动物营养学报    2022, Vol. 34 Issue (9): 6003-6011    PDF    
喷浆玉米皮替代玉米粉对山羊营养物质采食和消化、瘤胃发酵、甲烷排放和瘤胃微生物数量的影响
郑雪玥1,2 , 文江南1 , 张秀敏1 , 马志远1 , 邓近平2 , 王敏1     
1. 中国科学院亚热带农业生态研究所, 长沙 410125;
2. 华南农业大学, 广州 510642
摘要: 本试验旨在研究喷浆玉米皮替代玉米粉对山羊营养物质采食和消化、瘤胃发酵、甲烷排放和瘤胃微生物数量的影响。采用单因素试验设计, 选用24只体况良好、体重相近的湘东黑山羊, 随机分为2组, 每组12只。玉米粉组饲喂基础饲粮, 喷浆玉米皮组饲喂以喷浆玉米皮替代玉米粉的试验饲粮。试验期47 d, 预试期10 d, 正试期37 d。结果表明: 与玉米粉相比, 喷浆玉米皮可以显著提高山羊粗蛋白质、中性洗涤纤维和酸性洗涤纤维采食量和消化率(P < 0.05);显著降低山羊甲烷的每天排放量、采食每千克干物质排放量和采食每千克可消化干物质排放量(P < 0.05);显著增加山羊瘤胃pH、溶解态硫化氢和氨态氮浓度以及丙酸比例(P < 0.05), 显著降低溶解态氢、溶解态甲烷浓度和乙酸/丙酸以及氢的生成效率(P < 0.05);显著增加山羊瘤胃真菌数量(P < 0.05), 显著降低瘤胃嗜淀粉瘤胃球菌数量(P < 0.05)。由此可见, 喷浆玉米皮替代玉米粉可以增加山羊纤维摄入量, 降低淀粉摄入量, 有助于瘤胃真菌的增殖, 抑制瘤胃嗜淀粉瘤胃球菌的增殖, 增加瘤胃溶解态硫化氢的产生, 促进瘤胃发酵模式向丙酸型转变, 降低山羊甲烷排放。
关键词: 湘东黑山羊    喷浆玉米皮    瘤胃发酵    氢代谢    甲烷排放    
Effects of Replacing Corn Flour with Corn Gluten on Feeding and Digestion, Rumen Fermentation, Methane Emission and Rumen Microbial Number of Goats
ZHENG Xueyue1,2 , WEN Jiangnan1 , ZHANG Xiumin1 , MA Zhiyuan1 , DENG Jinping2 , WANG Min1     
1. Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China;
2. South China Agricultural University, Guangzhou 510642, China
Abstract: The aim of this study was to investigate the effects of replacing corn flour with corn gluten on feeding and digestion, rumen fermentation, methane emission and rumen microbial number of goats. The experiment was designed by a single factor experiment, and twenty-four healthy Xiangdong black goats with similar body weight were randomly divided into 2 groups with 12 goats in each group. The goats in the corn flour group were fed a basal diet, and the goats in the corn gluten group were fed the experimental diet with corn gluten completely replacing corn flour. The experimental period lasted for 47 days, the adaptation period lasted for 10 days and the formal period lasted for 37 days. The results showed as follows: compared with the corn flour, the corn gluten significantly improved the feed intake and digestibility of crude protein, neutral detergent fiber and acid detergent fiber of goats (P < 0.05); significantly reduced the daily emission, dry matter emission per kilogram of feed intake and digestible dry matter emission per kilogram of feed intake of methane of goats (P < 0.05); significantly improved the pH, dissolved hydrogen sulfide and ammonia nitrogen concentrations and acetate proportion in rumen of goats (P < 0.05), and significantly reduced the dissolved hydrogen and dissolved methane concentrations, acetate/propionate and hydrogen generation efficiency (P < 0.05); significantly improved the rumen fungi number of goats (P < 0.05), and significantly reduced the rumen Ruminococcus amylophilus number (P < 0.05). In conclusion, replacing corn flour with corn gluten can increase fiber intake and decrease starch intake, contribute to the proliferation of rumen fungi, inhibit the proliferation of rumen Ruminococcus amyloidophilus, increase the production of dissolved hydrogen sulfide in rumen, promote the transformation of rumen fermentation mode to propionic acid type, and decrease the methane emission of goats.
Key words: Xiangdong black goats    corn gluten    rumen fermentation    hydrogen metabolism    methane emission    

甲烷是畜牧业产生的主要温室气体之一,其中反刍家畜甲烷排放量占家畜甲烷排放总量的95%,是人类活动的最大排放源[1]。反刍家畜甲烷排放也是饲粮能量损失的重要途径之一,占饲粮摄入总能的2%~12%[2]。因此,如何减少反刍家畜胃肠道甲烷排放是当前研究的热点问题。反刍家畜瘤胃内的甲烷主要是通过氢营养、甲基营养和乙酸异化路径产生[3],其中氢营养路径是甲烷菌利用氢和二氧化碳合成,是甲烷生成的主要路径,约占甲烷总量的82%[4]。因此,在饲粮中补充可以与甲烷菌竞争氢的添加剂,可以通过减少瘤胃内氢参与合成甲烷,降低甲烷排放[5-7]

喷浆玉米皮是湿法碾磨玉米籽粒生产淀粉的重要副产物[8],在生产过程中,通常会添加二氧化硫控制发酵条件[9]。因此,与玉米粉相比,喷浆玉米皮含有更多的纤维、蛋白质和硫。研究表明,硫及其化合物可以作为氢受体与瘤胃甲烷菌竞争氢,从而降低甲烷排放[10]。我们推测,利用喷浆玉米皮替代玉米粉会降低饲粮淀粉含量,增加纤维和硫含量,从而改变饲粮性质,这可能会影响瘤胃发酵和甲烷排放。因此,本试验旨在利用喷浆玉米皮替代玉米粉,研究其对山羊营养物质采食和消化、瘤胃发酵、甲烷排放和瘤胃微生物数量的影响,为喷浆玉米皮在山羊饲粮中的应用和减少反刍家畜胃肠道甲烷排放提供数据支撑。

1 材料与方法 1.1 试验设计和饲养管理

试验选用24只健康的山羊作为试验动物,随机分成2组,分别饲喂玉米粉饲粮和喷浆玉米皮饲粮,每组12只。喷浆玉米皮饲粮是由喷浆玉米皮完全替换玉米粉配制而成,试验饲粮组成及营养水平见表 1。所有试验羊均在代谢笼内单独饲喂(08:00和18:00),自由饮水。试验期47 d,预试期10 d,正试期37 d;最后19 d包括5 d饲粮、粪便和剩料样品的收集,12 d甲烷排放的测定和2 d瘤胃液的采集。

表 1 试验饲粮组成及营养水平(干物质基础) Table 1 Composition and nutrient levels of experimental diets (DM basis)  
1.2 样品采集

在试验期的第29~33天,对每只山羊每天饲粮、剩料和粪便分别进行收集,其中饲粮每天收集100 g,剩料和粪便全部收集并称重,然后保存于-20 ℃冰柜。每只山羊每天取2份1%(质量比)的粪便样品,一份用10%(体积比)H2SO4进行酸化,防止氮的损失;另一份不经过任何处理。所有上述样品在65 ℃条件下烘干48 h,然后粉碎、过筛、保存,用于后续测定。

在试验期的第46~47天采集瘤胃内容物,时间为每天的晨饲前以及晨饲后2.5和6.0 h。采用口腔胃管技术获取瘤胃内容物100 mL并丢弃,以避免唾液污染,然后采集200 mL备用。取10 mL瘤胃内容物样品用于测定pH和溶解态硫化氢浓度;取2份35 mL瘤胃内容物样品于50 mL注射器,用于测定溶解态氢和溶解态甲烷浓度;取3份10 mL瘤胃内容物样品进行液氮速冻,然后置于-80 ℃冰箱保存,用作后续测定微生物数量;最后取2份10 mL瘤胃内容物样品,4 ℃、12 000×g离心10 min,取上清1.5 mL,然后添加偏磷酸0.15 mL(25%,质量体积比)进行酸化处理,-20 ℃保存,用于测定挥发性脂肪酸和氨态氮浓度。

1.3 试验样品分析

参考前期报道的方法[11-12],测定剩料、饲粮和粪便样品的常规营养成分,其中,酸化处理的粪便样品用于测定粗蛋白质含量,非酸化处理的粪便样品用于测定干物质、粗灰分、中性洗涤纤维、酸性洗涤纤维、淀粉含量和能量。在试验期的第34~45天,利用呼吸代谢舱和超便携温室气体分析仪(GGA-30p,Los Gatos Research公司,美国)测定山羊甲烷和二氧化碳排放量[13]。利用便携式pH计(上海奥豪斯仪器有限公司)测定瘤胃内容物pH。使用带有微型传感器的硫化氢电极测定瘤胃溶解态硫化氢浓度。根据前期报道的方法提取瘤胃内容物中的溶解态气体,然后使用气相色谱仪(Agilent Inc.公司,美国)进行测定,并计算出溶解态氢和溶解态甲烷浓度[14]。瘤胃挥发性脂肪酸组分的测定流程参考Wang等[15],并根据挥发性脂肪酸组成及浓度计算出氢的生成效率[16]。参考Weatherburn[17]报道的方法测定氨态氮浓度。按照Ma等[18]报道的方法提取微生物DNA,并采用琼脂糖凝胶电泳(0.8%)和紫外分光光度计(ND1000,NanoDrop Technologies, Inc.公司,美国)对DNA进行质量和定量检测,然后将DNA样品稀释到10 ng/μL,利用前期报道的引物,采用实时荧光定量PCR技术对选定的微生物种类进行定量分析[19]

1.4 数据计算和分析

试验数据利用SPSS 21.0软件的一般线性模型进行单因素方差分析,结果以平均值和均值标准误(SEM)表示,P≤0.05表示差异显著,0.05 < P≤0.10表示有升高或降低的变化趋势,P > 0.10表示差异不显著。

2 结果 2.1 喷浆玉米皮替代玉米粉对山羊营养物质采食和消化的影响

表 2可知,与玉米粉相比,喷浆玉米皮可以显著提高山羊中性洗涤纤维、酸性洗涤纤维和粗蛋白质采食量(P < 0.05),显著降低淀粉采食量(P < 0.05)。与玉米粉相比,喷浆玉米皮可以显著提高山羊粗蛋白质、中性洗涤纤维和酸性洗涤纤维消化率(P < 0.05),显著降低干物质、有机物和淀粉消化率(P < 0.05)。

表 2 喷浆玉米皮替代玉米粉对山羊营养物质采食和消化的影响 Table 2 Effects of replacing corn flour with corn gluten on feeding and digestion of goats
2.2 喷浆玉米皮替代玉米粉对山羊甲烷和二氧化碳排放的影响

表 3可知,与玉米粉相比,喷浆玉米皮可以显著降低山羊甲烷的每天排放量、采食每千克干物质排放量和采食每千克可消化干物质排放量(P < 0.05),对二氧化碳的每天排放量、采食每千克干物质排放量和采食每千克可消化干物质排放量无显著影响(P>0.05)。

表 3 喷浆玉米皮替代玉米粉对山羊甲烷和二氧化碳排放的影响 Table 3 Effects of replacing corn flour with corn gluten on methane and carbon dioxide emissions of goats
2.3 玉米皮替代玉米粉对山羊瘤胃溶解气体和挥发性脂肪酸浓度的影响

表 4可知,与玉米粉相比,喷浆玉米皮可以显著增加山羊瘤胃pH、溶解态硫化氢和氨态氮浓度以及丙酸比例(P < 0.05),显著降低溶解态氢、溶解态甲烷浓度和乙酸/丙酸以及氢的生成效率(P < 0.05)。

表 4 玉米皮替代玉米粉对山羊瘤胃溶解气体和挥发性脂肪酸浓度的影响 Table 4 Effects of replacing corn flour with corn gluten on concentrations of dissolved gases and volatile fatty acids in rumen of goats
2.4 玉米皮替代玉米粉对山羊瘤胃微生物数量的影响

表 5可知,与玉米粉相比,采食喷浆玉米皮可以显著增加山羊瘤胃真菌数量(P < 0.05),显著降低瘤胃嗜淀粉瘤胃球菌数量(P < 0.05),瘤胃原虫数量呈现降低的变化趋势(P=0.09),对瘤胃细菌、甲烷菌、普氏菌属、栖瘤胃普雷沃氏菌、反刍月星单胞菌、白色瘤胃球菌、黄色瘤胃球菌和产琥珀酸丝状杆菌数量无显著影响(P>0.05)。

表 5 玉米皮替代玉米粉对山羊瘤胃微生物数量的影响 Table 5 Effects of replacing corn flour with corn gluten on rumen microbial number of goatslg  
3 讨论 3.1 喷浆玉米皮替代玉米粉对山羊营养物质采食和消化的影响

喷浆玉米皮是玉米籽实加工成玉米淀粉的副产物,往往含有较高含量的粗蛋白质和纤维[20],利用喷浆玉米皮替代玉米粉可以提高饲粮粗蛋白质、中性洗涤纤维和酸性洗涤纤维含量,但会降低饲粮淀粉含量。孙健[21]研究了玉米皮在瘤胃内的降解特性及发酵参数,发现玉米皮在瘤胃中的降解速率较慢,并且饲喂过多的玉米皮会降低营养物质降解率。同样,舒维成[22]研究表明,饲粮干物质降解率会随着喷浆玉米皮比例的增加而线性降低。与纤维相比,淀粉是更容易消化的碳水化合物,不仅可以被瘤胃微生物降解,还可以被动物自身的消化酶进行消化,而纤维往往只能被微生物分解,纤维中存在的木质素会阻碍纤维素和半纤维素的降解[23]。因此,纤维的降解率往往低于淀粉,这也是本试验中喷浆玉米皮显著降低山羊干物质和有机物消化率的主要原因。在本试验中,喷浆玉米皮会提高了纤维消化率,降低了淀粉消化率,这可能是因为增加纤维摄入量会促进纤维降解类微生物增殖,但不利于淀粉类降解微生物生长[24]。利用喷浆玉米皮替代玉米粉对大部分的瘤胃微生物数量没有显著影响,这可能与我们的替代比例较低有关,然而却增加了山羊瘤胃真菌数量,减少了嗜淀粉瘤胃球菌数量,这可能是导致纤维和淀粉消化率变化的主要原因。

3.2 喷浆玉米皮替代玉米粉对山羊瘤胃发酵的影响

高淀粉饲粮往往有助于产生更高浓度的挥发性脂肪酸[24],然而,本试验发现山羊采食喷浆玉米皮并没有显著降低总挥发性脂肪酸浓度,这可能是因为瘤胃内环境处于比较稳定的状态,当挥发性脂肪酸生成较少时,瘤胃上皮对挥发性脂肪酸的吸收也会减少,从而导致2组之间没有显著差异。碳水化合物在瘤胃发酵产生挥发性脂肪酸的过程中,往往伴随着氢的产生,产生的氢会被瘤胃内甲烷菌利用生成甲烷,从而维持瘤胃内氢分压处于较低水平,这有利于碳水化合物的降解[25]。碳水化合物类型会明显影响瘤胃内溶解态氢的浓度[26],与淀粉相比,纤维的降解和发酵速率较低,这会导致瘤胃氢浓度处于较低水平[24]。除此之外,瘤胃内溶解态氢浓度还会受到多种因素影响,如瘤胃内饲料降解程度、瘤胃发酵模式、瘤胃内氢的生成效率、甲烷菌对氢的利用程度等[27]。与淀粉相比,纤维发酵有利于乙酸生成,虽然乙酸生成过程中会产生氢,但是纤维发酵效率远远低于淀粉[28]。在本试验结果中,饲喂喷浆玉米皮饲粮的山羊瘤胃溶解态氢浓度显著降低,这可能是由于淀粉摄入量降低所致,但是丙酸比例却显著升高,说明喷浆玉米皮改变了瘤胃发酵模式,这可能与喷浆玉米皮的加工处理有关。有研究表明,瘤胃厌氧真菌也存在氢化酶体,可以产生大量的氢[29]。而本试验结果中,饲喂喷浆玉米皮饲粮的山羊瘤胃真菌数量和溶解氢浓度并不一致,这可能是与更多的氢参与代谢产物合成有关。此外,饲喂喷浆玉米皮饲粮的山羊瘤胃氨态氮浓度显著增加,这可能是因为山羊摄入的蛋白质被消化降解后,会代谢产生氨态氮[27],从而导致瘤胃内氨态氮浓度显著升高。产生的氨态氮在微生物蛋白合成过程中也会涉及氢的生成与消耗过程,当微生物利用氨基酸生长会产生氢,而微生物利用氨态氮生长会利用氢[30]。除此之外,蛋白质在瘤胃降解过程中也会产生异丁酸、戊酸和异戊酸,这也与本试验结果相一致。

3.3 喷浆玉米皮替代玉米粉对山羊瘤胃甲烷生成的影响

瘤胃内产生的氢主要是用于甲烷生成,饲喂喷浆玉米皮饲粮的山羊瘤胃内溶解态甲烷浓度显著降低,这与瘤胃内溶解态氢浓度的降低相一致。以往研究也报道了瘤胃内溶解态氢浓度与溶解态甲烷浓度呈正相关[24]。胃肠道甲烷排放受多种因素影响,如瘤胃内溶解态甲烷的饱和系数、瘤胃发酵途径和瘤胃内食糜的流通速率[27]。与乙酸生成相比,丙酸生成过程中会牵涉到氢的消耗,因此会与甲烷菌竞争氢[31]。有研究报道,淀粉摄入量的增加会导致甲烷排放的减少,这可能是由于瘤胃发酵模式由乙酸型向丙酸型转变,以及瘤胃食糜滞留时间的缩短造成[32-33]。但是,在本试验结果中,饲喂喷浆玉米皮饲粮的山羊瘤胃丙酸比例升高,这也与甲烷排放降低相一致。

硫在瘤胃还原过程中可以作为氢池,根据热力学动力平衡,硫在硫酸盐还原菌的作用下被还原成硫化氢的过程比甲烷生成更有利[10, 34]。与玉米粉相比,喷浆玉米皮含有更多的硫,因此,喷浆玉米皮替代玉米粉会额外增加饲粮中的硫含量。Van Zijderveld等[35]报道,硫酸盐可使绵羊的甲烷排放量减少16%。也有研究结果表明,玉米酒糟中同样含有丰富的硫[36],当饲粮中适当补充玉米酒糟时,育肥牛甲烷排放降低19.5%[37]。在本研究中,饲喂喷浆玉米皮饲粮的山羊甲烷每日排放量减少了19.5%,这与其他研究结果相一致。虽然饲粮中的硫可以有效地减少甲烷排放,但是根据NRC(2001)[38]推荐,饲粮中硫含量高于4.0 g/kg会增加脑脊髓灰质软化的风险,这是由于瘤胃内高浓度的硫化氢会通过瘤胃上皮被吸收。在本研究中,喷浆玉米皮饲粮中硫含量远远低于安全剂量,虽然饲粮中硫含量的升高使瘤胃液中溶解态硫化氢浓度显著升高,但在我们的饲养过程中未观察到山羊代谢紊乱的临床现象。

4 结论

① 喷浆玉米皮替代玉米粉可以促进瘤胃真菌的增殖,这有助于提高饲粮纤维降解率;但会抑制嗜淀粉瘤胃球菌增殖,这不利于提高饲粮淀粉降解率。

② 喷浆玉米皮替代玉米粉后,饲粮中硫含量的增加有助于瘤胃内的氢参与硫化氢合成以及瘤胃发酵模式向丙酸型转变,这会降低山羊甲烷排放。

参考文献
[1]
ZHAO Y C, ZHAO G Y. Decreasing ruminal methane production through enhancing the sulfate reduction pathway[J]. Animal Nutrition, 2022, 9: 320-326. DOI:10.1016/j.aninu.2022.01.006
[2]
JOHNSON K A, JOHNSON D E. Methane emissions from cattle[J]. Journal of Animal Science, 1995, 73(8): 2483-2492. DOI:10.2527/1995.7382483x
[3]
SUN K, LIU H H, FAN H Y, et al. Research progress on the application of feed additives in ruminal methane emission reduction: a review[J]. PeerJ, 2021, 9: e11151. DOI:10.7717/peerj.11151
[4]
金舒文, 王佳堃. 瘤胃产甲烷菌与其他微生物间的氢传递及其调控研究进展[J]. 中国畜牧杂志, 2019, 55(2): 1-6.
JIN S W, WANG J K. Interspecific hydrogen transfer between methanogens and other microorganisms in rumen and its regulation strategies: a review[J]. Chinese Journal of Animal Science, 2019, 55(2): 1-6 (in Chinese).
[5]
BEAUCHEMIN K A, UNGERFELD E M, ECKARD R J, et al. Review: fifty years of research on rumen methanogenesis: lessons learned and future challenges for mitigation[J]. Animal, 2020, 14(Suppl.1): s2-s16.
[6]
WANG R, WANG M, UNGERFELD E M, et al. Nitrate improves ammonia incorporation into rumen microbial protein in lactating dairy cows fed a low-protein diet[J]. Journal of Dairy Science, 2018, 101(11): 9789-9799. DOI:10.3168/jds.2018-14904
[7]
HASSANAT F, BENCHAAR C. Corn silage-based diet supplemented with increasing amounts of linseed oil: effects on methane production, rumen fermentation, nutrient digestibility, nitrogen utilization, and milk production of dairy cows[J]. Journal of Dairy Science, 2021, 104(5): 5375-5390. DOI:10.3168/jds.2020-18853
[8]
王红玉. 蛋鸡玉米加工副产物营养价值的评定[D]. 硕士学位论文. 雅安: 四川农业大学, 2016.
WANG H Y. Evaluation of the nutritive value of corn coproduct for laying hens[D]. Master's Thesis. Ya'an: Sichuan Agricultural University, 2016. (in Chinese)
[9]
KERR B J, ZIEMER C J, WEBER T E, et al. Comparative sulfur analysis using thermal combustion or inductively coupled plasma methodology and mineral composition of common livestock feedstuffs[J]. Journal of Animal Science, 2008, 86(9): 2377-2384. DOI:10.2527/jas.2007-0811
[10]
LAN W, YANG C L. Ruminal methane production: associated microorganisms and the potential of applying hydrogen-utilizing bacteria for mitigation[J]. Science of the Total Environment, 2019, 654: 1270-1283. DOI:10.1016/j.scitotenv.2018.11.180
[11]
张丽英. 饲料分析及饲料质量检测技术[M]. 3版. 北京: 中国农业大学出版社, 2007.
ZHANG L Y. Feed analysis and feed quality detection technology[M]. 3rd ed. Beijing: China Agricultural University Press, 2007 (in Chinese).
[12]
KARTHNER R J, THEURER B. Comparison of hydrolysis methods used in feed, digesta, and fecal starch analysis[J]. Journal of Agricultural and Food Chemistry, 1981, 29(1): 8-11. DOI:10.1021/jf00103a003
[13]
WANG M, WANG R, LIU M, et al. Dietary starch and rhubarb supplement increase ruminal dissolved hydrogen without altering rumen fermentation and methane emissions in goats[J]. Animal, 2019, 13(5): 975-982. DOI:10.1017/S1751731118002410
[14]
WANG M, SUN X Z, JANSSEN P H, et al. Responses of methane production and fermentation pathways to the increased dissolved hydrogen concentration generated by eight substrates in in vitro ruminal cultures[J]. Animal Feed Science and Technology, 2014, 194: 1-11. DOI:10.1016/j.anifeedsci.2014.04.012
[15]
WANG R, SI H B, WANG M, et al. Effects of elemental magnesium and magnesium oxide on hydrogen, methane and volatile fatty acids production in in vitro rumen batch cultures[J]. Animal Feed Science and Technology, 2019, 252: 74-82. DOI:10.1016/j.anifeedsci.2019.04.009
[16]
WANG M, WANG R, JANSSEN P H, et al. Sampling procedure for the measurement of dissolved hydrogen and volatile fatty acids in the rumen of dairy cows[J]. Journal of Animal Science, 2016, 94(3): 1159-1169. DOI:10.2527/jas.2015-9658
[17]
WEATHERBURN M W. Phenol-hypochlorite reaction for determination of ammonia[J]. Analytical Chemistry, 1967, 39(8): 971-974. DOI:10.1021/ac60252a045
[18]
MA Z Y, ZHANG X M, WANG R, et al. Effects of chemical and mechanical lysis on microbial DNA yield, integrity, and downstream amplicon sequencing of rumen bacteria and protozoa[J]. Frontiers in Microbiology, 2020, 11: 581227. DOI:10.3389/fmicb.2020.581227
[19]
WANG R, WANG M, LIN B, et al. Association of fibre degradation with ruminal dissolved hydrogen in growing beef bulls fed with two types of forages[J]. British Journal of Nutrition, 2021, 125(6): 601-610. DOI:10.1017/S0007114520002962
[20]
曹亮, 李燕平, 郑建婷, 等. 喷浆玉米皮对肉兔生长性能、养分表观消化率及肉品质的影响[J]. 动物营养学报, 2021, 33(2): 1063-1069.
CAO L, LI Y P, ZHENG J T, et al. Effects of sprouting corn branon on growth performance, nutrient apparent digestibilities and meat quality of meat rabbits[J]. Chinese Journal of Animal Nutrition, 2021, 33(2): 1063-1069 (in Chinese). DOI:10.3969/j.issn.1006-267x.2021.02.046
[21]
孙健. 不同玉米加工副产物瘤胃降解率及发酵参数的研究[D]. 硕士学位论文. 长春: 吉林农业大学, 2018.
SUN J. The study on ruminal degradation rate and fermentation parameters of different by-products of maize processing[D]. Master's Thesis. Changchun: Jilin Agricultural University, 2018. (in Chinese)
[22]
舒维成. 玉米加工副产物肉鸭代谢能评定及喷浆玉米皮在肉鸭饲粮中的应用[D]. 硕士学位论文. 雅安: 四川农业大学, 2017.
SHU W C. Evaluation of metabolizable energy of corn by-products and the application of corn gluten feed in meat duck[D]. Master's Thesis. Ya'an: Sichuan Agricultural University, 2017. (in Chinese)
[23]
MORAÏS S, MIZRAHI I. Islands in the stream: from individual to communal fiber degradation in the rumen ecosystem[J]. FEMS Microbiology Reviews, 2019, 43(4): 362-379. DOI:10.1093/femsre/fuz007
[24]
WANG R, WANG M, LIN B, et al. Associations of ruminal hydrogen and pH with fiber digestibility and microbiota composition induced by increasing starch intake in beef cattle[J]. Animal Feed Science and Technology, 2021, 278: 114980. DOI:10.1016/j.anifeedsci.2021.114980
[25]
王荣. 瘤胃内溶解氢调控纤维降解的作用机理[D]. 博士学位论文. 长沙: 湖南农业大学, 2020.
WANG R. The mechanism of fiber degradation regulated by ruminal dissolved hydrogen[D]. Ph. D. Thesis. Changsha: Hunan Agricultural University, 2020. (in Chinese)
[26]
WANG M, WANG R, XIE T Y, et al. Shifts in rumen fermentation and microbiota are associated with dissolved ruminal hydrogen concentrations in lactating dairy cows fed different types of carbohydrates[J]. The Journal of Nutrition, 2016, 146(9): 1714-1721. DOI:10.3945/jn.116.232462
[27]
JANSSEN P H. Influence of hydrogen on rumen methane formation and fermentation balances through microbial growth kinetics and fermentation thermodynamics[J]. Animal Feed Science and Technology, 2010, 160(1/2): 1-22.
[28]
DONG L F, LI B C, DIAO Q Y. Effects of dietary forage proportion on feed intake, growth performance, nutrient digestibility, and enteric methane emissions of Holstein heifers at various growth stages[J]. Animals, 2019, 9(10): 725. DOI:10.3390/ani9100725
[29]
GRUNINGER R J, PUNIYA A K, CALLAGHAN T M, et al. Anaerobic fungi (phylum Neocallimastigomycota): advances in understanding their taxonomy, life cycle, ecology, role and biotechnological potential[J]. FEMS Microbiology Ecology, 2014, 90(1): 1-17. DOI:10.1111/1574-6941.12383
[30]
MILLS J A, DIJKSTRA J, BANNINK A, et al. A mechanistic model of whole-tract digestion and methanogenesis in the lactating dairy cow: model development, evaluation, and application[J]. Journal of Animal Science, 2001, 79(6): 1584-1597. DOI:10.2527/2001.7961584x
[31]
UNGERFELD E M. Metabolic hydrogen flows in rumen fermentation: principles and possibilities of interventions[J]. Frontiers in Microbiology, 2020, 11: 589. DOI:10.3389/fmicb.2020.00589
[32]
PIRONDINI M, COLOMBINI S, MELE M, et al. Effect of dietary starch concentration and fish oil supplementation on milk yield and composition, diet digestibility, and methane emissions in lactating dairy cows[J]. Journal of Dairy Science, 2015, 98(1): 357-372. DOI:10.3168/jds.2014-8092
[33]
BOUGOUIN A, FERLAY A, DOREAU M, et al. Effects of carbohydrate type or bicarbonate addition to grass silage-based diets on enteric methane emissions and milk fatty acid composition in dairy cows[J]. Journal of Dairy Science, 2018, 101(7): 6085-6097. DOI:10.3168/jds.2017-14041
[34]
UNIYAL S, CHAUDHARY L C, KALA A, et al. Effect of sulphur supplementation on methane emission, energy partitioning and nutrient utilization in goats[J]. Animal Nutrition and Feed Technology, 2020, 20(1): 111-119. DOI:10.5958/0974-181X.2020.00011.6
[35]
VAN ZIJDERVELD S M, GERRITS W J J, APAJALAHTI J A, et al. Nitrate and sulfate: effective alternative hydrogen sinks for mitigation of ruminal methane production in sheep[J]. Journal of Dairy Science, 2010, 93(12): 5856-5866. DOI:10.3168/jds.2010-3281
[36]
KIM B G, ZHANG Y, STEIN H H. Sulfur concentration in diets containing corn, soybean meal, and distillers dried grains with solubles does not affect feed preference or growth performance of weanling or growing-finishing pigs[J]. Journal of Animal Science, 2012, 90(1): 272-281. DOI:10.2527/jas.2010-3777
[37]
HVNERBERG M, MCGINN S M, BEAUCHEMIN K A, et al. Effect of dried distillers' grains with solubles on enteric methane emissions and nitrogen excretion from finishing beef cattle[J]. Canadian Journal of Animal Science, 2013, 93(3): 373-385. DOI:10.4141/cjas2012-151
[38]
NRC. Nutrient requirements of dairy cattle[S]. Washington, D.C. : The National Academies Press, 2001.