动物营养学报    2022, Vol. 34 Issue (9): 5840-5851    PDF    
甜菜碱、维生素和电解质离子复合制剂对热应激奶牛生产性能及血清生化、抗氧化和免疫指标的影响
张雄飞1 , 封林玉1 , 张天姝2 , 刘壮壮3 , 姜惺伟1 , 张远凌1 , 张天赐1 , 卜智勤4 , 姚军虎1 , 雷新建1     
1. 西北农林科技大学动物科技学院, 杨凌 712100;
2. 辽宁省检验检测认证中心(辽宁省农产品及兽药饲料产品检验检测院), 沈阳 110000;
3. 西北农林科技大学动物医学院, 杨凌 712100;
4. 宝鸡得力康乳业有限公司, 宝鸡 721001
摘要: 本试验旨在研究甜菜碱、维生素和电解质离子复合制剂对热应激奶牛生产性能及血清生化、抗氧化和免疫指标的影响。试验选取30头泌乳天数、胎次、产奶量相近且体况良好的荷斯坦奶牛, 随机分为2组, 每组15个重复, 每个重复1头牛。对照组饲喂基础饲粮, 复合制剂组在基础饲粮的基础上每头牛补饲10 g/d复合制剂。预试期14 d, 正试期42 d。结果表明: 1)第21、42天, 复合制剂组奶牛直肠温度和呼吸频率显著低于对照组(P < 0.05)。2)第22~42天和第1~42天, 复合制剂组奶牛产奶量、干物质采食量显著高于对照组(P < 0.05)。第21、42天, 2组之间奶牛乳脂率、乳蛋白率、乳糖率、总固形物含量以及体细胞数无显著差异(P>0.05)。3)第21、42天, 复合制剂组奶牛血清β-羟基丁酸含量显著低于对照组(P < 0.05)。4)第21、42天, 复合制剂组奶牛血清谷胱甘肽过氧化物酶活性显著高于对照组(P < 0.05);第21天, 复合制剂组奶牛血清过氧化氢酶活性显著高于对照组(P < 0.05)。第21、42天, 2组之间奶牛血清超氧化物歧化酶活性和总抗氧化能力无显著差异(P>0.05)。5)第21天, 复合制剂组奶牛血清免疫球蛋白G含量与对照组相比有升高的趋势(P=0.076)。第21、42天, 2组之间奶牛血清免疫球蛋白A、免疫球蛋白M含量无显著差异(P>0.05)。综上所述, 饲粮中添加10 g/d复合制剂可降低热应激奶牛直肠温度和呼吸频率, 提高干物质采食量和产奶量, 改善抗氧化能力和免疫功能。
关键词: 甜菜碱    维生素    电解质离子    热应激    奶牛    生产性能    
Effects of Betaine, Vitamins and Electrolyte Ions Compound Preparation on Performance and Serum Biochemical, Antioxidant and Immune Indexes of Heat Stressed Dairy Cows
ZHANG Xiongfei1 , FENG Linyu1 , ZHANG Tianshu2 , LIU Zhuangzhuang3 , JIANG Xingwei1 , ZHANG Yuanling1 , ZHANG Tianci1 , BU Zhiqin4 , YAO Junhu1 , LEI Xinjian1     
1. College of Animal Science and Technology, Northwest A & F University, Yangling 712100, China;
2. Liaoning Inspection, Examination & Certification Centre (Liaoning Institute for Agro-Product Veterinary Drugs and Feed Control), Shenyang 110000, China;
3. College of Animal Veterinary Medicine, Northwest A & F University, Yangling 712100, China;
4. Baoji Delikang Dairy Industry Co., Ltd., Baoji 721001, China
Abstract: This experiment was conducted to investigate the effects of betaine, vitamins and electrolyte ions compound preparation on performance and serum biochemical, antioxidant and immune indexes of heat stressed dairy cows. Thirty healthy Holstein dairy cows with similar lactation day, parity, and milk yield were randomly divided into 2 groups with 15 replicates per group and 1 cow per replicate. Dairy cows in the control group were fed a basal diet, and others in the compound preparation group were fed basal diet supplemented with 10 g/d compound preparation per cow. The pre-experimental period lasted for 14 days, and the experimental period lasted for 42 days. The results showed as follows: 1) on days 21 and 42, the rectal temperature and respiratory rate of dairy cows in compound preparation group were significantly lower than those in the control group (P < 0.05). 2) During days 22 to 42 and days 1 to 42, the milk yield and dry matter intake of dairy cows in compound preparation group were significantly higher than those in the control group (P < 0.05). On days 21 and 42, there were no significant differences in milk fat rate, milk protein rate, lactose rate, total solid content and somatic cell counts of dairy cows between 2 groups (P>0.05). 3) On days 21 and 42, the serum β-hydroxybutyric acid content of dairy cows in compound preparation group was significantly lower than that in the control group (P < 0.05). 4) On days 21 and 42, the serum glutathione peroxidase activity of dairy cows in compound preparation group was significantly higher than that in the control group (P < 0.05); on day 21, the serum catalase activity of dairy cows in compound preparation group was significantly higher than that in the control group (P < 0.05). On days 21 and 42, there were no significant differences in serum superoxide dismutase activity and total antioxidant capacity of dairy cows between 2 groups (P>0.05). 5) On day 21, the serum immunoglobulin G content of dairy cows in compound preparation group was tended to increase compared with the control group (P=0.076). On days 21 and 42, there were no significant differences in contents of immunoglobulin A and immunoglobulin M in serum of dairy cows between 2 groups (P>0.05). In conclusion, dietary supplementation of 10 g/d compound preparation can reduce the rectal temperature and respiratory rate of heat stressed dairy cows, improve dry matter intake and milk yield, and enhance the antioxidant capacity and immune function.
Key words: betaine    vitamins    electrolyte ions    heat stress    dairy cows    performance    

随着气候变化与全球变暖日益加剧,极端高温天气出现频率增加,解决奶牛热应激问题的重要性进一步突显[1]。研究表明,热应激会引起氧化应激、炎症反应、免疫功能减弱等负面影响[2-5],导致奶牛采食量、产奶量、乳品质、养殖效率降低[6-8]。此外,热应激会增加奶牛患病机率和缩短奶牛使用年限,影响其经济价值的发挥[9-10]。因此,缓解热应激已成为奶牛养殖业急需解决的重要产业问题。

饲粮中添加抗应激饲料添加剂是缓解奶牛热应激、提高生产性能的有效营养调控措施。甜菜碱又名甜菜素或三甲基甘氨酸,是一种无毒、无害、无污染的天然化合物[11]。甜菜碱是高效的甲基供体,具有调控脂肪代谢、蛋白质代谢的作用[12]。同时,甜菜碱可作为渗透压调节剂和化学分子伴侣,调节细胞渗透压、稳定突变蛋白和促进蛋白质正确折叠,进而维持细胞正常形态与功能、提高机体免疫力、减少代谢产热,缓解热应激[13-15]。Peterson等[16]研究发现,饲粮中添加甜菜碱可提高奶牛产奶量。Zhang等[17]研究表明,饲粮中添加甜菜碱可提高热应激奶牛采食量、产奶量、乳品质和抗氧化能力。维生素作为酶的辅助因子和抗氧剂,可有效缓解热应激,提高奶牛生产性能。研究表明,维生素A可提高奶牛乳腺上皮细胞乳脂、乳蛋白合成相关基因的表达,进而提高泌乳性能[18-19];维生素E具有提高机体免疫功能、抑制脂质过氧化以及修复DNA等作用[20]。研究表明,夏季奶牛补饲维生素E可提高产奶量[21]。维生素C作为常见的抗应激添加剂,具有维持机体正常新陈代谢、帮助肝脏解毒、清除自由基和增强免疫功能等功效,可有效缓解热应激[22]。维生素D具有抗氧化、调控糖脂代谢、促进先天免疫功能等作用[23]。研究发现,饲粮中添加维生素D可改善奶牛抗氧化能力、免疫功能和生产性能[24]。发生热应激时干物质采食量(dry matter intake,DMI)降低,电解质离子摄入减少,同时大量电解质离子随汗液排出,导致体内电解质失衡[6]。因此,饲粮中添加电解质离子有利于维持机体渗透压平衡,可有效缓解热应激。研究表明,饲粮中添加钾离子(K+)、钠离子(Na+)等电解质离子可增加奶牛DMI,有效缓解奶牛热应激[25]

饲粮中单一添加甜菜碱、各类维生素以及电解质离子对缓解奶牛热应激、改善泌乳性能作用效果已有大量研究,但其组合使用的作用效果还有待研究。因此,本试验旨在探究饲粮中添加甜菜碱、维生素和电解质离子复合制剂对热应激奶牛生产性能、血清抗氧化和免疫指标的影响,为通过营养干预缓解奶牛热应激提供科学依据。

1 材料与方法 1.1 试验材料

本试验使用的复合制剂产品由新加坡某添加剂公司提供,其主要成分为甜菜碱、维生素A、抗坏血酸、维生素D3、维生素E、维生素B6、K+、Na+以及镁离子(Mg2+)等,复合制剂主要成分含量见表 1

表 1 复合制剂主要成分含量 Table 1 Main component contents of compound preparation
1.2 试验动物与试验设计

试验选取体况良好,泌乳天数[(126±28) d]、胎次[(3.1±0.6)胎]、产奶量[(30.6±2.9) kg/d]相近的荷斯坦奶牛30头,随机分为2组,每组15个重复,每个重复1头牛。对照组饲喂基础饲粮,复合制剂组在基础饲粮的基础上每头牛补饲10 g/d复合制剂。试验于2021年7月至2021年8月在宝鸡得力康乳业有限公司凤翔奶牛场(陕西省宝鸡市)进行,试验期56 d,其中预试期14 d,正试期42 d。

1.3 试验饲粮与饲养管理

试验牛分栏饲养于开放型牛舍,每天饲喂3次(08:00、15:00、22:00),挤奶3次(07:00、14:00、21:00),自由饮水。参照NRC(2001)奶牛饲养标准与养殖场实际生产水平配制基础饲粮,其组成及营养水平见表 2。每次投料的复合制剂与部分饲粮混合均匀后饲喂,待该部分饲粮被采食完全后投喂剩余饲粮,以保证添加剂被完全采食。

表 2 基础饲粮组成及营养水平(干物质基础) Table 2 Composition and nutrient levels of the basal diet (DM basis)  
1.4 样品采集与指标测定 1.4.1 牛舍内温度和相对湿度测定

在牛舍前、后距离地面1.5 m处设置4个固定点,正试期每天06:00、10:00、14:00、18:00和22:00测定牛舍温度和相对湿度,并计算温湿度指数(temperature humidity index,THI),计算公式[25]为:

式中:T为温度(℃);RH为相对湿度(%)。

根据农业农村部颁布《奶牛热应激评价技术规范》(NY/T 2363—2013),并参考Armstrong[27]热应激划分方法,可通过THI对热应激程度进行划分:THI < 72,无应激;72≤THI < 79,轻度应激;79≤THI < 88,中度应激;88≤THI < 99,高度应激。

1.4.2 奶牛直肠温度和呼吸频率测定

在正试期第21、42天的13:30时使用兽用直肠体温计测定直肠温度,连续测定2次取平均值;14:00时测定1 min内奶牛腹部与胸廓部起伏次数作为呼吸频率,连续测定2次取平均值。

1.4.3 DMI、产奶量以及乳品质测定

采用全混合日粮(total mixed ration, TMR)进行饲喂,每天记录早、中、晚总投料量,次日晨饲前分别清理2组试验牛剩料并称重记录,采用四分法采集饲粮与剩料样品,测定干物质含量,计算试验牛DMI。准确记录每头试验牛每天产奶量,于正试期第21、42天分别在07:00、14:00、21:00采集奶样,并按早∶中∶晚=4 ∶ 3 ∶ 3的比例混合于50 mL的离心管,加防腐剂,于4 ℃保存,采用全自动乳成分分析仪(MilkoScan-FT120,FOSS公司,丹麦)测定乳中乳脂率、乳蛋白率、乳糖率、体细胞数(somatic cell counts,SCC)以及总固形物含量。

1.4.4 血样的采集与处理

在正试期第21、42天晨饲前,每组随机选取10头奶牛进行尾根静脉采血(10 mL),于4 ℃、3 000×g条件下离心15 min后获取血清,-20 ℃保存待测。

1.4.5 血清生化、抗氧化和免疫指标的测定

血清游离脂肪酸(non-esterified fatty acid,NEFA)、β-羟基丁酸(β-hydroxybutyric acid,BHBA)、免疫球蛋白A(immunoglobulin A,IgA)、免疫球蛋白G(immunoglobulin G,IgG)和免疫球蛋白M(immunoglobulin M,IgM)含量采用酶联免疫吸附测定(ELISA)法,按照试剂盒(TSZ公司,美国)操作说明进行测定。血清超氧化物歧化酶(superoxide dismutase,SOD)、过氧化氢酶(catalase,CAT)、谷胱甘肽过氧化物酶(glutathione peroxidase,GSH-Px)活性及总抗氧化能力(total antioxidant capacity,T-AOC)按照试剂盒(南京建成生物工程研究所)操作说明进行测定。

1.5 数据统计分析

试验数据先通过Excel 2016进行初步整理后,使用SPSS 21.0软件进行单因素方差分析。试验结果用平均值和均值标准误(SEM)表示,P < 0.05表示差异显著,0.05≤P < 0.10表示有趋势。

2 结果 2.1 牛舍温湿度指数

牛舍THI变化曲线如图 1所示,整个试验期内,牛舍THI基本高于72,表示奶牛处于热应激环境。

图 1 牛舍THI变化曲线 Fig. 1 THI change curve of cattle house
2.2 复合制剂对热应激奶牛直肠温度和呼吸频率的影响

表 3可知,第21、42天,复合制剂组奶牛直肠温度和呼吸频率显著低于对照组(P < 0.05)。

表 3 复合制剂对热应激奶牛直肠温度和呼吸频率的影响 Table 3 Effects of compound preparation on rectal temperature and respiratory rate of heat stressed dairy cows
2.3 复合制剂对热应激奶牛DMI和泌乳性能的影响

表 4可知,第1~21天、第22~42天和第1~42天,复合制剂组奶牛DMI显著高于对照组(P < 0.05)。第1~21天,复合制剂组奶牛产奶量与对照组相比有升高趋势(P=0.052);第22~42天和第1~42天,复合制剂组奶牛产奶量显著高于对照组(P < 0.05)。第21、42天,2组之间奶牛乳脂率、乳蛋白率、乳糖率、SCC以及总固形物含量无显著差异(P>0.05)。

表 4 复合制剂对热应激奶牛DMI和泌乳性能的影响 Table 4 Effects of compound preparation on DMI and lactation performance of heat stressed dairy cows
2.4 复合制剂对热应激奶牛血清生化指标的影响

表 5可知,第21、42天,复合制剂组奶牛血清BHBA含量显著低于对照组(P < 0.05)。第21、42天,2组之间奶牛血清NEFA含量无显著差异(P>0.05)。

表 5 复合制剂对热应激奶牛血清生化指标的影响 Table 5 Effects of compound preparation on serum biochemical indexes of heat stressed dairy cows  
2.5 复合制剂对热应激奶牛血清抗氧化指标的影响

表 6可知,第21、42天,复合制剂组奶牛血清GSH-Px活性显著高于对照组(P < 0.05);第21天,复合制剂组奶牛血清CAT活性显著高于对照组(P < 0.05)。第21、42天,2组之间奶牛血清SOD活性和T-AOC无显著差异(P>0.05)。

表 6 复合制剂对热应激奶牛血清抗氧化指标的影响 Table 6 Effects of compound preparation on serum antioxidant indexes of heat stressed dairy cows
2.6 复合制剂对热应激奶牛血清免疫指标的影响

表 7可知,第21天,复合制剂组奶牛血清IgG含量与对照组相比有升高趋势(P=0.076)。第21、42天,2组之间奶牛血清IgA、IgM含量无显著差异(P>0.05)。

表 7 复合制剂对热应激奶牛血清免疫指标的影响 Table 7 Effects of compound preparation on serum immune indexes of heat stressed dairy cows  
3 讨论 3.1 复合制剂对热应激奶牛直肠温度和呼吸频率的影响

保持体温稳定是奶牛维持正常代谢的基础。直肠温度和呼吸频率是评价奶牛热应激最直观的生理指标[28]。当处于热应激状态时,需要加快散热以减轻热应激对机体的损伤。加快呼吸频率可增加散热,但当呼吸散热无法满足散热需求时,会导致奶牛直肠温度升高,机体代谢紊乱[29]。Stephen[30]研究表明,饲粮中添加甜菜碱可降低热应激肉牛呼吸频率和直肠温度。Srivastava等[31]研究发现,维生素C可作用于下丘脑体温调节系统,维持体温稳定,从而降低热应激奶牛的直肠温度和呼吸频率。研究发现,饲粮中添加钾离子可降低热应激奶牛直肠温度[25]。与此前研究结果一致,本研究发现饲粮中添加复合制剂可降低热应激奶牛呼吸频率和直肠温度。电解质离子和甜菜碱可调控细胞渗透压,提高红细胞氧携带能力,从而降低呼吸频率[25, 32]。此外,甜菜碱和维生素可通过调控细胞代谢,减少代谢产热和增强机体耐热性,降低呼吸频率和直肠温度[33]。研究表明,甜菜碱和维生素E均可促进热休克蛋白70表达,有利于热应激奶牛体温稳定[34]。因此,本试验复合制剂可能通过改善奶牛代谢水平增强散热能力。

3.2 复合制剂对热应激奶牛DMI和泌乳性能的影响

发生热应激时,奶牛除增加呼吸频率等方式加快散热外,也会通过减少采食量降低机体产热。DMI降低导致养分摄入减少,奶牛泌乳性能下降。研究表明,当THI>72时,THI每上升1,奶牛产奶量降低0.2 kg;当THI达到77时,奶牛DMI和产奶量均显著下降,且THI与DMI呈负相关[36-37]。研究表明,在热应激条件下各泌乳阶段奶牛的乳脂肪率、乳蛋白率以及非乳脂固形物含量均显著下降[38]。Shah等[39]研究发现,饲粮中添加15 g/d甜菜碱可提高热应激奶牛DMI、瘤胃发酵水平、表观消化率以及产奶量。Zhang等[17]研究证明,饲粮中添加15或20 g/d甜菜碱均可提高热应激奶牛DMI和产奶量。陈雯雯[40]研究发现,夏季奶牛补饲1 000或2 000 IU/d维生素E可提高产奶量。Abd-Allah等[41]研究发现,热应激公羔羊补饲45 mg/kg BW维生素C可显著提高DMI。Xu等[24]研究发现,饲粮中添加6 g/d维生素D可提高奶牛产奶量。Granzin等[42]研究发现,热应激奶牛补饲Na+可提高产奶量。本研究结果显示,饲粮中添加复合制剂提高了热应激奶牛DMI和产奶量,原因可能是甜菜碱可提高食欲,增加营养物质摄入[25]。研究表明,甜菜碱可增加热应激奶牛促乳素、孕激素等激素的分泌和改善瘤胃发酵功能,从而提高泌乳性能[11]。电解质离子可作为消化酶的辅助因子,通过提高消化酶活性提高采食量和饲料消化率[42];另外,补充电解质离子可有效缓解热应激奶牛电解质大量流失导致的失衡,维持细胞渗透压平衡,促进营养物质的吸收[43]。维生素A、维生素C、维生素E可通过缓解氧化应激,减少乳腺细胞损伤[18]。因此,饲粮中添加复合制剂可能从提高DMI、促进营养物质利用、改善乳腺细胞健康多方面协同作用,提高热应激奶牛泌乳性能。

3.3 复合制剂对热应激奶牛血清生化指标的影响

血清NEFA和BHBA含量在一定程度上反映奶牛体内的能量平衡状态[42]。奶牛处于热应激状态时,由于DMI下降,可能出现能量负平衡引起机体动员脂肪供能,随着脂肪组织动员加强,血清NEFA含量会显著提高[47]。BHBA作为机体发生能量负平衡的标志产物——酮体的主要成分,在发生能量负平衡时其在血液中含量升高[48]。杨占涛等[49]研究发现,饲粮中添加30或60 g/d甜菜碱和烟酰胺复合制剂显著降低热应激奶牛血清BHBA含量。本研究结果显示,饲粮中添加复合制剂降低了热应激奶牛血清BHBA含量,原因可能为添加复合制剂通过提高DMI,增加养分摄入减少脂肪组织动员,从而减少BHBA的生成。此外,研究表明甜菜碱可改善热应激线粒体功能和促进肉碱合成,促进NEFA在线粒体中的完全氧化[50]

3.4 复合制剂对热应激奶牛血清抗氧化指标的影响

奶牛处于热应激状态时,抗氧化能力减弱,氧化还原系统平衡被打破,抗氧化系统活性氧清除速率不及活性氧生成速率,发生氧化应激[45]。GSH-Px是一种重要的过氧化物分解酶,可催化还原型谷胱甘肽与过氧化物反应生成氧化型谷胱甘肽和无害的羟基化合物,减轻或消除过氧化物对细胞造成损伤,保证细胞膜正常的结构与功能[51]。CAT是机体抗氧化系统的重要组成部分,可将活性氧中间产物过氧化氢分解为无害的水和氧分子,缓解氧化应激[52]。Zhang等[17]研究发现,饲粮中添加15 g/d甜菜碱可提高热应激奶牛血清GSH-Px活性,增强抗氧化能力。电解质离子和甜菜碱可协同作用维持细胞渗透压平衡,改善线粒体功能,从而减少活性氧的产生[25, 32]。甜菜碱可增强甜菜碱-同型半胱氨酸甲基转移酶活性,调控机体含硫氨基酸代谢,提高S-腺苷甲硫氨酸、甲硫氨酸、还原型谷胱甘肽等抗氧化剂水平,增强抗氧化性[53]。维生素A、维生素C、维生素E为体内外源抗氧化剂,可有效清除活性氧,增强抗氧化性[44]。另外,维生素C可有效缓解热应激对CAT和GSH-Px等抗氧化酶活性的抑制作用,提高抗氧化酶活性[54];维生素D可通过促进核因子E2相关因子2(nuclear factor E2-related factor 2,Nrf2)和Klotho表达,增强抗氧化酶活性[55]。因此,饲粮中添加复合制剂可能通过甜菜碱、维生素和电解质离子协同作用,提高抗氧化酶活性,增强机体抗氧化能力。

3.5 复合制剂对热应激奶牛血清免疫指标的影响

奶牛发生热应激时,下丘脑-垂体-肾上腺轴和交感神经-肾上腺-髓质轴被激活,维持应激状态时内环境平衡[56]。热应激会增加皮质醇分泌,抑制机体的免疫功能,增加患病风险。IgG是体液免疫的主要抗体,可有效反映机体免疫应答水平。维生素A可直接作用于B细胞调节体液免疫,促进免疫球蛋白合成[57]。维生素C可促进B细胞与T细胞增殖分化调节免疫功能,促进IgM、IgG等抗体合成[58]。维生素E可抑制炎症因子产生调节体液免疫功能[59]。维生素D可促进免疫球蛋白生成,增强机体免疫能力。Rostami等[60]研究表明,维生素E可调控免疫应答水平,提高免疫球蛋白含量。Xu等[24]研究发现,饲粮中添加6 g/d维生素D可提高奶牛血清IgG含量。甜菜碱可通过促进热休克蛋白70合成,促进抗原呈递以及细胞因子分泌,进而改善热应激奶牛免疫功能[35, 61]。因此,饲粮中添加复合制剂可能通过多种维生素和甜菜碱协同调节免疫功能,提高血清IgG含量,改善热应激奶牛的免疫功能。

4 结论

饲粮中添加复合制剂可提高热应激奶牛DMI和产奶量,降低直肠温度和呼吸频率,改善抗氧化能力和免疫功能。

参考文献
[1]
YORK L, HEFFERNAN C, RYMER C, et al. A deterministic evaluation of heat stress mitigation and feed cost under climate change within the smallholder dairy sector[J]. Animal, 2017, 11(5): 900-909. DOI:10.1017/S1751731116002706
[2]
BECKER C A, COLLIER R J, STONE A E. Invited review: physiological and behavioral effects of heat stress in dairy cows[J]. Journal of Dairy Science, 2020, 103(8): 6751-6770. DOI:10.3168/jds.2019-17929
[3]
ABDUL S, SAQIB U, SHI R, et al. Dairy cow reproduction under the influence of heat stress[J]. Journal of Animal Physiology and Animal Nutrition, 2020, 104(4): 978-986. DOI:10.1111/jpn.13257
[4]
CHEN K L, WANG H L, JIANG L Z. Heat stress induces apoptosis through disruption of dynamic mitochondrial networks in dairy cow mammary epithelial cells[J]. In Vitro Cellular & Developmental Biology Animal, 2020, 56(4): 322-331.
[5]
BAGATHA M, KRISHNAAN G, DEVARAJA C, et al. The impact of heat stress on the immune system in dairy cattle: a review[J]. Research in Veterinary Science, 2019, 126: 94-102. DOI:10.1016/j.rvsc.2019.08.011
[6]
PERDOMO M C, MARSOLA R S, FAVORETO M G, et al. Effects of feeding live yeast at 2 dosages on performance and feeding behavior of dairy cows under heat stress[J]. Journal of Dairy Science, 2020, 103(1): 325-339. DOI:10.3168/jds.2019-17303
[7]
韩佳良, 刘建新, 刘红云. 热应激对奶牛泌乳性能的影响及其机制[J]. 中国农业科学, 2018, 51(16): 3162-3170.
HAN J L, LIU J X, LIU H Y. Effect of heat stress on lactation performance in dairy cows[J]. Scientia Agricultura Sinica, 2018, 51(16): 3162-3170 (in Chinese). DOI:10.3864/j.issn.0578-1752.2018.16.012
[8]
GAO S T, GUO J, QUAN S Y, et al. The effects of heat stress on protein metabolism in lactating Holstein cows[J]. Journal of Dairy Science, 2017, 100(6): 5040-5049. DOI:10.3168/jds.2016-11913
[9]
RAKIB M R H, ZHOU M, XU S Y, et al. Effect of heat stress on udder health of dairy cows[J]. Journal of Dairy Research, 2020, 87(3): 315-321. DOI:10.1017/S0022029920000886
[10]
FAN C, SU D, TIAN H, et al. Liver metabolic perturbations of heat-stressed lactating dairy cows[J]. Asian-Australasian Journal of Animal Sciences, 2018, 31(8): 1244-1251. DOI:10.5713/ajas.17.0576
[11]
张丽. 日粮甜菜碱对热应激奶牛产奶性能、血液生理生化指标及HSP70的影响[D]. 硕士学位论文. 南京: 南京农业大学, 2012.
ZHANG L. Effects of supplementing betaine on milk performance, serum parameters and HSP70 lever of cows under heat stress[D]. Master's Thesis. Nanjing: Nanjing Agricultural University, 2012. (in Chinese)
[12]
RATRIYANTO A, MOSENTHIN R, BAUER E, et al. Metabolic, osmoregulatory and nutritional functions of betaine in monogastric animals[J]. Asian-Australasian Journal of Animal Sciences, 2009(22): 1461-1476.
[13]
ARUMUGAM M K, PAAL M C, DONOHUR Jr T M, et al. Beneficial effects of betaine: a comprehensive review[J]. Biology, 2021, 10(6): 456. DOI:10.3390/biology10060456
[14]
SHARMA S K, CHRISTEN P, GOLOUBINOFF P. Disaggregating chaperones: an unfolding story[J]. Current Protein and Peptide Science, 2010, 10(5): 432-446.
[15]
DIGACOMO K, SIMPSON S, LEURY B J, et al. Dietary betaine impacts the physiological responses to moderate heat conditions in a dose dependent manner in sheep[J]. Animals (Basel), 2016, 6(9): 51.
[16]
PETERSON S E, REZAMAND P, WILLIAMS J E, et al. Effects of dietary betaine on milk yield and milk composition of mid-lactation Holstein dairy cows[J]. Journal of Dairy Science, 2012, 95(11): 6557-6562. DOI:10.3168/jds.2011-4808
[17]
ZHANG L, YING S J, AN W J, et al. Effects of dietary betaine supplementation subjected to heat stress on milk performances and physiology indices in dairy cow[J]. Genetics and Molecular Research, 2014, 13(3): 7577-7586. DOI:10.4238/2014.September.12.25
[18]
郝颖, 赵艳丽, 闫素梅, 等. 维生素A对过氧化氢诱导的奶牛乳腺上皮细胞内乳脂合成的影响[J]. 动物营养学报, 2021, 33(11): 6398-6406.
HAO Y, ZHAO Y L, YAN S M, et al. Effects of vitamin A on milk fat synthesis in bovine mammary epithelial cells induced by hydrogen peroxide[J]. Chinese Journal of Animal Nutrition, 2021, 33(11): 6398-6406 (in Chinese). DOI:10.3969/j.issn.1006-267x.2021.11.039
[19]
金鹿, 闫素梅, 鲍宏云, 等. 包被维生素A对奶牛瘤胃发酵特性及营养物质表观消化率的影响[J]. 动物营养学报, 2014, 26(7): 1968-1974.
JIN L, YAN S M, BAO H Y, et al. Coated vitamin A: effects on ruminal fermentation characteristics and nutrient apparent digestibility of dairy cows[J]. Chinese Journal of Animal Nutrition, 2014, 26(7): 1968-1974 (in Chinese). DOI:10.3969/j.issn.1006-267x.2014.07.031
[20]
张之宣. 富维生素E和硒舔砖对泌乳奶牛生产性能和乳房炎发病率的影响[D]. 硕士学位论文. 北京: 中国农业科学院, 2007.
ZHANG Z X. Effects of vitamin E and selenium lick bricks on the performance and mastitis incidence rate of breast milk cows[D]. Master's Thesis. Beijing: Chinese Academy of Agricultural Sciences, 2007. (in Chinese)
[21]
张前防. 冬季补充维生素对荷斯坦奶牛生产性能、乳品质与抗氧化性能影响的研究[D]. 硕士学位论文. 泰安: 山东农业大学, 2019.
ZHANG Q F. Effects of different seasons and vitamin supplementation in winter on production performance, milk quality and antioxidant performance of Holstein dairy cows[D]. Master's Thesis. Tai'an: Shandong Agricultural University, 2019. (in Chinese)
[22]
CARR A C, MAGGINI S. Vitamin C and immune function[J]. Nutrients, 2017, 9(11): 1211. DOI:10.3390/nu9111211
[23]
徐宏建, 李昕, 王丽华, 等. 25羟基维生素D3的生理功能及其在动物生产中的应用[J]. 动物营养学报, 2020, 32(4): 1491-1498.
XU H J, LI X, WANG L H, et al. Physiological function of 25-hydroxyvitamin D3 and its application in animal production[J]. Chinese Journal of Animal Nutrition, 2020, 32(4): 1491-1498 (in Chinese). DOI:10.3969/j.issn.1006-267x.2020.04.004
[24]
XU H, ZHANG Q, WANG L, et al. Effects of 25-hydroxyvitamin D3 and oral calcium bolus on lactation performance, Ca homeostasis, and health of multiparous dairy cows[J]. Animals, 2021, 11(6): 1576. DOI:10.3390/ani11061576
[25]
MIN L, LI D, TONG X, NAN X, et al. Nutritional strategies for alleviating the detrimental effects of heat stress in dairy cows: a review[J]. International Journal of Biometeorology, 2019, 63(9): 1283-1302. DOI:10.1007/s00484-019-01744-8
[26]
LEE J S, KANG S, KIM M J, et al. Dietary supplementation with combined extracts from garlic (Allium sativum), brown seaweed (Undaria pinnatifida), and pinecone (Pinus koraiensis) improves milk production in Holstein cows under heat stress conditions[J]. Asian-Australasian Journal of Animal Sciences, 2020, 33(1): 111-119. DOI:10.5713/ajas.19.0536
[27]
ARMSTRONG D V. Heat stress interaction with shade and cooling[J]. Journal of Dairy Science, 1994, 77(7): 2044-2050. DOI:10.3168/jds.S0022-0302(94)77149-6
[28]
SONG X, LUO J, FU D, et al. Traditional chinese medicine prescriptions enhance growth performance of heat stressed beef cattle by relieving heat stress responses and increasing apparent nutrient digestibility[J]. Asian-Australasian Journal of Animal Sciences, 2014, 27(10): 1513-1520. DOI:10.5713/ajas.2014.14058
[29]
PAMELA I O, SIMONE E F, LUCAS L V, et al. Genome-wide association studies for heat stress response in Bos taurus×Bos indicus crossbred cattle[J]. Journal of Dairy Science, 2019, 102(9): 8148-8158. DOI:10.3168/jds.2018-15305
[30]
STEPHEN B. Betaine as a dietary additive for heat exposed beef cattle[D]. Ph. D. Thesis Queensland: The University of Queensland, 2010.
[31]
SRIVASTAVA K K, KUMAR R. Stress, oxidative injury and disease[J]. Indian Journal of Clinical Biochemistry, 2015, 30(1): 3-10. DOI:10.1007/s12291-014-0441-5
[32]
PARK S O, KIM W K. Effects of betaine on biological functions in meat-type ducks exposed to heat stress[J]. Poultry Science, 2017, 96: 1212-1218. DOI:10.3382/ps/pew359
[33]
WILLINGHAM B D, RAGLAND T J, ORMSBEE M J. Betaine supplementation may improve heat tolerance: potential mechanisms in humans[J]. Nutrients, 2020, 12(10): 2939. DOI:10.3390/nu12102939
[34]
肖正中, 周晓情, 黄光云, 等. 不同添加剂对娟姗奶牛产奶性能及血清HSP70的影响[J]. 黑龙江畜牧兽医, 2016(14): 63-65, 292.
XIAO Z Z, ZHOU X Q, HUANG G Y, et al. Effects of different additives on milk production performance and serum HSP70 of Juanshan dairy cows[J]. Heilongjiang Animal Husbandry Veterinary, 2016(14): 63-65, 292 (in Chinese).
[35]
MIN L, CHENG J B, SHI B L, et al. Effects of heat stress on serum insulin, adipokines, AMP-activated protein kinase, and heat shock signal molecules in dairy cows[J]. Journal of Zhejiang University Science, 2015, 16(6): 541-548. DOI:10.1631/jzus.B1400341
[36]
WEST J W, MULLINIX B J, BERMARD J K. Effects of hot, humid weather on milk temperature, dry matter intake, and milk yield of lactating dairy cows[J]. Journal of Dairy Science, 2003, 86(1): 232-242. DOI:10.3168/jds.S0022-0302(03)73602-9
[37]
HOLTER J B, WEST J W, MCGILLIARD M L, et al. Predicting ad libitum dry matter intake and yields of jersey cows[J]. Journal of Dairy Science, 1996, 79(5): 912-921. DOI:10.3168/jds.S0022-0302(96)76441-X
[38]
VAN L E, TUYTTENS F A M, AMPE B, et al. Effect of summer conditions and shade on the production and metabolism of Holstein dairy cows on pasture in temperate climate[J]. Animal, 2015, 9(9): 1547-1558. DOI:10.1017/S1751731115000816
[39]
SHAH A M, MA J, WANG Z, et al. Supplementation improves the production performance, rumen fermentation, and antioxidant profile of dairy cows in heat stress[J]. Animals, 2020, 10(4): 634. DOI:10.3390/ani10040634
[40]
陈雯雯. 维生素E对夏季泌乳水牛抗氧化性能、生产性能的影响[D]. 硕士学位论文. 南宁: 广西大学, 2012.
CHEN W W. Effects of different vitamin E levels on antioxidation properties, production performance of dairy Buffalo in summer[D]. Master's Thesis. Nanning: Guangxi University, 2012. (in Chinese)
[41]
ABD-ALLAH M, ZANOUNY A I. Ameliorative effect of ascorbic acid administration and chilled drinking water on ram lambs exposed to heat stress during summer season[J]. Egyptian Journal of Sheep and Goat Science, 2014, 9(3): 17-28.
[42]
GRANZIN B, GAUGHAN J. The effect of sodium chloride supplementation on the milk production of grazing Holstein Friesian cows during summer and autumn in a humid sub-tropical environment[J]. Animal Feed Science Technology, 2002, 96(3): 147.
[43]
SHALIT U, MALTZ E, SILANIKOVE N. Water, sodium, potassium and chlorine metabolism of dairy cows at the onset of lactation in hot weather[J]. Journal of Dairy Science, 1991, 74: 1874. DOI:10.3168/jds.S0022-0302(91)78353-7
[44]
BAHRAM S, ALEXANDER Y, MOHAMMADALI A, et al. Centennial review: effects of vitamins A, D, E, and C on the chicken immune system[J]. Poultry science, 2021, 100(4): 100930. DOI:10.1016/j.psj.2020.12.027
[45]
陆灿强, 舒邓群, 臧一天. 热应激诱导畜禽氧化应激、热休克反应与免疫和炎症反应的机制及营养调控措施[J]. 动物营养学报, 2021, 33(6): 3115-3124.
LU C Q, SHU D Q, ZANG Y T. Mechanism and nutritional regulation of oxidative stress, heat shock response, immunity and inflammation induced by heat stress in livestock and poultry[J]. Chinese Journal of Animal Nutrition, 2021, 33(6): 3115-3124 (in Chinese). DOI:10.3969/j.issn.1006-267x.2021.06.014
[46]
CANFIELD R W, BUTLER W R. Energy balance, first ovulation and the effects of naloxone on LH secretion in early postpartum dairy cows[J]. Journal of Animal Sciences, 1991, 69(2): 740-746.
[47]
熊桂林, 付志新, 曹随忠, 等. 奶牛围产期血清脂肪代谢、肝脏功能和氧化指标的变化[J]. 畜牧兽医学报, 2010, 41(8): 1039-1045.
XIONG G L, FU Z X, CAO S Z, et al. Changes in serum fat metabolism, liver function and lipid peroxidation of the transition cow[J]. Chinese Journal of Animal and Veterinary Sciences, 2010, 41(8): 1039-1045 (in Chinese).
[48]
马晓玲, 舒适, 黄荣, 等. 牦牛围产期血清酮体消长规律及其对产后生殖激素分泌的影响[J]. 动物营养学报, 2021, 33(6): 3356-3364.
MA X L, SHU S, HUANG R, et al. Growth and decline regular pattern of serum ketone body of yak during perinatal period and its effects on secretion of postpartum reproductive hormone[J]. Chinese Journal of Animal Nutrition, 2021, 33(6): 3356-3364 (in Chinese).
[49]
杨占涛, 孔凡林, 王吉东, 等. 甜菜碱与烟酰胺复合制剂对热应激奶牛生产性能、乳品质及血清生化指标的影响[J]. 动物营养学报, 2021, 33(6): 3323-3333.
YANG Z T, KONG F L, WANG J D, et al. Effects of betaine and niacinamide compound preparation on performance, milk quality and serum biochemical indexes of heat-stressed dairy cows[J]. Chinese Journal of Animal Nutrition, 2021, 33(6): 3323-3333 (in Chinese). DOI:10.3969/j.issn.1006-267x.2021.06.034
[50]
ZHAO G, HE F, WU C, et al. Betaine in inflammation: mechanistic aspects and applications[J]. Frontiers in Immunology, 2018, 9: 1070. DOI:10.3389/fimmu.2018.01070
[51]
李义, 童津津, 栗明月, 等. 竹叶提取物对热应激奶牛泌乳性能及血清生化、抗氧化和免疫指标的影响[J]. 动物营养学报, 2021, 33(2): 900-912.
LI Y, TONG J J, LI M Y, et al. Effects of bamboo leaf extract on lactation performance and indexes of biochemical, antioxidant and immune in serum of dairy cows during heat stress[J]. Chinese Journal of Animal Nutrition, 2021, 33(2): 900-912 (in Chinese). DOI:10.3969/j.issn.1006-267x.2021.02.031
[52]
于德玲, 王昌留. 过氧化氢酶的研究进展[J]. 中国组织化学与细胞化学杂志, 2016, 25(2): 189-194.
YU D L, WANG C L. Progresses in the research of catalase[J]. Chinese Journal of Histochemistry and Cytochemistry, 2016, 25(2): 189-194 (in Chinese).
[53]
杨文武, 王璐, 臧建军. 甜菜碱的抗氧化作用及其在畜禽生产中的应用研究进展[J]. 中国畜牧杂志, 2020, 56(6): 30-33.
YANG W W, WANG L, ZANG J J. Advances in Antioxidation of betaine and its application in livestock production[J]. Chinese Journal of Animal Science, 2020, 56(6): 30-33 (in Chinese).
[54]
SHANKARAN M, YAMAMOTO B K, GUDELSKY G A. Ascorbic acid prevents 3, 4-methylenedioxymethamphetamine (MDMA)-induced hydroxyl radical formation and the behavioral and neurochemical consequences of the depletion of brain 5-HT[J]. Synapse (New York), 2001, 40(1): 55-64. DOI:10.1002/1098-2396(200104)40:1<55::AID-SYN1026>3.0.CO;2-O
[55]
TULLET J M A, GREEN J W, AU C, et al. The SKN-1/Nrf2 transcription factor can protect against oxidative stress and increase lifespan in C.elegans by distinct mechanisms[J]. Aging cell, 2017, 16(5): 1191-1194. DOI:10.1111/acel.12627
[56]
马峰涛, 单强, 金宇航, 等. 金银花提取物对热应激奶牛生产性能、血清生化指标和免疫功能的影响[J]. 动物营养学报, 2020, 32(5): 2209-2217.
MA F T, SHAN Q, JIN Y H, et al. Effects of lonicera japonica extract on performance, serum biochemical indexes and immune function of heat-stressed dairy cows[J]. Chinese Journal of Animal Nutrition, 2020, 32(5): 2209-2217. DOI:10.3969/j.issn.1006-267x.2020.05.030
[57]
任方奎, 张燕平, 张桂芝, 等. 维生素对畜禽免疫功能的影响[J]. 饲料博览, 2020(5): 32-36.
REN F K, ZHANG Y P, ZHANG G Z, et al. Effect of vitamin on immune function of livestock and poultry[J]. Feed Review, 2020(5): 32-36 (in Chinese). DOI:10.3969/j.issn.1001-0084.2020.05.007
[58]
OLUWAKAMISI F A. Stress amelioration potential of vitamin C in ruminants: a review[J]. Tropical Animal Health and Production, 2022, 54: 24. DOI:10.1007/s11250-021-03026-1
[59]
BIVONA J J, PATEL S, VAJDY M. Induction of cellular and molecular immunomodulatory pathways by vitamin E and vitamin C (review)[J]. Expert Opinion on Biological Therapy, 2017, 17(12): 1539-1551. DOI:10.1080/14712598.2017.1375096
[60]
ROSTAMI H, SEIDAVI A, DADASHBEIKI M, et al. Supplementing dietary rosemary (Rosmarinus officinalis L.) powder and vitamin E in broiler chickens: evaluation of humoral immune response, lymphoid organs, and blood proteins[J]. Environmental Science and Pollution Research, 2018, 25(9): 8836-8842. DOI:10.1007/s11356-018-1209-x
[61]
CALDERWOOD S K, GONG J, MURSHID A. Extracellular HSPs: the complicated roles of extracellular HSPs in immunity[J]. Frontiers in Immunology, 2016, 7: 159.