动物营养学报    2022, Vol. 34 Issue (9): 5741-5750    PDF    
罗伊氏乳杆菌肽聚糖对蛋雏鸡生长性能、免疫功能和抗氧化能力的影响
陈晓宇1 , 朱连勤1 , 陈甫1 , 张贝贝2 , 朱风华2     
1. 青岛农业大学动物医学学院, 青岛 266109;
2. 青岛农业大学动物科技学院, 青岛 266109
摘要: 本试验旨在研究饲粮中添加罗伊氏乳杆菌肽聚糖对蛋雏鸡生长性能、免疫功能和抗氧化能力的影响。试验选取1日龄健康的海兰褐蛋雏鸡96只, 随机分为4个组, 每组4个重复, 每个重复6只。对照组饲喂基础饲粮, 试验组分别在基础饲粮中添加250、500、1 000 mg/kg罗伊氏乳杆菌肽聚糖。试验期42 d。结果表明: 1)试验第21、42天, 1 000 mg/kg罗伊氏乳杆菌肽聚糖组平均日增重显著高于其他各组(P<0.05), 1 000 mg/kg罗伊氏乳杆菌肽聚糖组料重比显著低于对照组(P<0.05)。2)试验第42天, 500、1 000 mg/kg罗伊氏乳杆菌肽聚糖组血液白细胞总数显著高于对照组和250 mg/kg罗伊氏乳杆菌肽聚糖组(P<0.05)。3)试验第21、42天, 1 000 mg/kg罗伊氏乳杆菌肽聚糖组血浆谷胱甘肽过氧化物酶(GSH-Px)、超氧化物歧化酶(SOD)活性显著高于对照组(P<0.05), 500、1 000 mg/kg罗伊氏乳杆菌肽聚糖组血浆总抗氧化能力(T-AOC)显著高于对照组和250 mg/kg罗伊氏乳杆菌肽聚糖组(P<0.05)。4)试验第42天, 500、1 000 mg/kg罗伊氏乳杆菌肽聚糖组血浆白细胞介素-2(IL-2)含量显著高于对照组(P<0.05), 1 000 mg/kg罗伊氏乳杆菌肽聚糖组血浆免疫球白蛋白A(IgA)、免疫球白蛋白G(IgG)、白细胞介素-4(IL-4)、白细胞介素-6(IL-6)和干扰素-γ(IFN-γ)含量显著高于对照组及250、500 mg/kg罗伊氏乳杆菌肽聚糖组(P<0.05)。5)1 000 mg/kg罗伊氏乳杆菌肽聚糖组血浆新城疫病毒抗体(NDV-Ab)和传染性法氏囊病病毒抗体(IBDV-Ab)水平显著高于对照组及250、500 mg/kg罗伊氏乳杆菌肽聚糖组(P<0.05)。6)1 000 mg/kg罗伊氏乳杆菌肽聚糖组脾脏指数显著高于对照组及250、500 mg/kg罗伊氏乳杆菌肽聚糖组(P<0.05), 250、1 000 mg/kg罗伊氏乳杆菌肽聚糖组胸腺指数显著高于对照组和500 mg/kg罗伊氏乳杆菌肽聚糖组(P<0.05)。综上所述, 饲粮中添加罗伊氏乳杆菌肽聚糖可以提高蛋雏鸡生长性能, 促进机体免疫器官的发育, 提高机体免疫功能和抗氧化能力。在蛋雏鸡饲粮添加1 000 mg/kg罗伊氏乳杆菌肽聚糖是可行的。
关键词: 罗伊氏乳杆菌    肽聚糖    蛋雏鸡    生长性能    免疫功能    抗氧化    
Effects of Lactobacillus reuteri Peptidoglycan on Growth Performance, Immune Function and Antioxidant Capacity of Egg Chicks
CHEN Xiaoyu1 , ZHU Lianqin1 , CHEN Fu1 , ZHANG Beibei2 , ZHU Fenghua2     
1. Department of Animal Medicine, Qingdao Agricultural University, Qingdao 266109, China;
2. Department of Animal Science, Qingdao Agricultural University, Qingdao 266109, China
Abstract: The purpose of this experiment was to study the effects of dietary Lactobacillus reuteri peptidoglycan on growth performance, immune function and antioxidant capacity of egg chicks. Ninety-six healthy 1-day-old Hy-Line Brown egg chicks were randomly divided into 4 groups with 4 replicates in each group and 6 chicks in each replicate. Chicks in the control group were fed a basal diet, and others in experimental groups were fed basal diets supplemented 250, 500 and 1 000 mg/kg Lactobacillus reuteri peptidoglycan, respectively. The experiment lasted for 42 days. The results showed as follows: 1) on days 21 and 42 of the experiment, the average daily gain of 1 000 mg/kg Lactobacillus reuteri peptidoglycan group was significantly higher than that of other groups (P < 0.05), and the feed to gain ratio of 1 000 mg/kg Lactobacillus reuteri peptidoglycan group was significantly lower than that of the control group (P < 0.05). 2) On day 42 of the experiment, the white blood cell count of 500 and 1 000 mg/kg Lactobacillus reuteri peptidoglycan groups was significantly higher than that of control group and 250 mg/kg Lactobacillus reuteri peptidoglycan group (P < 0.05). 3) On days 21 and 42 of the experiment, the activities of glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) in plasma of 1 000 mg/kg Lactobacillus reuteri peptidoglycan group were significantly higher than those of the control group (P < 0.05), and the plasma total antioxidant capacity (T-AOC) of 500 and 1 000 mg/kg Lactobacillus reuteri peptidoglycan groups was significantly higher than that of control group and 250 mg/kg Lactobacillus reuteri peptidoglycan group (P < 0.05). 4) On day 42 of the experiment, the plasma interleukin-2 (IL-2) content of 500 and 1 000 mg/kg Lactobacillus reuteri peptidoglycan groups was significantly higher than that of the control group (P < 0.05), and the contents of immunoglobulin A (IgA), immunoglobulin G (IgG), interleukin-4 (IL-4), interleukin-6 (IL-6) and interferon-γ (IFN-γ) in plasma of 1 000 mg/kg Lactobacillus reuteri peptidoglycan group were significantly higher than those of control group and 250, 500 mg/kg Lactobacillus reuteri peptidoglycan groups (P < 0.05). 5) The levels of Newcastle disease virus antibody (NDV-Ab) and infectious bursal disease virus antibody (IBDV-Ab) in plasma of 1 000 mg/kg Lactobacillus reuteri peptidoglycan group were significantly higher than those of control group and 250, 500 mg/kg Lactobacillus reuteri peptidoglycan groups (P < 0.05). 6) The spleen index of 1 000 mg/kg Lactobacillus reuteri peptidoglycan group was significantly higher than that of control group and 250, 500 mg/kg Lactobacillus reuteri peptidoglycan groups (P < 0.05), and the thymus index of 250 and 1 000 mg/kg Lactobacillus reuteri peptidoglycan groups was significantly higher than that of control group and 500 mg/kg Lactobacillus reuteri peptidoglycan group (P < 0.05). In conclusion, dietary Lactobacillus reuteri peptidoglycan can improve the growth performance of egg chicks, promote the development of immune organs, and improve the body immune function and antioxidant capacity. It is feasible to add 1 000 mg/kg Lactobacillus reuteri peptidoglycan in the diet of egg chicks. [Chinese Journal of Animal Nutrition, 2022, 34(9): 5741-5750]
Key words: Lactobacillus reuteri    peptidoglycan    egg chicks    growth performance    immune function    antioxidant    

罗伊氏乳杆菌具有增强动物免疫功能的作用。Hou等[1]报道,罗伊氏乳杆菌I5007可增强T细胞分化并诱导回肠细胞因子表达,表明该菌株可调节断奶仔猪的免疫功能。Yang等[2]给仔猪补充罗伊氏乳杆菌后,提高了仔猪的血浆白细胞介素-2(interleukin-2,IL-2)、干扰素-α(interferon-α,IFN-α)、干扰素-β(interferon-β,IFN-β)含量。Tang等[3]认为罗伊氏乳杆菌通过调节肿瘤坏死因子-α(tumor necrosis factor-α,TNF-α)、白细胞介素-6(interleukin-6,IL-6)、白细胞介素-1β(interleukin-1β,IL-1β)和干扰素-γ(interferon-γ,IFN-γ)等的含量,实现对机体免疫功能的调节。罗伊氏乳杆菌可增强动物抗氧化能力。Hou等[1]报道,罗伊氏乳杆菌在体外可有效清除自由基,并可用于缓解氧化应激;给生长肥育猪补充罗伊氏乳杆菌可提高血浆超氧化物歧化酶(superoxide dismutase,SOD)和谷胱甘肽过氧化物酶(glutathione peroxidase,GSH-Px)活性,降低丙二醛(malondialdehyde,MDA)含量。Yang等[2]报道,给仔猪补充罗伊氏乳杆菌可降低血浆MDA含量,提高血浆SOD活性和总抗氧化能力(total antioxidant capacity,T-AOC),改善了机体抗氧化能力。Kolling等[4]发现,小鼠补充鼠李糖乳杆菌肽聚糖后,显著提高了呼吸道TNF-α和白细胞介素-10(interleukin-10,IL-10)含量,降低了肺炎球菌的感染,发挥了明显的黏膜免疫调节作用。也有研究报道,嗜酸乳杆菌肽聚糖通过激活Toll样受体2(Toll-like receptors 2,TLR2)信号识别,改善调节性T细胞(regulatory T cells,Treg)/辅助性T细胞17(T helper cell 17,Th17)失衡,诱导Treg免疫反应,发挥免疫调节作用[5]。Liu等[6]研究发现,肽聚糖能显著提高三齿鲎血液SOD活性和T-AOC,并提高了机体抗氧化防御系统的代偿能力和自由基代谢状态。罗伊氏乳杆菌是通过何种菌体成分或代谢产物发挥抗氧化损伤和调节免疫功能的尚未见报道。本试验通过在蛋雏鸡饲粮中添加不同剂量的罗伊氏乳杆菌肽聚糖,研究其对蛋雏鸡生长性能、免疫功能和抗氧化能力的影响,以期为罗伊氏乳杆菌肽聚糖在生产中应用提供理论依据。

1 材料与方法 1.1 试验设计

选取96只1日龄健康的海兰褐蛋雏鸡,随机分为4个组,每组4个重复,每个重复6只。对照组饲喂基础饲粮,试验组分别在基础饲粮中添加250、500和1 000 mg/kg罗伊氏乳杆菌肽聚糖。试验期42 d。罗伊氏乳杆菌肽聚糖为青岛农业大学动物医学院动物营养病与中毒病实验室制备,其肽聚糖纯度为97.75%。基础饲粮组成及营养水平见表 1

表 1 基础饲粮组成及营养水平(风干基础) Table 1 Composition and nutrient levels of the basal diet (air-dry basis)  
1.2 饲养管理

试验鸡自由采食、饮水。7日龄时对试验鸡进行新城疫Ⅳ系、传染性支气管炎H120二联弱毒苗滴鼻点眼免疫;14日龄时对试验鸡进行传染性法氏囊病弱毒疫苗饮水免疫,双倍量饮水。鸡舍温度在前5 d保持在32~34 ℃,然后每周以2 ℃的速度逐渐下降,最终室温控制在22~24 ℃。按照消毒程序规范消毒。每日观察试验鸡的精神状态、行为表现、粪便状况。在整个试验期内各组的试验条件保持一致。

1.3 试验材料

GSH-Px、SOD、T-AOC、MDA、免疫球白蛋白A(immunoglobulin A,IgA)、免疫球白蛋白G(immunoglobulin G,IgG)、免疫球白蛋白M(immunoglobulin M,IgM)、IL-2、白细胞介素-4(interleukin-4,IL-4)、IL-6和IFN-γ试剂盒均购自南京建成生物工程研究所;新城疫病毒抗体(Newcastle disease virus antibody,NDV-Ab)和传染性法氏囊病病毒抗体(infectious bursal disease virus antibody,IBDV-Ab)酶联免疫吸附测定(enzyme linked immunosorbent assay,ELISA)试剂盒购自上海劲马生物科技有限公司。

1.4 仪器设备

主要仪器包括MK3型酶标仪(赛默飞世尔仪器有限公司)、SPH-211B型控温摇床(上海世平试验设备有限公司)、Beta 2-8 LSCbasic型真空冷冻干燥机(德国Martin Christ公司)、3K15型低温高速离心机(美国Sigma公司)。

1.5 样品采集和指标检测

分别于试验第1、21和42天早晨空腹称重,以每个重复为单位,计算试验鸡平均日增重,并准确记录采食量和剩料量,计算试验鸡平均日采食量和料重比(平均日采食量/平均日增重)。

分别于试验第21和42天,从每个重复取3只鸡,心脏采血5 mL,分别置于乙二胺四乙酸二钠(EDTA-2Na)真空采血管和肝素钠采血管中,EDTA-2Na真空采血管用做血液常规指标检测,肝素钠采血管3 000 r/min离心10 min分离血浆后用于血浆抗氧化和免疫指标的测定。

1.5.1 血液常规指标的检测

用显微镜计数法检测血液白细胞(white blood cell,WBC)和红细胞(red blood cell,RBC)总数,沙利氏比色法检测血红蛋白(hemoglobin,HGB)含量,温氏法检测红细胞压积(hematocrit,HCT)。

1.5.2 血浆抗氧化和免疫指标的检测

按照试剂盒说明书测定血浆GSH-Px和SOD活性、T-AOC以及MDA、IgG、IgA、IgM、IFN-γ、IL-2、IL-4、IL-6含量。采用ELISA试剂盒测定血浆NDV-Ab和IBDV-Ab水平。

1.5.3 免疫器官指数测定

试验结束时,按常规方法进行屠宰,屠宰后摘取脾脏、胸腺以及法氏囊,并剔除其表面的脂肪,计算免疫器官指数:

1.6 数据统计分析

数据采用SPSS 22.0统计软件的ANOVA模块进行统计分析和多重比较,用ANOVA模块对数据进行方差分析,Waller-Duncan氏法进行多重比较,然后对罗伊氏乳杆菌肽聚糖添加水平进行线性(linear)和二次曲线(quadratic)回归分析。试验的结果均以“平均值±标准差”表示。

2 结果 2.1 罗伊氏乳杆菌肽聚糖对蛋雏鸡生长性能的影响

表 2可见,试验第21、42天,1 000 mg/kg罗伊氏乳杆菌肽聚糖组平均日增重显著高于其他各组(P<0.05),1 000 mg/kg罗伊氏乳杆菌肽聚糖组料重比显著低于对照组(P<0.05)。试验第21天,对照组和250 mg/kg罗伊氏乳杆菌肽聚糖组平均日采食量显著高于500、1 000 mg/kg罗伊氏乳杆菌肽聚糖组(P<0.05)。

表 2 罗伊氏乳杆菌肽聚糖对蛋雏鸡生长性能的影响 Table 2 Effects of Lactobacillus reuteri peptidoglycan on growth performance of egg chicks
2.2 罗伊氏乳杆菌肽聚糖对蛋雏鸡血液常规指标的影响

表 3可见,试验第42天,500、1 000 mg/kg罗伊氏乳杆菌肽聚糖组血液白细胞总数显著高于对照组和250 mg/kg罗伊氏乳杆菌肽聚糖组(P<0.05)。试验第21、42天,各组之间血液红细胞总数、血红蛋白含量和红细胞压积差异不显著(P>0.05)。

表 3 罗伊氏乳杆菌肽聚糖对蛋雏鸡血液常规指标的影响 Table 3 Effects of Lactobacillus reuteri peptidoglycan on blood routine indexes of egg chicks
2.3 罗伊氏乳杆菌肽聚糖对蛋雏鸡血浆抗氧化指标的影响

表 4可见,试验第21、42天,1 000 mg/kg罗伊氏乳杆菌肽聚糖组血浆GSH-Px、SOD活性显著高于对照组(P<0.05),500、1 000 mg/kg罗伊氏乳杆菌肽聚糖组血浆T-AOC显著高于对照组和250 mg/kg罗伊氏乳杆菌肽聚糖组(P<0.05)。试验第42天,1 000 mg/kg罗伊氏乳杆菌肽聚糖组血浆MDA含量显著低于对照组及250、500 mg/kg罗伊氏乳杆菌肽聚糖组(P<0.05)。

表 4 罗伊氏乳杆菌肽聚糖对蛋雏鸡血浆抗氧化指标的影响 Table 4 Effects of Lactobacillus reuteri peptidoglycan on plasma antioxidant indexes of egg chicks
2.4 罗伊氏乳杆菌肽聚糖对蛋雏鸡血浆免疫指标的影响

表 5可见,试验第21天,250 mg/kg罗伊氏乳杆菌肽聚糖组血浆IgG含量显著高于对照组及500、1 000 mg/kg罗伊氏乳杆菌肽聚糖组(P<0.05),1 000 mg/kg罗伊氏乳杆菌肽聚糖组血浆IgA、IL-4含量显著高于对照组及250、500 mg/kg罗伊氏乳杆菌肽聚糖组(P<0.05)。试验第42天,500、1 000 mg/kg罗伊氏乳杆菌肽聚糖组血浆IL-2含量显著高于对照组(P<0.05),1 000 mg/kg罗伊氏乳杆菌肽聚糖组血浆IgA、IgG、IL-4、IL-6和IFN-γ含量显著高于对照组及250、500 mg/kg罗伊氏乳杆菌肽聚糖组(P<0.05)。试验第21、42天,各组之间血浆IgM含量差异不显著(P>0.05)。

表 5 罗伊氏乳杆菌肽聚糖对蛋雏鸡血浆免疫指标的影响 Table 5 Effects of Lactobacillus reuteri peptidoglycan on plasma immune indexes of egg chicks
2.5 罗伊氏乳杆菌肽聚糖对蛋雏鸡血浆NDV-Ab和IBDV-Ab水平的影响

表 6可见,1 000 mg/kg罗伊氏乳杆菌肽聚糖组血浆NDV-Ab和IBDV-Ab水平显著高于对照组及250、500 mg/kg罗伊氏乳杆菌肽聚糖组(P<0.05)。

表 6 罗伊氏乳杆菌肽聚糖对蛋雏鸡血浆NDV-Ab和IBDV-Ab水平的影响 Table 6 Effects of Lactobacillus reuteri peptidoglycan on levels of NDV-Ab and IBDV-Ab in plasma of egg chicks
2.6 罗伊氏乳杆菌肽聚糖对蛋雏鸡免疫器官指数的影响

表 7可见,1 000 mg/kg罗伊氏乳杆菌肽聚糖组脾脏指数显著高于对照组及250、500 mg/kg罗伊氏乳杆菌肽聚糖组(P<0.05),250、1 000 mg/kg罗伊氏乳杆菌肽聚糖组胸腺指数显著高于对照组和500 mg/kg罗伊氏乳杆菌肽聚糖组(P<0.05)。各组之间的法氏囊指数差异不显著(P>0.05)。

表 7 罗伊氏乳杆菌肽聚糖对蛋雏鸡免疫器官指数的影响 Table 7 Effects of Lactobacillus reuteri peptidoglycan on immune organ indexes of egg chicks   
3 讨论 3.1 罗伊氏乳杆菌肽聚糖对蛋雏鸡生长性能的影响

微生态制剂尤其是益生菌在家禽饲粮广泛应用,益生菌通过增加有益微生物的数量和酶活性,改善肠道微生物平衡,从而影响食物的消化、吸收和摄入量,进而改善消化过程[7-9]。Yi等[10]给仔猪服用罗伊氏乳杆菌(5×1010 CPU/kg)显著提高了仔猪的体重,与添加抗生素的效果相仿。罗伊氏乳杆菌可以替代抗生素作为生长促进剂来改善幼畜的消化吸收功能[11]。在肉鸡饲粮中添加罗伊氏乳杆菌可以提高肉鸡的平均日增重,降低饲料消耗,饲料转化率降低了6%~7%[12]。罗伊氏乳杆菌提高动物生长发育的机制是比较复杂的,既有益生菌本身作用,也有各种代谢产物的作用。饲料中添加双歧杆菌肽聚糖可显著促进日本对虾生长[13]。饲料中添加双歧杆菌肽聚糖能显著提高日本刺参的生长性能[14]。本试验结果表明,饲粮中添加1 000 mg/kg罗伊氏乳杆菌肽聚糖能显著提高蛋雏鸡平均日增重,添加250~1 000 mg/kg罗伊氏乳杆菌肽聚糖能显著降低蛋雏鸡料重比。由此可见,罗伊氏乳杆菌肽聚糖可用做雏鸡的饲料添加剂,以提高雏鸡的生长性能。

3.2 罗伊氏乳杆菌肽聚糖对蛋雏鸡血浆抗氧化指标的影响

Yang等[2]报道,给仔猪口服罗伊氏乳杆菌显著降低了血浆MDA含量,提高了血浆T-AOC及SOD、GSH-Px活性。Tang等[15]给患有坏死性小肠结肠炎小鼠灌服罗伊氏乳杆菌,显著提高了患病小鼠肠道组织SOD活性和谷胱甘肽(glutathione,GSH)含量,显著降低肠道组织MDA、氧化性谷胱甘肽(glutathione oxidized,GSSG)含量和GSSG/GSH比值。Arcanjo等[16]体外试验发现,罗伊氏乳杆菌可能通过由dhaT基因编码的还原性辅酶烟酰胺腺嘌呤二核苷酸(nicotinamide adenine dinucleotide,NADH)依赖性氧化还原酶发挥抗氧化反应。关于乳酸菌提高动物机体抗氧化能力的机制前人也进行了有价值的探索。Mantis等[17]研究发现,嗜酸乳杆菌肽聚糖能诱导小鼠肠黏膜并形成保护膜,从而减缓炎症反映,进而增加抗氧化应激的能力。Zhang等[18]研究发现,饲料中添加枯草芽孢杆菌肽聚糖提高了鲤鱼肠上皮细胞的抗氧化能力。本试验发现,饲粮中添加1 000 mg/kg罗伊氏乳杆菌肽聚糖可以显著提高蛋雏鸡血浆GSH-Px、SOD活性和T-AOC,并显著降低血浆MDA含量。罗伊氏乳杆菌肽聚糖与其他益生菌肽聚糖一样,具有抗氧化应激的作用。由此可见,肽聚糖作为罗伊氏乳杆菌细胞壁的组成成分,在罗伊氏乳杆菌的抗氧化损伤的机制上扮有重要的角色,肽聚糖抗氧化损伤的机制有待进一步研究证实。

3.3 罗伊氏乳杆菌肽聚糖对蛋雏鸡血浆免疫指标的影响

罗伊氏乳杆菌I5007可增强T细胞分化并诱导回肠细胞因子表达,从而调节断奶仔猪的免疫功能[1]。补充罗伊氏乳杆菌可提高新生仔猪血浆IL-2、IFN-α、IFN-β含量[2]。Gonmei等[19]报道,饲粮中添加罗伊氏乳杆菌PIA16在一定程度上能够提高鸡的血浆NDV-Ab水平。He等[20]研究发现,与对照组相比,低剂量罗伊氏乳杆菌组雌性和雄性小鼠的血浆IL-12含量均显著升高。Sureshkumar等[21]认为罗伊氏乳杆菌通过调节IL-4、IL-6、IL-8、TNF-α和IFN-γ等含量,实现对机体免疫功能的调节作用。罗伊氏乳杆菌的哪一种代谢产物发挥免疫调节作用却鲜见报道。Li等[22]报道,植物乳杆菌细胞壁肽聚糖可提高IL-4、IL-12、TNF-αIFN-γ表达水平,对小鼠先天免疫和体液免疫功能起到调节作用。Kolling等[4]研究发现,小鼠补饲肽聚糖时,显著提高了支气管肺泡灌洗液中TNF-α和IL-10含量,减少肺炎球菌的感染,肽聚糖在小鼠的呼吸道黏膜免疫发挥重要的调节作用。本试验发现,饲粮中添加1 000 mg/kg的罗伊氏乳杆菌肽聚糖可显著提高蛋雏鸡血浆IgG、IgA、IL-2、IL-4、IL-6和IFN-γ含量,证明罗伊氏乳杆菌增强免疫作用与其细胞壁肽聚糖密切相关。Barinskiǐ等[23]将肽聚糖-160与免活疫苗相结合,可显著提高小鼠的蜱传脑炎(TBE)疫苗的保护作用。Ridi等[24]以肽聚糖作为免疫佐剂,对小鼠注射血吸虫病疫苗产生的抗体效价具有明显增强作用。本试验也发现,饲粮中添加1 000 mg/kg罗伊氏乳杆菌肽聚糖能显著提高蛋雏鸡血浆NDV-Ab和IBDV-Ab水平,表明罗伊氏乳杆菌增强动物机体免疫作用的机制与肽聚糖有关。关于肽聚糖增强免疫功能的机制尚不十分清楚。嗜酸乳杆菌肽聚糖TLR2信号识别,诱导Treg免疫反应,通过调节Treg/Th17失衡,发挥免疫调节作用[5]。Cross[25]研究指出,地衣芽孢杆菌细胞壁含有肽聚糖和多糖,能直接活化宿主的巨噬细胞、内皮细胞和中性粒细胞等免疫系统,进而促进免疫器官的生长发育,增强机体抵抗致病菌的能力。本试验也发现,饲粮中添加罗伊氏乳杆菌肽聚糖可不同程度地提高胸腺、脾脏指数,奠定了罗伊氏乳杆菌肽聚糖增强雏鸡免疫功能的组织学基础。

4 结论

饲粮中添加1 000 mg/kg罗伊氏乳杆菌肽聚糖可以提高蛋雏鸡生长性能,提高雏鸡抗氧化能力,促进免疫器官发育,提高细胞免疫和体液免疫功能,增强新城疫疫苗和传染性法氏囊病疫苗的免疫效果。

参考文献
[1]
HOU C L, ZENG X F, YANG F J, et al. Study and use of the probiotic Lactobacillus reuteri in pigs: a review[J]. Journal of Animal Science and Biotechnology, 2015, 6(1): 14. DOI:10.1186/s40104-015-0014-3
[2]
YANG J J, WANG C L, LIU L Q, et al. Lactobacillus reuteri KT260178 supplementation reduced morbidity of piglets through its targeted colonization, improvement of cecal microbiota profile, and immune functions[J]. Probiotics and Antimicrobial Proteins, 2020, 12(1): 194-203. DOI:10.1007/s12602-019-9514-3
[3]
TANG Q S, YI H B, HONG W B, et al. Comparative effects of L. plantarum CGMCC 1258 and L. reuteri LR1 on growth performance, antioxidant function, and intestinal immunity in weaned pigs[J]. Frontiers in Veterinary Science, 2021, 8: 728849. DOI:10.3389/fvets.2021.728849
[4]
KOLLING Y, SALVA S, VILLENA J, et al. Non-viable immunobiotic Lactobacillus rhamnosus CRL1505 and its peptidoglycan improve systemic and respiratory innate immune response during recovery of immunocompromised-malnourished mice[J]. International Immunopharmacology, 2015, 25(2): 474-484. DOI:10.1016/j.intimp.2015.02.006
[5]
LI A L, SUN Y Q, DU P, et al. The effect of Lactobacillus actobacillus peptidoglycan on bovine β-lactoglobulin-sensitized mice via TLR2/NF-κB pathway[J]. Iranian Journal of Allergy, Asthma, and Immunology, 2017, 16(2): 147-158.
[6]
LIU X M, XU Z, CHANG X Q, et al. Enhanced immunity and hemocytes proliferation by three immunostimulants in tri-spine horseshoe crab Tachypleus tridentatus[J]. Fish & Shellfish Immunology, 2021, 115: 112-123.
[7]
JAYARAMAN S, THANGAVEL G, KURIAN H, et al. Bacillus subtilis PB6 improves intestinal health of broiler chickens challenged with Clostridium perfringens-induced necrotic enteritis[J]. Poultry Science, 2013, 92(2): 370-374. DOI:10.3382/ps.2012-02528
[8]
SALIM H M, KANG H K, AKTER N, et al. Supplementation of direct-fed microbials as an alternative to antibiotic on growth performance, immune response, cecal microbial population, and ileal morphology of broiler chickens[J]. Poultry Science, 2013, 92(8): 2084-2090. DOI:10.3382/ps.2012-02947
[9]
MAHFUZ S U, NAHAR M J, MO C, et al. Inclusion of probiotic on chicken performance and immunity: a review[J]. International Journal of Poultry Science, 2017, 16(9): 328-335. DOI:10.3923/ijps.2017.328.335
[10]
YI H B, WANG L, XIONG Y X, et al. Effects of Lactobacillus reuteri LR1 on the growth performance, intestinal morphology, and intestinal barrier function in weaned pigs[J]. Journal of Animal Science, 2018, 96(6): 2342-2351. DOI:10.1093/jas/sky129
[11]
TIAN Z M, CUI Y Y, LU H J, et al. Effects of long-term feeding diets supplemented with Lactobacillus reuteri 1 on growth performance, digestive and absorptive function of the small intestine in pigs[J]. Journal of Functional Foods, 2020, 71: 104010. DOI:10.1016/j.jff.2020.104010
[12]
BHOGOJU S, KHWATENGE C N, TAYLOR-BOWDEN T, et al. Effects of Lactobacillus reuteri and Streptomyces coelicolor on growth performance of broiler chickens[J]. Microorganisms, 2021, 9(6): 1341. DOI:10.3390/microorganisms9061341
[13]
ITAMI T, ASANO M, TOKUSHIGE K, et al. Enhancement of disease resistance of kuruma shrimp, Penaeus japonicus, after oral administration of peptidoglycan derived from Bifidobacterium thermophilum[J]. Aquaculture, 1998, 164(1/2/3/4): 277-288.
[14]
ZHANG C Y, CHEN G F, WANG C C, et al. Effects of dietary supplementation of A3α-peptidoglycan on the growth, immune response and defence of sea cucumber Apostichopus japonicus[J]. Aquaculture Nutrition, 2014, 20(2): 219-228. DOI:10.1111/anu.12068
[15]
TANG J, GUO C B, GONG F. [Protective effect of Lactobacillus reuteri against oxidative stress in neonatal mice with necrotizing enterocolitis][J]. Journal of Southern Medical University, 2019, 39(10): 1221-1226.
[16]
ARCANJO N O, ANDRADE M J, PADILLA P, et al. Resveratrol protects Lactobacillus reuteri against H2O2-induced oxidative stress and stimulates antioxidant defenses through upregulation of the dhaT gene[J]. Free Radical Biology and Medicine, 2019, 135: 38-45. DOI:10.1016/j.freeradbiomed.2019.02.023
[17]
MANTIS N J, ROL N, CORTHÉSY B. Secretory IgA's complex roles in immunity and mucosal homeostasis in the gut[J]. Mucosal Immunology, 2011, 4(6): 603-611. DOI:10.1038/mi.2011.41
[18]
ZHANG T T, YIN H C, HUANG W. Protective effect of Bacillus subtilis peptidoglycan (PG) on β-conglycinin-induced intestinal epithelial cells damage of juvenile carp (Cyprinus carpio)[J]. Animal Husbandry and Feed Science, 2019, 11(2): 56-61.
[19]
GONMEI G, SAPCOTA D, SAIKIA G K, et al. Studies on immune response to Newcastle disease virus in broiler chickens fed with Lactobacillus reuteri PIA16 isolated from the gut of indigenous chicken of Assam, India[J]. Veterinary World, 2019, 12(8): 1251-1255. DOI:10.14202/vetworld.2019.1251-1255
[20]
HE J Y, WANG W W, WU Z, et al. Effect of Lactobacillus reuteri on intestinal microbiota and immune parameters: involvement of sex differences[J]. Journal of Functional Foods, 2019, 53: 36-43. DOI:10.1016/j.jff.2018.12.010
[21]
SURESHKUMAR S, JUNG S K, KIM D, et al. Oral administration of Lactobacillus reuteri expressing a 3D8 single-chain variable fragment (scFv) enhances chicken growth and conserves immune homeostasis[J]. 3 Biotech, 2019, 9(7): 282. DOI:10.1007/s13205-019-1811-8
[22]
LI X L, SUN Q, WANG Y W, et al. The regulatory effects of L. plantarum peptidoglycan microspheres on innate and humoral immunity in mouse[J]. Journal of Microencapsulation, 2017, 34(7): 635-643. DOI:10.1080/02652048.2017.1375037
[23]
BARINSKIǏ I F, LAZARENKO A A, ALIMBAROVA L M, et al. Efficiency of coadministration of immunomodulators and vaccine in an experiment on tick-borne encephalitis[J]. Voprosy Virusologii, 2011, 56(4): 45-47.
[24]
RIDI R, TALLIMA H. Adjuvant selection for vaccination against murine schistosomiasis[J]. Scandinavian Journal of Immunology, 2012, 76(6): 552-558. DOI:10.1111/j.1365-3083.2012.02768.x
[25]
CROSS M L. Microbes versus microbes: immune signals generated by probiotic lactobacilli and their role in protection against microbial pathogens[J]. FEMS Immunology and Medical Microbiology, 2002, 34(4): 245-253. DOI:10.1111/j.1574-695X.2002.tb00632.x