动物营养学报    2022, Vol. 34 Issue (9): 5597-5608    PDF    
类肠膜魏斯氏菌对猪生长性能、粪菌和代谢产物的影响
刘韶娜 , 赵彦光 , 张斌 , 相德才 , 赵智勇     
云南省畜牧兽医科学院, 昆明 650224
摘要: 本试验旨在研究类肠膜魏斯氏菌对猪生长性能、粪菌和代谢产物的影响。选用(228±2)日龄、体重为(95.84±10.05) kg的迪庆藏猪选育猪20头, 随机分为2组, 每组2个重复, 每个重复5头。对照组饲喂基础饲粮, 试验组饲喂在基础饲粮中添加类肠膜魏斯氏菌(107 CFU/g)的试验饲粮。预试期7 d, 正试期22 d。结果表明: 1)2组生长性能无显著差异(P>0.05)。2)2组粪菌的α多样性无显著差异(P>0.05)。门水平上, 试验组的螺旋体门和变形菌门相对丰度显著或极显著高于对照组(P<0.05或P<0.01);属水平上, 狭义梭菌属_1和密螺旋体属_2的相对丰度显著或极显著高于对照组(P<0.05或P<0.01), norank_f_F082和瘤胃球菌科_UCG-002相对丰度则显著低于对照组(P<0.05)。多级物种差异判别分析(LEfSe)获得27个生物标记物(LDA值>3.0), 其中试验组获得生物标记物15个。对照组LDA值最大的是瘤胃球菌科_UCG-002, 试验组LDA值最大的是狭义梭菌属_1。3)偏最小二乘法判别分析(PLS-DA)发现, 正负离子模式下, 样品完全分开, 试验组2-羟基十六烷酸、N-di-腺嘌呤脱氧核苷酸、2-羟基十四烷酸和Avocadene acetate的差异表达倍数显著或极显著上调(P<0.05或P<0.01), Corchorifatty acid F和2, 3-丁炔前列腺素E1差异表达倍数显著或极显著下调(P<0.05或P<0.01), 试验组2-羟基十四烷酸和Corchorifatty acid F分别是上调和下调差异倍数最高的代谢产物。综上所述, 添加类肠膜魏斯氏菌能改变猪粪便的菌群结构, 显著提高短链脂肪酸产生菌(狭义梭菌属_1)的相对丰度, 提高脂肪酸类物质的差异表达倍数(2-羟基十六烷酸、2-羟基十四烷酸和Avocadene acetate), 降低2, 3-丁炔前列腺素E1的差异表达倍数, 具有潜在的益生功能。
关键词:     类肠膜魏斯氏菌    粪菌    菌群多样性    代谢产物    
Effects of Weissella paramesenteroides on Growth Performance, Fecal Microbiota and Metabolite in Pigs
LIU Shaona , ZHAO Yanguang , ZHANG Bin , XIANG Decai , ZHAO Zhiyong     
Yunnan Animal Science and Veterinary Institute, Kunming 650224, China
Abstract: The study aimed to explore the effects of the Weissella paramesenteroides on the growth performance, fecal microbiota and metabolite in pigs. Twenty Diqing Tibetan pig breeding pigs at (228±2) days of age and with body weight of (95.84±10.05) kg were randomly divided into 2 groups with two repetitions in each group and 5 pigs in each repetition. The pigs in control group were fed a basal diet, and the pigs in experimental group were fed the basal diet supplemented with Weissella paramesenteroides (107 CFU/g), respectively. The experimental period was 22 days with 7 day pre-experiment. The results showed as follows: 1) there is no significant difference between the two groups in growth performance (P>0.05). 2) The alpha diversity of 2 groups had no significant difference (P>0.05). At the phylum level, the relative abundance of Spirochaetes (P < 0.01) and Proteobacteria (P < 0.05) in experimental group were significantly higher than those in the control group. At the genus level, the relative abundance of Clostridium_sensu_stricto_1 (P < 0.05) and Treponema_2 (P < 0.01) in experimental group was significantly higher than thoese in the control group, the relative abundance of norank_f_F082 and Ruminococcaceae_UCG-002 was significantly lower than those in the control group (P < 0.05). When the LDA value was higher than 3.0, 27 biomarkers were obtained, while experimental group was obtained 15 biomarkers. Clostridium_sensu_stricto_1 was the most significant in experimental group, and that in control group was Ruminococcaceae_UCG-002. 3) Partial least squares discrimination analysis (PLS-DA) showed that the two groups were separated in positive and negative model, the metabolite analysis showed that the differential expression multiples of 2-hydroxyhexadecanoic acid, N-di-deoxyadenosine monophosphate, 2-hydroxymyristic acid and avocadene acetate were up-regulated (P < 0.05 or P < 0.01), those of 2 3-dinor prostaglandin E1 and corchorifatty acid F were down-regulated significantly in experimental group (P < 0.05 or P < 0.01), those of 2-hydroxymyristic acid and corchorifatty acid F were the most significant, respectively. In summary, the addition of Weissella paramesenteroides can optimize the structure of fecal microbiota in pigs, improve the relative abundance of Clostridium_sensu_stricto_1 which can produce the short chain fatty, improve the differential expression multiples of 2-hydroxyhexadecanoic acid, 2-hydroxymyristic acid and avocadene acetate which belongs to fatty acid substances, reduces the differential expression multiples of 2, 3-dinor prostaglandin E1. It has the potential function of health-keeping and metabolism-promoting.
Key words: pigs    Weissella paramesenteroides    fecal microbiota    microbial diversity    metabolite    

益生菌是指对宿主有益的活的微生物,它与营养、健康、疾病和免疫息息相关。近年来发现,益生菌通过肠道菌群有效预防或减轻高脂饮食引起的认知障碍和焦虑[1],通过肠道菌群影响胎盘的形态发生、营养转运和胎儿生长[2]。因此,研究肠道菌群结构及代谢产物的变化及规律,可为益生菌的开发利用提供理论支撑。类肠膜魏斯氏菌(Weisellas paramesenteroides)属于厚壁菌门,芽孢菌纲,乳杆菌目,明串珠菌科,能在生物肠道中定植[3],是一类分布于果蔬[4]、奶酪[5]、泡菜和酒曲[6]等中的乳酸菌。类肠膜魏斯氏菌具有产细菌素的特性,通过蜕皮激素和胰岛素信号通路调节果蝇的蜕化及发育[7];通过抑制促炎细胞因子和诱导抗炎介质来调节免疫,预防、治疗鼠伤寒沙门氏菌感染疾病[8]。类肠膜魏斯氏菌产广谱抗性物质[9],具有良好的处理鱼下脚料的应用效果[10],参与乙醇的生产[11],且是酮向醇转化过程中的重要生物催化剂[12]。Pabari等[4]发现类肠膜魏斯氏菌可以产细菌素和胞外多糖。食窦魏斯氏菌具有提高爱拔益加(AA)肉鸡空肠、回肠和盲肠绒毛长度、促进体重增长、抑制有害菌生长和促进乳酸菌生长的生物学功能[13]。魏斯氏菌可产生β-葡糖苷酶,促进纤维素降解[14]。有研究报道,魏斯氏菌能提高生长猪的生长性能和免疫应答[15]。目前已发表的研究,主要集中在抗菌和产细菌素及胞外产物等方面,试验动物多为果蝇、鸡和小白鼠等,有关该菌对大型试验动物,如猪的生长、粪菌多样性和代谢产物的影响的研究报道较少。因此,为了更好地研究和利用云南省地方猪,进一步明确类肠膜魏斯氏菌在动物体内的试验效果,本研究选用含迪庆藏猪血缘50%的地方猪杂交猪为试验对象,旨在探究类肠膜魏斯氏菌在地方猪杂交猪体内的生物学特征,明确其对猪的生长性能、粪便中代谢产物和粪菌结构变化的影响,以期为类肠膜魏斯氏菌的应用提供理论依据。

1 材料与方法 1.1 试验材料

试验所用类肠膜魏斯氏菌由本实验室从迪庆藏猪消化道中筛选分离所得,经过菌落形态学和16S rDNA鉴定为类肠膜魏斯氏菌。

1.2 试验动物及设计

试验以杂交选育猪(含杜洛克25%、迪庆藏猪50%和太湖猪25%的血缘)为试验动物,选取(228±2)日龄、体重为(95.84±10.05) kg的去势育肥猪20头,按照完全随机区组设计,随机分为2组(试验组和对照组),每组2个重复,每个重复5头猪。

1.3 试验饲粮及饲养管理

基础饲粮组成及营养水平参考本课题组前期研究[16],动物饲养试验在云南省种猪质量检验测试中心测定舍内进行,试验开始前打扫与消毒空舍,饲养全过程采用自由采食和自由饮水,其他按照管理程序进行。对照组饲喂基础饲粮,试验组饲喂在基础饲粮中添加类肠魏斯氏菌的试验饲粮(添加量为107 CFU/g),添加量参考乳酸菌类其他学者研究结果[17-18]。预试期7 d,正试期22 d。

1.4 样品采集

正试期开始和结束当日进行称重(禁食12 h),猪全自动采食测定系统(ACEMO64)用于记录试验猪只采食情况。试验结束后计算平均日增重、平均日采食量和料重比,在试验结束当天每个重复随机选择3头猪,采集刚排泄猪粪便的中间部分,迅速放入液氮中,-80 ℃保存,用于后续分析。

1.5 16S rRNA PCR扩增、高通量测序和数据分析

采用试剂盒提取法提取样品的总DNA(Omega Bio-Tek, Norcross, 美国),使用NanoDrop2000检测总DNA样品的浓度和纯度,PCR扩增V3~V4可变区[引物338F (5′-ACTCCTACGGGAGGCAGCAG-3′)和806R (5′-GGACTACHVGGGTWTCTAAT-3′)],2%琼脂糖凝胶电泳检测PCR产物,纯化,QuantusTM Fluorometer检测定量,采用Illumina公司的Miseq PE300平台测序、质控和拼接后,构建文库。通过I-Sanger云平台数据库进行分析。

1.6 代谢组学分析

样品处理后,通过液质联用技术(LC-MS, ABSCIEX, UPLC-TripleTOF)进行检测,通过Progenesis QI(Waters corporation, Milford, 美国)软件进行代谢物注释,最终获得代谢物列表和数据矩阵,结合t检验和通过正交偏最小二乘判别分析(OPLS-DA)筛选差异变量(VIP),从而筛选出差异的目标代谢物,并对其生物学信息进行挖掘。

1.7 数据分析

采用SPSS 17.0统计软件进行单因素方差分析(one-way ANOVA),P<0.05为差异显著,P<0.01为差异极显著。数据以平均值±标准差表示。

2 结果与分析 2.1 类肠膜魏斯氏菌对猪生长性能的影响

表 1所示,试验组猪的平均日增重和平均日采食量均高于对照组,料重比低于对照组,但差异均不显著(P>0.05)。

表 1 类肠膜魏斯氏菌对猪生长性能的影响 Table 1 Effects of Weissella paramesenteroides on growth performance of pigs (n=6)
2.2 类肠膜魏斯氏菌对猪粪菌的影响 2.2.1 α多样性分析

按照97%的相似度聚类后,2组样品获得1 119个操作分类单元(OTU),聚类为16个门,22个纲,37个目,68个科,206个属,361个种。如表 2所示,2组的α多样性指数均无显著差异(P>0.05),但对照组的α多样性指数较试验组高。

表 2 α多样性指数分析 Table 2 Analysis of alpha diversity indexes
2.2.2 β多样性分析

通过Weighted Unifrac(图 1-A)和Unweight unifrac(图 1-B)的加权距离主坐标对试验数据进行分析。图 1-A中2组的样品完全分开,说明当综合主要物种的种类和相对丰度等因素进行分析时,添加类肠膜魏斯氏菌后,粪菌结构中主要部分发生显著变化。图 1-B中2组样品未完全分开,部分重叠,说明当忽略物种的相对丰度,而综合物种的多样性和物种间的进化关系进行分析时,2组样品既有相似部分,又有不同部分,添加类肠膜魏斯氏菌对粪菌中相对丰度较小的菌影响较小。综上所述,饲粮中添加类肠膜魏斯氏菌后,猪的粪菌中优势菌群组成发生了改变。

C: 对照组样品;W: 试验组样品。下图同。 C: samples in control group; W: samples in experimental group. The same as below. 图 1 基于Weighted unifrac(A)和Unweight unifrac(B)距离主坐标分析 Fig. 1 PCoA based on Weighted unifrac distance(A) and Unweighted unifrac distance(B)
2.2.3 基于门水平的菌群结构分析

表 3所示,2组样品主要聚类在3个门:厚壁菌门、拟杆菌门和螺旋体门。结果显示,与对照组相比,添加类肠膜魏斯氏菌极显著提高了螺旋体门相对丰度(P<0.01),显著提高了变形菌门相对丰度(P<0.05);提高了厚壁菌门/拟杆菌门的比值,但差异不显著(P>0.05);降低了拟杆菌门的相对丰度,但差异不显著(P>0.05)。

表 3 门水平的优势菌群结构 Table 3 Structure of dominant microflora at phylum level
2.2.4 基于属水平的菌群结构分析

表 4所示,2组中的相对丰度最高的菌属均为链球菌属。试验组的狭义梭菌属_1(P<0.05)和密螺旋体属_2(P<0.01)的相对丰度显著或极显著高于对照组,Norank_f_F082和瘤胃球菌科_UCG-002相对丰度则显著低于对照组(P<0.05)。

表 4 属水平的优势菌群结构 Table 4 Structure of dominant microflora at genus level 
2.2.5 群落组成差异分析

采用LEfSe研究添加类肠膜魏斯氏菌后对猪粪菌群结构的影响,结果如图 2所示。LDA值>3.0时,2组共获得27个生物标记物,其中试验组获得15个生物标记物。对照组LDA值最大的是瘤胃球菌科_UCG-002,试验组的是狭义梭菌属_1。纲水平上,试验组中丹毒丝菌纲相对丰度高于对照组,Norank-p-WPS-2的相对丰度则低于对照组。属水平上,试验组的狭义梭菌属_1、土孢菌属、理研菌科RC9肠道群、志贺氏大肠杆菌和真杆菌属相对丰度高于对照组,瘤胃球菌科_UCG-002、WPS-2、瘤胃球菌科_UCG-014、未分类的毛螺菌科、多雷亚菌属和未明确的柔膜菌目RF39的相对丰度则低于对照组。

Clostridium_sensu_stricto_1:狭义梭菌属_1;Clostridiaceae_1:梭菌科_1;Peptostreptococcaceae:消化链球菌科;Terrisporobacter:土孢杆菌属;Rikenellaceae:理研菌科;Rikenellaceae_RC9_gut group:理研菌科RC9肠道群;Enterobacteriales:肠杆菌目;Enterobacteriaceae:肠杆菌科;Escherichia_Shigella:志贺氏大肠杆菌;Proteobacteria:变形菌门;Erysipelotrichales:丹毒丝菌目;Erysipelotrichia:丹毒丝菌纲;Erysipelotrichaceae:丹毒丝菌科;Romboutsia:罗姆布茨菌;Eubacterium_brachy_group:真杆菌属群;Ruminococcaceae_UCG-002:瘤胃球菌科_UCG-002;Ruminococcaceae_UCG-014:瘤胃球菌科_UCG-014;Norank_f_Lachnospiraceae:未明确的毛螺菌科;Dorea:多雷亚菌属;Norank_f_norank_o_Mollicutes_RF39:未明确的柔膜菌目RF39;Mollicutes_RF39:柔膜菌目RF39;Norank_o_Mollicutes_RF39:未明确的柔膜菌目RF39。 图 2 基于LDA的群落组成差异分析 Fig. 2 Differences of microbiota composition based on LDA
2.3 差异代谢产物分析 2.3.1 PLS-DA

本研究采用判别分析的直观展示分类效果较好的PLS-DA方法对差异代谢产物进行分析。如图 3所示,2种模式下(正负离子),2组样品完全分开且分离度较大,说明饲粮中添加类肠膜魏斯氏菌后,猪粪便中代谢物的组成发生了改变。

图 3 正(A)负(B)离子模式下的PLS-DA图 Fig. 3 PLS-DA chart of positive(A) and negative(B) ion mode
2.3.2 代谢物注释

本研究采用非靶向代谢组学方法对样本中的差异代谢产物进行分析。采用倍数变化法即根据代谢物的绝对定量结果,计算某个代谢物在2组间表达量的差异表达倍数(FC)值。当差异表达倍数大于2.5或者小于0.45,P值小于0.05时,差异代谢产物结果见表 5。与对照组相比,添加类肠膜魏斯氏菌后,试验组中2-羟基十六烷酸(P<0.01)、磷酸脱氧腺苷(P<0.01)、2-羟基十四烷酸(P<0.05)和Avocadene acetate(P<0.05)差异表达倍数显著或极显著上调,Corchorifatty acid F(P<0.05)和2, 3-丁炔前列腺素E1(P<0.01)差异表达倍数显著或极显著下调,其中2-羟基十四烷酸和Corchorifatty acid F分别是上调和下调差异表达倍数最高的代谢产物,脂肪酸类物质如2-羟基十六烷酸和2-羟基十四烷酸差异表达倍数均极显著上调(P<0.01),2, 3-丁炔前列腺素E1差异表达倍数极显著下调(P<0.01)。

表 5 正负离子模式下差异表达的差异代谢产物 Table 5 Significant different metabolites in positive and negative ion modes
2.3.3 关联分析

本研究采用将差异代谢产物和差异菌群关联性分析(图 4)。饲粮中添加类肠膜魏斯氏菌后,狭义梭菌属_1和土孢杆菌属相对丰度与Corchorifatty acid F差异表达倍数呈显著负相关(P<0.05),狭义梭菌属_1和理研菌科RC9肠道群相对丰度与2-羟基十六烷酸差异表达倍数呈极显著正相关(P<0.01),土孢杆菌属相对丰度与N-di-腺嘌呤脱氧核苷酸差异表达倍数呈显著负相关(P<0.05),瘤胃球菌科_UCG-002相对丰度与2-羟基十六烷酸(P<0.05)和N-di-腺嘌呤脱氧核苷酸差异表达倍数(P<0.01)呈显著或极显著负相关。

*表示差异显著(P < 0.05),* *表示差异极显著(P < 0.01)。*means significant difference(P < 0.05),and * * means extremely significant difference(P < 0.01).
Clostridium_sensu_stricto_1:狭义梭菌属_1;Terrisporobacter:土孢杆菌属;Rikenellaceae_RC9_gut group:理研菌科RC9肠道群;Ruminococcaceae_UCG-002:瘤胃球菌科_UCG-002;Treponema_2:密螺旋体属_2;2-hydroxyhexadecanoic acid:2-羟基十六烷酸;2-hydroxymyristic acid:2-羟基十四烷酸;2, 3-dinor prostaglandin E1:2, 3-丁炔前列腺素E1;N-di-deoxyadenosine monophosphate:N-di-腺嘌呤脱氧核苷酸。
图 4 关联分析 Fig. 4 Correlation analysis
3 讨论 3.1 类肠膜魏斯氏菌对猪生长性能的影响

肠道菌群与机体的生长和代谢密切相关[19]。故生产和科研工作中通过添加益生菌来改善生长和免疫等,如植物乳杆菌可通过N-乙酰基谷氨酰胺促进果蝇的生长[20]。王蕾[13]在AA肉鸡饲粮中添加类肠膜魏斯氏菌后,提高了试验鸡的生长性能。复合乳酸菌[21]和魏斯氏菌[15]均能显著提高生长猪的生长性能。张阳等[22]在生长育肥猪饲粮中添加复合益生菌(益生菌数量在105 CFU/g以上),生长性能有提高趋势,但差异不显著。杨立杰等[23]在生长育肥猪饲粮中添加植物乳杆菌等复合菌发酵的发酵饲料(益生菌数量在108 CFU/g以上),发现其生长性能有提高趋势。本研究中,菌体添加量(107 CFU/g)介于上述研究剂量之间,是参考其他学者和前期研究结果,综合实际生产效果设定的,益生菌的添加量并非越多越好。本研究采用育肥后期猪作为研究对象,发现其生长性能较对照组提高,但差异均不显著,这与部分学者研究结果一致,可能与试验动物选择育肥期、试验期较短、添加量不同等因素相关,还需后续进一步深入研究。

饲粮中添加类肠膜魏斯氏菌后,显著提高了粪便中产短链脂肪酸菌的相对丰度(梭菌目等)和脂肪酸及其衍生物(2-羟基十六烷酸、Avocadene acetate和2-羟基十四烷酸)的差异表达倍数。十六烷酸可通过激活脑血管生成因子1(BAI1)受体调节先天性免疫应答[24],Avocadene属于脂肪醇,其通过提高机体葡萄糖氧化和降低线粒体中的活性氧,改善葡萄糖利用率,提高胰岛素敏感性,进而影响采食[25]。由此提示,添加类肠膜魏斯氏菌或具有潜在提高育肥后期猪生长性能的趋势,还有待进一步的证实。

3.2 类肠膜魏斯氏菌对猪粪便中菌群的影响

肠道菌群与宿主体内营养代谢、免疫、健康与疾病息息相关[26-28]。本研究采用刚排泄的粪便作为研究样品,采样过程避开屠宰和绑定后直肠采样带来的应激,更能真实地反映肠道菌群结构,并且有利于减少试验经费开支和进行长期跟踪试验,有利于开展科学研究工作,故而,越来越多的学者通过研究粪菌来关注肠道微生物[29-31]

在哺乳动物肠道中,厚壁菌门和拟杆菌门约占肠道菌群的90%以上,是最主要的优势菌群。肠道菌群多样性与拟杆菌门/厚壁菌门的比值呈非线性的强相关性[32];厚壁菌门/拟杆菌门比值与机体内脂肪的沉积呈正相关性[33-34],且与脂质代谢有互作作用[35];饲粮中添加大豆多糖[36]和益生菌等[37]能降低粪菌中厚壁菌门/拟杆菌门比值,高血压[38]、辐射[39]、脂肪肝[40]的肠道内拟杆菌门/厚壁菌门比值则显著提高。梭菌科通过抑制参与脂质吸收的受体CD36的表达,调节宿主的脂质吸收能力[41]。克里斯滕森菌科的相对丰度与炎症等代谢疾病呈显著负相关,如代谢综合征等[42-43],是动物肠道和肠黏膜中广泛存在的一种菌,宿主基因(如FUT2基因)影响克里斯滕森菌科的相对丰度(30%~60%的相对丰度差异),其在肠道内产生氢气作为史氏甲烷短杆菌产甲烷的底物,实现二者在肠道内的共生,共同促进健康作用[44]。类肠膜魏斯氏菌具有增强肠道黏蛋白-2(MUC-2)的表达、促进肠上皮再生、提高血清中白蛋白含量等作用[43]。本研究发现,添加类肠膜魏斯氏菌后,粪菌中厚壁菌门/拟杆菌门的比值提高,克里斯滕森菌科R-7群相对丰度提高,但差异均不显著,狭义梭菌属_1相对丰度显著上升,提示饲粮中添加类肠膜魏斯氏菌可能影响脂质的沉积,其与脂肪沉积和菌群多样性之间的关系还待进一步研究。

密螺旋体属是哺乳动物肠道内常见菌,其相对丰度与消化道内植源性食物中的复杂糖类密切相关[45],添加类肠膜魏斯氏菌后,粪菌中密螺旋体属_2的相对丰度极显著升高,提示添加类肠膜魏斯氏菌可能具有提高猪消化道对复杂糖类的消化能力,有助于提高地方猪对牧草的消化利用率。

短链脂肪酸在肠道内发挥清除致病菌、抗炎、提高免疫和调控基因表达等作用[46-48],在骨骼肌和肝脏的生理活动中发挥作用[49],其通过肠肝轴,降低炎症反应,调节免疫功能和糖脂代谢[50],通过抑制组蛋白去乙酰化酶(HDAC)的活性,上调B10细胞数量,实现免疫平衡[51]。短链脂肪酸还是肥胖性脂肪肝的潜在治疗靶点[52],产生的质子降低细胞内pH和质子动力势(PMF),降低毒力基因T3SS-1表达水平[50]。短链脂肪酸主要由肠道菌群(如拟杆菌属、梭菌属和粪杆菌属等)对肠道内物质(如益生元等)进行发酵而获得[53-54]。本研究发现,添加类肠膜魏斯氏菌后,显著提高了狭义梭菌属_1和理研菌科的相对丰度,对抵抗炎症、维持机体免疫平衡具有潜在促进作用。

3.3 类肠膜魏斯氏菌对猪粪便中代谢产物的影响

肠道微生物处于动态平衡中,微生物结构及相对丰度的差异性导致代谢产物也具有差异性。本研究显示,饲粮添加类肠膜魏斯氏菌后,提高了粪便中2-羟基十六烷酸、磷酸脱氧腺苷、2-羟基十四烷酸和Avocadene acetate等物质的差异表达倍数,降低了Corchorifatty acid F和2, 3-丁炔前列腺素E1的差异表达倍数,其中2-羟基十六烷酸、Avocadene acetate和2-羟基十四烷酸是脂肪酸及其衍生物,说明添加类肠膜魏斯氏菌后,或具有潜在改变机体脂肪代谢的趋势。

前列腺素可通过肠平滑肌细胞中的前列腺素E受体信号通路引起结肠收缩[55],从而改变食糜在肠道中停留的时间,或对排便时间具有一定的调节作用,进而影响消化吸收。Avocadene通过改善葡萄糖利用率以及胰岛素敏感性,进而影响采食[25],本试验中,添加类肠膜魏斯氏菌后,平均日采食量和平均日增重提高,料重比降低,但差异均不显著。添加类肠膜魏斯氏菌后是否能通过2, 3-丁炔前列腺素E1和Avocadene acetate间接影响饲粮的消化吸收,进而提高生长性能,还待进一步研究。

4 结论

饲粮中添加类肠膜魏斯氏菌(107 CFU/g),改变猪粪中主要菌群的结构和部分代谢产物差异表达倍数;提高短链脂肪酸产生菌的相对丰度,提高脂肪酸类物质的差异表达倍数,说明类肠膜魏斯氏菌具有提高与脂肪代谢相关菌和代谢产物的益生功能。

参考文献
[1]
LOF J, SMITS K, MELOTTE V, et al. The health effect of probiotics on high-fat diet-induced cognitive impairment, depression and anxiety: a cross-species systematic review[J]. Neuroscience & Biobehavioral Reviews, 2022, 136: 104634.
[2]
LLOPEZ-TELLO J, SCHOFIELD Z, KIU R, et al. Maternal gut microbiota Bifidobacterium promotes placental morphogenesis, nutrient transport and fetal growth in mice[J]. Cellular and Molecular Life Sciences, 2022(79): 386. DOI:10.1007/s00018-022-04379-y
[3]
SINGH S, BHATIA R, SINGH A, et al. Probiotic attributes and prevention of LPS-induced pro-inflammatory stress in RAW264.7 macrophages and human intestinal epithelial cell line (Caco-2) by newly isolated Weissella cibaria strains[J]. Food & Function, 2018, 9(2): 1254-1264.
[4]
PABARI K, PITHVA S, KOTHARI C, et al. Evaluation of probiotic properties and prebiotic utilization potential of Weissella paramesenteroides isolated from fruits[J]. Probiotics and Antimicrobial Protnsdoi, 2020, 12(3): 1126-1138. DOI:10.1007/s12602-019-09630-w
[5]
KUMARI M, KUMAR R, SINGH D, et al. Physiological and genomic characterization of an exopolysaccharide-producing Weissella cibaria CH2 from cheese of the western Himalayas[J]. Food Bioscience, 2020, 35: 100570. DOI:10.1016/j.fbio.2020.100570
[6]
WANG X S, DU H, ZHANG Y, et al. Environmental microbiota drives microbial succession and metabolic profiles during Chinese liquor fermentation[J]. Applied and Environmental Microbiology, 2018, 84(4): e02369-17.
[7]
LI E H, WANG X Y, ZHANG Y X, et al. Weissella paramesenteroides facilitates the systemic growth of Drosophila melanogaster by modulating ecdysone and insulin signaling pathways[J]. Acta Entomologica Sinica, 2018, 61(6): 676-685.
[8]
ALVIM L B, SANDES S H C, SILVA B C, et al. Weissella paramesenteroides WpK4 reduces gene expression of intestinal cytokines, and hepatic and splenic injuries in a murine model of typhoid fever[J]. Beneficial Microbes, 2016, 7(1): 61-73. DOI:10.3920/BM2015.0093
[9]
PAL A, RAMANA K V. Isolation and preliminary characterization of a nonbacteriocin antimicrobial compound from Weissella paramesenteroides DFR-8 isolated from cucumber (Cucumis sativus)[J]. Process Biochemistry, 2009, 44(4): 499-503. DOI:10.1016/j.procbio.2009.01.006
[10]
LIBONATTI C, AGVERIA D, GARCÍA C, et al. Weissella paramesenteroides encapsulation and its application in the use of fish waste[J]. Revista Argentina de Microbiología, 2019, 51(1): 81-83. DOI:10.1016/j.ram.2018.03.001
[11]
PARK H J, PARK Y H, KIM Y B. Characterization of growth and ethanol formation of Weissella paramesenteroides P30[J]. Food ence and Biotechnology, 2001, 10(1): 72-75.
[12]
TOZLU C, ŞAHIN E, SERENCAM H, et al. Production of enantiomerically enriched chiral carbinols using Weissella paramesenteroides as a novel whole cell biocatalyst[J]. Biocatalysis and Biotransformation, 2019, 37(5): 388-398. DOI:10.1080/10242422.2019.1568416
[13]
王蕾. 藏鸡源乳酸菌的生物学特性研究及其对AA肉鸡肠道菌群的影响[D]. 硕士学位论文. 武汉: 华中农业大学, 2018.
WANG L. The research of biological properties of lactobacillus isolated from tibetan chickens and its effects on the intestinal flora in AA broiler[D]. Master′s Thesis. Wuhan: Huazhong Agricultural University, 2018. (in Chinese)
[14]
LEE K W, PARK J Y, JEONG H R, et al. Probiotic properties of Weissella strains isolated from human faeces[J]. Anaerobe, 2012, 18(1): 96-102. DOI:10.1016/j.anaerobe.2011.12.015
[15]
WANG J P, YOO J S, JANG H D, et al. Effect of dietary fermented garlic by Weissella koreensis powder on growth performance, blood characteristics, and immune response of growing pigs challenged with Escherichia coli lipopolysaccharide[J]. Journal of Animal Science, 2011, 89(7): 2123-2131. DOI:10.2527/jas.2010-3186
[16]
刘韶娜, 张斌, 相德才, 等. 贝莱斯芽孢杆菌对猪生长性能、微生物群落和代谢产物的影响[J]. 动物营养学报, 2020, 32(12): 5622-5635.
LIU S N, ZHANG B, XIANG D C, et al. Effects of bacillus velezensis on growth performance, fecal microbiota and metabolites in pigs[J]. Chinese Journal of Animal Nutrition, 2020, 32(12): 5622-5635 (in Chinese).
[17]
SCHWARZER M, MAKKI K, STORELLI G, et al. Lactobacillus plantarum strain maintains growth of infant mice during chronic undernutrition[J]. Science, 2016, 351(6275): 854-857. DOI:10.1126/science.aad8588
[18]
饶泽斌, 曾艳, 刘宇波, 等. 饲粮添加干酪乳杆菌代田株对断奶仔猪生长性能、抗氧化功能和结肠生物胺的影响[J]. 动物营养学报, 2021, 33(6): 3165-3175.
RAO Z B, ZENG Y, LIU Y B, et al. Effects of Lactobacillus casei strain shirota on growth performance, antioxidant function and bioamines in colon of weaned piglets[J]. Chinese Journal of Animal Nutrition, 2021, 33(6): 3165-3175 (in Chinese).
[19]
BLANTON L V, CHARBONNEAU M R, SALIH T, et al. Gut bacteria that prevent growth impairments transmitted by microbiota from malnourished children[J]. Science, 2016, 351(6275): aad3311. DOI:10.1126/science.aad3311
[20]
MARTINO M E, JONCOUR P, LEENAY R, et al. Bacterial adaptation to the host′s diet is a key evolutionary force shaping Drosophila-Lactobacillus symbiosis[J]. Cell Host & Microbe, 2018, 24(1): 109-119.
[21]
刘辉, 季海峰, 王四新, 等. 复合乳酸菌发酵饲料对生长猪生长性能、粪便菌群、血清免疫和抗氧化指标的影响[J]. 动物营养学报, 2022, 34(2): 783-794.
LIU H, JI H F, WANG S X, et al. Effects of compound lactic acid bacteria fermented feed on growth performance, fecal microflora, serum immune and antioxidant indexes of growing pigs[J]. Chinese Journal of Animal Nutrition, 2022, 34(2): 783-794 (in Chinese).
[22]
张阳, 吕慧源, 徐盛玉, 等. 复合益生菌与黄芪多糖对生长育肥猪生长性能、血清生化指标和粪便微生物的影响[J]. 动物营养学报, 2021, 33(6): 3542-3553.
ZHANG Y, LV H Y, XU S Y, et al. Effects of compound probiotics and astragalus polysaccharide on growth performance, serum biochemical indices and fecal microorganism of growing-finishing pigs[J]. Chinese Journal of Animal Nutrition, 2021, 33(6): 3542-3553 (in Chinese). DOI:10.3969/j.issn.1006-267x.2021.06.056
[23]
杨立杰, 薛新升, 宋青龙, 等. 固态发酵醋糟饲料对育肥猪生长性能、养分表观消化率、血清指标及粪便中挥发性脂肪酸含量的影响[J]. 动物营养学报, 2020, 32(4): 1576-1585.
YANG L J, XUE X S, SONG Q L, et al. Effects solid-state fermentation vinegar dregs on growth performance, nutrient apparent digestibilities, serum indexes and faecal volatile fatty acids content of finishing pigs[J]. Chinese Journal of Animal Nutrition, 2020, 32(4): 1576-1585 (in Chinese). DOI:10.3969/j.issn.1006-267x.2020.04.015
[24]
COLOSIMO D A, KOHN J A, LUO P M, et al. Mapping interactions of microbial metabolites with human G-protein-coupled receptors[J]. Cell Host & Microbe, 2019, 26(2): 273-282.e7.
[25]
AHMED N, TCHENG M, ROMA A, et al. Avocatin B protects against lipotoxicity and improves insulin sensitivity in diet-induced obesity[J]. Molecular Nutrition & Food Research, 2019, 63(24): e1900688.
[26]
KIM H B, ISAACSON R E. The pig gut microbial diversity: understanding the pig gut microbial ecology through the next generation high throughput sequencing[J]. Veterinary Microbiology, 2015, 177(3/4): 242-251.
[27]
PAJARILLO E A B, CHAE J P, BALOLONG M P, et al. Effects of probiotic Enterococcus faecium NCIMB 11181 administration on swine fecal microbiota diversity and composition using barcoded pyrosequencing[J]. Animal Feed Science and Technology, 2015, 201: 80-88. DOI:10.1016/j.anifeedsci.2015.01.011
[28]
SONNENBURG J L, BÄCKHED F. Diet-microbiota interactions as moderators of human metabolism[J]. Nature, 2016, 535(7610): 56-64. DOI:10.1038/nature18846
[29]
孙东方, 王晨, 刘颖, 等. 双乙酸钠对小鼠肠道菌群结构和功能的影响[J]. 微生物学杂志, 2020, 40(2): 57-65.
SUN D F, WANG C, LIU Y, et al. Effects of sodium diacetate on the structure and function of mice intestines microbial community[J]. Journal of Microbiology, 2020, 40(2): 57-65 (in Chinese). DOI:10.3969/j.issn.1005-7021.2020.02.007
[30]
NAKAYAMA J, ZHANG H P, LEE Y K. Asian gut microbiome[J]. Science Bulletin, 2017, 62(12): 816-817. DOI:10.1016/j.scib.2017.04.001
[31]
RAIMONDI M T, ALBANI D, GIORDANO C. An organ-on-a-chip engineered platform to study the microbiota-gut-brain axis in neurodegeneration[J]. Trends in Molecular Medicine, 2019, 25(9): 737-740. DOI:10.1016/j.molmed.2019.07.006
[32]
MANOR O, DAI C L, KORNILOV S A, et al. Health and disease markers correlate with gut microbiome composition across thousands of people[J]. Nature Communications, 2020, 11(1): 5206. DOI:10.1038/s41467-020-18871-1
[33]
TURNBAUGH P J, LEY R E, MAHOWALD M A, et al. An obesity-associated gut microbiome with increased capacity for energy harvest[J]. Nature, 2006, 444(7122): 1027-1031. DOI:10.1038/nature05414
[34]
ZHU J Q, KONG Y, YU J, et al. Consumption of drinking water N-nitrosamines mixture alters gut microbiome and increases the obesity risk in young male rats[J]. Environmental Pollution, 2019, 248: 388-396. DOI:10.1016/j.envpol.2019.02.012
[35]
LI Y Y, MA J, YAO K, et al. Circadian rhythms and obesity: timekeeping governs lipid metabolism[J]. Journal of Pineal Research, 2020, 69(3): e12682.
[36]
CHEN P, CHEN X Q, HAO L L, et al. The bioavailability of soybean polysaccharides and their metabolites on gut microbiota in the simulator of the human intestinal microbial ecosystem (SHIME)[J]. Food Chemistry, 2021, 362: 130233. DOI:10.1016/j.foodchem.2021.130233
[37]
FANG Z F, LU W W, ZHAO J A, et al. Probiotics modulate the gut microbiota composition and immune responses in patients with atopic dermatitis: a pilot study[J]. European Journal of Nutrition, 2020, 59(5): 2119-2130. DOI:10.1007/s00394-019-02061-x
[38]
ADNAN S, NELSON J W, AJAMI N J, et al. Alterations in the gut microbiota can elicit hypertension in rats[J]. Physiological Genomics, 2017, 49(2): 96-104. DOI:10.1152/physiolgenomics.00081.2016
[39]
LAVRINIENKO A, MAPPES T, TUKALENKO E, et al. Environmental radiation alters the gut microbiome of the bank vole Myodes glareolus[J]. The ISME Journal, 2018, 12(11): 2801-2806. DOI:10.1038/s41396-018-0214-x
[40]
LEE N Y, YOON S J, HAN D H, et al. Lactobacillus and Pediococcus ameliorate progression of non-alcoholic fatty liver disease through modulation of the gut microbiome[J]. Gut Microbes, 2020, 11(4): 882-899. DOI:10.1080/19490976.2020.1712984
[41]
PETERSEN C, BELL R, KLAG K A, et al. T cell-mediated regulation of the microbiota protects against obesity[J]. Science, 2019, 365(6451): eaat9351. DOI:10.1126/science.aat9351
[42]
WATERS J L, LEY R E. The human gut bacteria Christensenellaceae are widespread, heritable, and associated with health[J]. BMC Biology, 2019, 17(1): 83. DOI:10.1186/s12915-019-0699-4
[43]
PRADO G K S, TORRINHA K C, CRUZ R E, et al. Weissella paramesenteroides WpK4 ameliorate the experimental amoebic colitis by increasing the expression of MUC-2 and the intestinal epithelial regeneration[J]. Journal of Applied Microbiology, 2020, 129(6): 1706-1719. DOI:10.1111/jam.14671
[44]
RUAUD A, ESQUIVEL-ELIZONDO S, DE LA CUESTA-ZULUAGA J, et al. Syntrophy via interspecies H2 transfer between Christensenella and Methanobrevibacter underlies their global cooccurrence in the human gut[J]. mBio, 2020, 11(1): e03235-19.
[45]
SOVERINI M, RAMPELLI S, TURRONI S, et al. Variations in the post-weaning human gut metagenome profile as result of Bifidobacterium acquisition in the western microbiome[J]. Frontiers in Microbiology, 2016, 7: 1058.
[46]
FERNÁNDEZ J, REDONDO-BLANCO S, GUTIÉRREZ-DEL-RÍO I, et al. Colon microbiota fermentation of dietary prebiotics towards short-chain fatty acids and their roles as anti-inflammatory and antitumour agents: a review[J]. Journal of Functional Foods, 2016, 25: 511-522. DOI:10.1016/j.jff.2016.06.032
[47]
SMITH P M, HOWITT M R, PANIKOV N, et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis[J]. Science, 2013, 341(6145): 569-573. DOI:10.1126/science.1241165
[48]
SORBARA M T, DUBIN K, LITTMANN E R, et al. Inhibiting antibiotic-resistant Enterobacteriaceae by microbiota-mediated intracellular acidification[J]. Journal of Experimental Medicine, 2019, 216(1): 84-98. DOI:10.1084/jem.20181639
[49]
CANFORA E E, JOCKEN J W, BLAAK E E. Short-chain fatty acids in control of body weight and insulin sensitivity[J]. Nature Reviews Endocrinology, 2015, 11(10): 577-591. DOI:10.1038/nrendo.2015.128
[50]
ZHANG S M, ZHAO J W, XIE F, et al. Dietary fiber-derived short-chain fatty acids: a potential therapeutic target to alleviate obesity-related nonalcoholic fatty liver disease[J]. Obesity Reviews, 2021, 22(11): e13316.
[51]
ZOU F G, QIU Y, HUANG Y L, et al. Effects of short-chain fatty acids in inhibiting HDAC and activating p38 MAPK are critical for promoting B10 cell generation and function[J]. Cell Death & Disease, 2021, 12(6): 582.
[52]
HOCKENBERRY A M, MICALI G, TAK CS G, et al. Microbiota-derived metabolites inhibit Salmonella virulent subpopulation development by acting on single-cell behaviors[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(31): e2103027118. DOI:10.1073/pnas.2103027118
[53]
赵秀英, 县怡涵, 李晨博, 等. 灌喂植物乳杆菌和干酪乳杆菌增加仔猪肠道菌群多样性及短链脂肪酸生成[J]. 微生物学报, 2016, 56(8): 1291-1300.
ZHAO X Y, XIAN Y H, LI C B, et al. Feeding Lactobacillus plantarum and Lactobacillus casei increased microbial diversity and short chain fatty acids production in the gut-intestinal tract of weaning piglets[J]. Acta Microbiologica Sinica, 2016, 56(8): 1291-1300 (in Chinese).
[54]
CRAIG A D, KHATTAK F, HASTIE P, et al. Xylanase and xylo-oligosaccharide prebiotic improve the growth performance and concentration of potentially prebiotic oligosaccharides in the ileum of broiler chickens[J]. British Poultry Science, 2020, 61(1): 70-78. DOI:10.1080/00071668.2019.1673318
[55]
LUO J L, QIAN A H, OETJEN L K, et al. TRPV4 channel signaling in macrophages promotes gastrointestinal motility via direct effects on smooth muscle cells[J]. Immunity, 2018, 49(1): 107-119.e4. DOI:10.1016/j.immuni.2018.04.021