulsions stabilized by media-milled starch particles[J]. Food Research International, 2018, 105: 140-149. DOI:10.1016/j.foodres.2017.11.006
[25]
PALAVECINO P M, PENCI M C, RIBOTTA P D. Effect of planetary ball milling on physicochemical and morphological properties of sorghum flour[J]. Journal of Food Engineering, 2019, 262: 22-28. DOI:10.1016/j.jfoodeng.2019.05.007
[26]
LI E P, DHITAL S, HASJIM J. Effects of grain milling on starch structures and flour/starch properties[J]. Starch, 2014, 66(1/2): 15-27.
[27]
LIU T Y, MA Y, YU S F, et al. The effect of ball milling treatment on structure and porosity of maize starch granule[J]. Innovative Food Science & Emerging Technologies, 2011, 12(4): 586-593.
[28]
KOROMPOKIS K, DE BRIER N, DELCOUR J A. Differences in endosperm cell wall integrity in wheat (Triticum aestivum L.) milling fractions impact on the way starch responds to gelatinization and pasting treatments and its subsequent enzymatic in vitro digestibility[J]. Food & Function, 2019, 10(8): 4674-4684.
[29]
EDWARDS C H, MAILLOT M, PARKER R, et al. A comparison of the kinetics of in vitro starch digestion in smooth and wrinkled peas by porcine pancreatic alpha-amylase[J]. Food Chemistry, 2018, 244: 386-393. DOI:10.1016/j.foodchem.2017.10.042
[30]
MARTENS B M J, SCHOLS H A, BRUININX E M A M, et al. Short communication: the effects of physical feed properties on gastric emptying in pigs measured with the 13C breath test[J]. Animal, 2020, 14(9): 1892-1898. DOI:10.1017/S1751731120000646
[31]
RATANPAUL V, WILLIAMS B A, BLACK J L, et al. Apparent amylase diffusion rates in milled cereal grains determined in vitro: potential relevance to digestion in the small intestine of pigs[J]. Journal of Cereal Science, 2018, 82: 42-48. DOI:10.1016/j.jcs.2018.05.007
[32]
VUKMIROVIĆ D, ČOLOVIĆ R, RAKITA S, et al. Importance of feed structure (particle size) and feed form (mash vs. pellets) in pig nutrition-a review[J]. Animal Feed Science and Technology, 2017, 233: 133-144. DOI:10.1016/j.anifeedsci.2017.06.016
[33]
LI E K, ZHU T, DONG W X, et al. Effects of brown rice particle size on energy and nutrient digestibility in diets for young pigs and adult sows[J]. Animal Science Journal, 2019, 90(1): 108-116. DOI:10.1111/asj.13127
[34]
AL-RABADI G J, TORLEY P J, WILLIAMS B A, et al. Particle size heterogeneity in milled barley and sorghum grains: effects on physico-chemical properties and starch digestibility[J]. Journal of Cereal Science, 2012, 56(2): 396-403. DOI:10.1016/j.jcs.2012.04.009
[35]
AL-RABADI G J, HOSKING B J, TORLEY P J, et al. Regrinding large particles from milled grains improves growth performance of pigs[J]. Animal Feed Science and Technology, 2017, 233: 53-63. DOI:10.1016/j.anifeedsci.2016.08.004
[36]
YE J P, HU X T, LUO S J, et al. Properties of starch after extrusion: a review[J]. Starch, 2018, 70(11/12): 1700110.
[37]
GANDHI N, SINGH B, SINGH P, et al. Functional, rheological, morphological, and micro-structural properties of extrusion-processed corn and potato starches[J]. Starch, 2021, 73(1/2): 2000140.
[38]
ZHANG Y J, LIU W, LIU C M, et al. Retrogradation behaviour of high-amylose rice starch prepared by improved extrusion cooking technology[J]. Food Chemistry, 2014, 158: 255-261. DOI:10.1016/j.foodchem.2014.02.072
[39]
LEONARD W, ZHANG P Z, YING D Y, et al. Application of extrusion technology in plant food processing byproducts: an overview[J]. Comprehensive Reviews in Food Science and Food Safety, 2020, 19(1): 218-246. DOI:10.1111/1541-4337.12514
[40]
朱浩然, 秦贵信, 刘博, 等. 挤压对能量饲料中淀粉结构及可消化性影响的研究进展[J]. 中国畜牧杂志, 2021, 57(8): 37-41.
ZHU H R, QIN G X, LIU B, et al. Research progress on extrusion affecting the structure and digestibility of starch in energy feed[J]. Chinese Journal of Animal Science, 2021, 57(8): 37-41 (in Chinese).
[41]
SHRESTHA A K, NG C S, LOPEZ-RUBIO A, et al. Enzyme resistance and structural organization in extruded high amylose maize starch[J]. Carbohydrate Polymers, 2010, 80(3): 699-710. DOI:10.1016/j.carbpol.2009.12.001
[42]
YANG Q Z, XIAO Z G, ZHAO Y, et al. Effect of extrusion treatment on the thermal stability and structure of corn starch with different emulsifiers[J]. Czech Journal of Food Sciences, 2015, 33(5): 464-473.
[43]
SPIER F, ZAVAREZE E D R, MARQUES E SILVA R, et al. Effect of alkali and oxidative treatments on the physicochemical, pasting, thermal and morphological properties of corn starch[J]. Journal of the Science of Food and Agriculture, 2013, 93(9): 2331-2337. DOI:10.1002/jsfa.6049
[44]
SHAIKH F, ALI T M, MUSTAFA G, et al. Structural, functional and digestibility characteristics of sorghum and corn starch extrudates (RS3) as affected by cold storage time[J]. International Journal of Biological Macromolecules, 2020, 164: 3048-3054. DOI:10.1016/j.ijbiomac.2020.08.105
[45]
OMOSEBI M O, OSUNDAHUNSI O F, FAGBEMI T N. Effect of extrusion on protein quality, antinutritional factors, and digestibility of complementary diet from quality protein maize and soybean protein concentrate[J]. Journal of Food Biochemistry, 2018, 42(4): e12508. DOI:10.1111/jfbc.12508
[46]
RUIZ U S, WANG L F, BELTRANENA E, et al. 261 Effects of extrusion and particle size on nutrient and energy digestibility of wheat millrun in growing pigs[J]. Journal of Animal Science, 2018, 96(Suppl. 2): 139-140.
[47]
MARTENS B M J, FLÉCHER T, DE VRIES S, et al. Starch digestion kinetics and mechanisms of hydrolysing enzymes in growing pigs fed processed and native cereal-based diets[J]. British Journal of Nutrition, 2019, 121(10): 1124-1136. DOI:10.1017/S0007114519000503
[48]
RODRIGUEZ D A, LEE S A, JONES C K, et al. Digestibility of amino acids, fiber, and energy by growing pigs, and concentrations of digestible and metabolizable energy in yellow dent corn, hard red winter wheat, and sorghum may be influenced by extrusion[J]. Animal Feed Science and Technology, 2020, 268: 114602. DOI:10.1016/j.anifeedsci.2020.114602
[49]
ZAWORSKA A, KASPROWICZ-POTOCKA M, RUTKOWSKI A, et al. The influence of dietary raw and extruded field peas (Pisum sativum L.) on nutrients digestibility and performance of weaned and fattening pigs[J]. Journal of Animal and Feed Sciences, 2018, 27(2): 123-130. DOI:10.22358/jafs/91209/2018
[50]
VEUM T L, SERRANO X, HSIEH F H. Twin- or single-screw extrusion of raw soybeans and preconditioned soybean meal and corn as individual ingredients or as corn-soybean product blends in diets for weanling swine[J]. Journal of Animal Science, 2017, 95(3): 1288-1300.
[51]
OWUSU-ANSAH J, VAN DE VOORT F R, STANLEY D W. Physicochemical changes in cornstarch as a function of extrusion variables[J]. Cereal Chemistry, 1983, 60(4): 319-324.
[52]
CHINNASWAMY R, HANNA M A. Macromolecular and functional properties of native and extrusion-cooked corn starch[J]. Cereal Chemistry, 1990, 67(5): 490-499.
[53]
CHAE B J, HAN I K, KIM J H, et al. Effects of extrusion conditions of corn and soybean meal on the physico-chemical properties, ileal digestibility and growth of weaned pigs[J]. Asian-Australasian Journal of Animal Sciences, 1997, 10(2): 170-177. DOI:10.5713/ajas.1997.170
[54]
ALI S, SINGH B, SHARMA S. Impact of feed moisture on microstructure, crystallinity, pasting, physico-functional properties and in vitro digestibility of twin-screw extruded corn and potato starches[J]. Plant Foods for Human Nutrition, 2019, 74(4): 474-480. DOI:10.1007/s11130-019-00762-6
[55]
ALI S, SINGH B, SHARMA S. Development of high-quality weaning food based on maize and chickpea by twin-screw extrusion process for low-income populations[J]. Journal of Food Process Engineering, 2017, 40(3): e12500. DOI:10.1111/jfpe.12500
[56]
YAN H, ZHENGBIAO G U. Morphology of modified starches prepared by different methods[J]. Food Research International, 2010, 43(3): 767-772. DOI:10.1016/j.foodres.2009.11.013
[57]
ALI S, SINGH B, SHARMA S. Effect of processing temperature on morphology, crystallinity, functional properties, and in vitro digestibility of extruded corn and potato starches[J]. Journal of Food Processing and Preservation, 2020, 44(7): e14531.
[58]
SARAWONG C, SCHOENLECHNER R, SEKIGUCHI K, et al. Effect of extrusion cooking on the physicochemical properties, resistant starch, phenolic content and antioxidant capacities of green banana flour[J]. Food Chemistry, 2014, 143: 33-39. DOI:10.1016/j.foodchem.2013.07.081
[59]
FARAJ A, VASANTHAN T, HOOVER R. The effect of extrusion cooking on resistant starch formation in waxy and regular barley flours[J]. Food Research International, 2004, 37(5): 517-525. DOI:10.1016/j.foodres.2003.09.015
[60]
MAHASUKHONTHACHAT K, SOPADE P A, GIDLEY M J. Kinetics of starch digestion and functional properties of twin-screw extruded sorghum[J]. Journal of Cereal Science, 2010, 51(3): 392-401. DOI:10.1016/j.jcs.2010.02.008
[61]
RODRIGUES E A, BADIOLA I, FRANCESCH M, et al. Effect of cereal extrusion on performance, nutrient digestibility, and cecal fermentation in weanling pigs[J]. Journal of Animal Science, 2016, 94(Suppl. 3): 298-302.
[62]
MURAMATSU K, MASSUQUETTO A, DAHLKE F, et al. Factors that affect pellet quality: a review[J]. Journal of Agricultural Science and Technology, 2015, 5: 717-722.
[63]
ALMEIDA L M, BASSI L S, SANTOS R O, et al. Effect of feed form and heat processing on the growth performance of growing and finishing pigs[J]. Livestock Science, 2021, 245: 104430. DOI:10.1016/j.livsci.2021.104430
[64]
LEWIS L L, STARK C R, FAHRENHOLZET A C, et al. Evaluation of conditioning time and temperature on gelatinized starch and vitamin retention in a pelleted swine diet[J]. Journal of Animal Science, 2015, 93(2): 615-619. DOI:10.2527/jas.2014-8074
[65]
ROJAS O J, VINYETA E, STEIN H H. Effects of pelleting, extrusion, or extrusion and pelleting on energy and nutrient digestibility in diets containing different levels of fiber and fed to growing pigs[J]. Journal of Animal Science, 2016, 94(5): 1951-1960. DOI:10.2527/jas.2015-0137
[66]
YODER A D, STARK C R, TOKACH M D, et al. Effects of pellet processing parameters on pellet quality and nursery pig growth performance[J]. Transactions of the ASABE, 2019, 62(2): 439-446. DOI:10.13031/trans.12987
[67]
段海涛. 高效调质低温制粒畜禽饲料加工工艺及其对生长育肥猪生长性能的影响研究[D]. 博士学位论文. 北京: 中国农业科学院, 2018.
DUAN H T. Study on the high-efficiency condition and low-temperature pelleted processing technology and effects on growth performance of growing and fattening pigs[D]. Ph. D. Thesis. Beijing: Chinese Academy of Agricultural Sciences, 2018. (in Chinese)
[68]
HUGMAN J, WANG L F, BELTRANENA E, et al. Energy and amino acid digestibility of raw, steam-pelleted and extruded red lentil in growing pigs[J]. Animal Feed Science and Technology, 2021, 275: 114838. DOI:10.1016/j.anifeedsci.2021.114838
[69]
KIARIE E G, MILLS A. Role of feed processing on gut health and function in pigs and poultry: conundrum of optimal particle size and hydrothermal regimens[J]. Frontiers in Veterinary Science, 2019, 6: 19. DOI:10.3389/fvets.2019.00019
[70]
SELLE P H, LIU S Y, CAI J, et al. Steam-pelleting temperatures, grain variety, feed form and protease supplementation of mediumly ground, sorghum-based broiler diets: influences on growth performance, relative gizzard weights, nutrient utilisation, starch and nitrogen digestibility[J]. Animal Production Science, 2013, 53(5): 378-387. DOI:10.1071/AN12363
[71]
JO Y Y, CHOI M J, CHUNG W L, et al. Effects of feed form and particle size on growth performance, nutrient digestibility, carcass characteristics, and gastric health in growing-finishing pigs[J]. Animal Bioscience, 2021, 34(6): 1061-1069. DOI:10.5713/ab.20.0777
[72]
HUANG B B, WANG L, WANG L, et al. Concentration of available energy and digestibility of amino acids in extruded and pelleted defatted rice bran fed to growing pigs[J]. Animal Feed Science and Technology, 2021, 280: 115067. DOI:10.1016/j.anifeedsci.2021.115067
[73]
PACE F A, MONTES J H, PHILIPPE M G, et al. Interactive effects between sugar source and pelleting temperature on processing, digestibility and blood metabolites in nursery piglets[J]. Livestock Science, 2020, 240: 104182. DOI:10.1016/j.livsci.2020.104182
[74]
DOS SANTOS R O F, BASSI L S, SCHRAMM V G, et al. Effect of conditioning temperature and retention time on pellet quality, ileal digestibility, and growth performance of broiler chickens[J]. Livestock Science, 2020, 240: 104110. DOI:10.1016/j.livsci.2020.104110
[75]
WANG T X, HUANG Y K, YAO W L, et al. Effect of conditioning temperature on pelleting characteristics, nutrient digestibility and gut microbiota of sorghum-based diets for growing pigs[J]. Animal Feed Science and Technology, 2019, 254: 114227. DOI:10.1016/j.anifeedsci.2019.114227
[76]
TRUELOCK C N, TOKACH M D, STARK C R, et al. Pelleting and starch characteristics of diets containing different corn varieties[J]. Translational Animal Science, 2020, 4(4): txaa189. DOI:10.1093/tas/txaa189
[77]
王德培. 干热处理对绿豆和豌豆淀粉化学组成的影响及与粉丝品质的关系研究[J]. 仲恺农业技术学院学报, 1997(1): 62-66.
WANG D P. The relationship between effects of dry-air treatment on chemical composition of mung bean starch and eating qualities of starch silk[J]. Journal of Zhangkai Aguotechaical College, 1997(1): 62-66 (in Chinese).
[78]
秦毅, 王金荣, 乔汉桢, 等. 加工工艺对饲料营养品质的影响[J]. 饲料研究, 2019, 42(12): 83-86.
QIN Y, WANG J R, QIAO H Z, et al. The effect of processing technology on nutritional quality of feed[J]. Feed Research, 2019, 42(12): 83-86 (in Chinese).
[79]
陈山, 田河, 郭东新. 环模压缩比对能耗及颗粒饲料质量影响的研究进展[J]. 饲料研究, 2015(24): 16-18, 33..
CHEN S, TIAN H, GUO D X. Research progress on effects of ring-mode compression ratio on energy consumption and pellet feed quality[J]. Feed Research, 2015(24): 16-18, 33. (in Chinese).
[80]
唐彦杰, 蔡海. 环模压缩比的大小对制粒机效率及品质影响的探讨[J]. 饲料广角, 2012(18): 34.
TANG Y J, CAI H. Discussion on the influence of compression ratio of ring mold on the efficiency and quality of pelletizer[J]. Feed China, 2012(18): 34 (in Chinese).