动物营养学报    2022, Vol. 34 Issue (9): 6021-6032    PDF    
高膳食纤维饲粮中脂肪水平对大口黑鲈生长、肝脏和肠道健康的影响
史叶1,2 , 蔡春芳1,2 , 亢佳1,2 , 胡鸿林1,2 , 曹霞敏1,2 , 吴萍1,2 , 叶元土1,2 , 丁惠明3     
1. 苏州大学基础医学与生物科学学院, 苏州 215123;
2. 苏州大学江苏省水产动物营养重点实验室, 苏州 215123;
3. 苏州市阳澄湖国家现代农业示范区发展有限公司, 苏州 215138
摘要: 由于植物性原料的大量使用使得水产配合饲料中膳食纤维水平较高, 纤维高载会诱发肠炎和脂肪肝等疾病, 因此本研究旨在探讨高膳食纤维饲粮中高脂肪水平对大口黑鲈(Micropterus salmoides)生长、肝脏和肠道健康的影响。试验选取120尾大口黑鲈(初始体重为10.6 g/尾), 随机分为2组, 每组3个重复, 每个重复20尾。2组饲粮中均添加15%的可溶性膳食纤维瓜尔胶, 大豆油的添加量分别为3%(LL组, 实测脂肪水平为12.81%)和8%(HL组, 实测脂肪水平为17.94%)。每组每天表观饱食投喂, 养殖周期56 d。结果显示: 1)HL组增重率、特定生长率和肥满度显著高于LL组(P < 0.05), 2组间体成分和肝脏脂肪含量无显著差异(P > 0.05)。2)HL组血清中谷丙转氨酶活性和肝脏胶原蛋白含量较LL组显著下降(P < 0.05)。3)与LL组相比, HL组肝脏中脂代谢相关基因肉毒碱棕榈酰转移酶1(CPT1)、过氧化物酶增殖体激活受体α(PPARα)、脂蛋白A1(APOA1)和炎性反应基因转化生长因子β(TGFβ)mRNA相对表达量显著上调(P < 0.05), 炎性反应相关基因核因子-κβ(NF-κβ)mRNA相对表达量显著下降(P < 0.05);HL组后肠中NF-κβ、肿瘤坏死因子α(TNFα)、白细胞介素-10(IL-10)、TGFβ mRNA相对表达量显著下调(P < 0.05)。4)组织学分析显示, HL组肝脏组织纤维化较LL组明显, 2组肠道形态均未见明显损伤。综上所述, 高膳食纤维饲粮中较高的脂肪水平有利于大口黑鲈的生长及肝脏和肠道健康。
关键词: 大口黑鲈    膳食纤维    脂肪    肝脏和肠道健康    生长    
Effects of Lipid Levels in High Dietary Fibre Diets on Growth, Liver and Intestine Health of Juvenile Largemouth Bass (Micropterus salmoides)
SHI Ye1,2 , CAI Chunfang1,2 , KANG Jia1,2 , HU Honglin1,2 , CAO Xiamin1,2 , WU Ping1,2 , YE Yuantu1,2 , DING Huiming3     
1. School of Biology and Basic Medical Science, School of Soochow University, Suzhou 215123, China;
2. Key Laboratory of Aquatic Animal Nutrition, School of Soochow University, Suzhou 215123, China;
3. Suzhou Yangchenghu National Modern Agriculture Demonstration Zone Development Co., Ltd., Suzhou 215138, China
Abstract: The content of dietary fibre (DF) was high in farmed fish feed because of the wide use of plant feed materials, which was found to be contributed to enteritis and fatty liver. This study was to verify the effects of lipid levels in high DF diets on the growth, liver and intestinal health of largemouth bass (Micropterus salmoides). A total of 120 largemouth bass (initial body weight: 10.6 g/fish) were randomly divided into 2 groups with 3 replicates per group and 20 largemouth bass per replicate. Both of two diets were supplemented with 15% guar gum, soybean oil was added in 3% (LL group, measured level was 12.81%) and 8% (HL group, measured level was 17.94%), respectively. Diets were fed two times a day. Feeding period was 56 days. The results showed as follows: 1) weight gain rate, specific growth rate and condition factor were significantly higher in the HL group than the LL group (P < 0.05), with no significant differences in body composition or liver lipid content between the two groups (P > 0.05). 2) The HL group showed a significant decrease in serum glutaminase activity and liver collagen content compared with the LL group (P < 0.05). 3) Compared with LL group, the mRNA relative expression levels of the lipid metabolism-related genes carnitine palmitoyltransferase 1 (CPT1), peroxisome proliferators-activated receptor α (PPARα), apolipoprotein A1 (APOA1) and the inflammatory gene transforming growth factor β (TGFβ) was significantly upregulated in the liver (P < 0.05) and the mRNA relative expression level of the inflammatory gene nuclear factor-kappa β (NF-κβ) was significantly decreased (P < 0.05). In the intestine, the mRNA relative expression levels of NF-κβ, tumor necrosis factor α (TNFα), interleukin-10 (IL-10) and TGFβ were significantly down-regulated in the HL group compared with the LL group (P < 0.05). 4) Histological analysis showed that the liver fibrosis in HL group were weaker than that in LL group. No obvious damage to the intestinal morphology was noticed in both groups. In conclusion, these results suggest that higher lipid levels in high DF diets benefit to growth and liver and intestinal health of largemouth bass.
Key words: Micropterus salmoides    dietary fiber    lipid    liver and intestine health    growth    

除了粗纤维,植物性饲料中还含有大量其他的不可被单胃动物消化的碳水化合物。世界卫生组织和中国营养学会将这一类物质定义为膳食纤维(dietary fiber,DF)[1],包括非淀粉多糖(纤维素、半纤维素、果胶、树胶、β-葡聚糖等),抗性淀粉,抗性低聚糖等[2]。水产配合饲料中常用的植物性蛋白质源豆粕、棉籽粕、菜籽粕中粗纤维含量分别为3.61%、10.12%[3]、10.95%[4],但其DF含量分别高达36.7%[5]、34.0%、35.4%[6],豆渣中DF含量更是高达62.9%[7],可见这些蛋白质源中DF含量仅次于甚至高于蛋白质含量。医学研究表明,适量的DF具有降胆固醇[8]、降血脂[9]、改善肠道菌群[10]、提高机体免疫力的作用[11]。然而,近年的研究表明,DF高载会引起小鼠[12]和鱼类[13-14]炎性反应和组织损伤。由于鱼粉资源的短缺[15],水产饲料中植物性蛋白质源的用量越来越高[16],使养殖动物DF负载长期处于较高状态。DF高载可能是养殖鱼类疾病多发的重要原因[13-14, 17]

摄食的第一需要是满足能量的需要[18],在高DF饲料中提高脂肪水平,饲料可消化能提高,这会降低养殖鱼类采食量[19],从而降低了DF摄入量,这样或可缓解由DF高载引起的炎症反应和肝纤维化。因为DF的生理效应与其和胆汁酸的结合力、黏性及可发酵性等性质有关[20]。瓜尔胶黏性强,是常被用作研究DF营养生理的材料[21-22]。已有报道表明,瓜尔胶会抑制鱼类生长速度,引起肠道损伤[23-24]。因此,本研究以大口黑鲈(Micropterus salmoides)为研究对象,在高DF瓜尔胶基础饲粮中提高脂肪水平,研究其对炎症反应和组织损伤的影响,旨在为水产饲料配方优化提供依据。

1 材料与方法 1.1 试验材料

瓜尔胶(食品级,含量 > 99%)、干酪素均购自于浙江某生物科技有限公司,其他饲料原料均由广东某饲料有限公司提供。

1.2 试验饲粮

豆粕中DF含量为36.7%[5],如果饲料中豆粕用量为30%,可带入10.8%的DF,加上其他植物性原料带入的DF,实用饲料中总DF含量可达15%。因此,本试验配制DF含量均为15%,大豆油的添加量分别为3%(LL,实测脂肪水平为12.81%)和8%(HL,实测脂肪水平为17.94%)的2种饲粮。所有原料粉碎后按配方精确称取,充分混合均匀,分批加入质量分数约为20%的蒸馏水,混匀,制成直径为1.8 mm、长度为5 mm左右的颗粒,将颗粒饲料密封保存于-20 ℃冰箱。饲粮组成及营养水平见表 1

表 1 饲粮组成及营养水平(风干基础) Table 1 Composition and nutrient levels of diets (air-dry basis)  
1.3 试验设计及饲养管理

大口黑鲈幼鱼购买自金澄福渔业科技有限公司,养殖试验在苏州市阳澄湖国家现代农业发展有限公司研究生工作站进行。试验鱼运回后在室内养殖池暂养,每天表观饱食投喂大口黑鲈商品饲粮(浙江粤海饲料有限公司,粗蛋白质含量≥40%,粗脂肪含量≥3%,粗纤维含量≤8%)2次(09:00,16:00),驯养2个月后,于禁食状态下选取120尾规格一致且体质健壮的幼鱼,称重后随机分入6个容积为400 L的聚乙烯桶,桶中盛水300 L,每桶放鱼20尾。用LL饲粮继续驯化2周以适应试验条件。养殖试验开始前,再称重(此时平均体重为10.6 g/尾)并调整各缸鱼重至变异系数 < 3%。将调整后的120尾鱼分为2组,分别饲喂LL饲料和HL饲料,每组3个重复,每个重复20尾。每天表观饱食投喂2次(09:00,16:00)。饲养期间每天08:00采用虹吸法排污并换水约1/3,水温在26~30 ℃,pH为7.7±0.1,溶解氧浓度确保高于6.5 mg/L,氨氮浓度维持在0.01 mg/L以下。饲喂56 d后进行采样。

1.4 样品采集与处理

样品采集前禁食24 h。采样时将一桶鱼迅速捞起,MS-222麻醉,称总重,再将每条鱼分别称尾重、测体长。从每组中选取9尾鱼(每桶随机取3尾)液氮速冻,保存于-20 ℃中,用于全鱼常规营养成分分析。每桶取3尾鱼于无菌条件下分离肝脏和后肠,样本放入1.5 mL灭酶灭菌离心管中,液氮速冻后放置于-80 ℃中保存,用于基因表达分析。其余的鱼尾静脉采血,将抽取的血液放置在1.5 mL离心管中,4 ℃静置4 h后,3 000×g离心10 min,将离心后所得上清液转入1.5 mL离心管中,保存在-80 ℃超低温冰箱中,用于血清生化指标的测定;将鱼解剖,取出内脏团并称重,分离出肝脏、胆囊、肠道,称肝脏重量,用于计算脏体比(VSI)、肝体比(HSI);将2尾鱼的肝脏和后肠组织置于4%甲醛溶液中固定,4 ℃保存,用于肝脏病理学切片制备;其余的肝脏放在5 mL离心管中,液氮速冻,用于组织成分分析。

1.5 分析与计算方法 1.5.1 生长性能

式中:Wi为平均每尾鱼初重(g);Wf为平均每尾鱼末重(g);F为饲料摄入量干重(g);t为养殖试验期(d);Wh为样品鱼肝脏重(g);Wv为样品鱼内脏重(g);Wb为样品鱼体重(g);L为样品鱼体长(cm)。

1.5.2 饲料和鱼体成分

水分含量采用105 ℃烘箱干燥法(GB/T 6435—2014)测定(GZX-9030MBE, 上海博讯实业有限公司医疗设备厂);粗蛋白质含量(GB/T 6432—2018)使用全自动凯氏定氮仪测定(SKD-1000, 上海沛欧分析仪器有限公司);粗脂肪含量采用索氏抽提法(GB/T 6433—2006)测定;粗灰分含量采用马福炉灼烧法(GB/T 6438—2007)测定(80-10TP, 上海慧泰仪器制造有限公司);肝脏脂肪含量采用氯仿甲醇法[25]测定;肝脏总蛋白含量采用试剂盒测定(南京建成生物工程研究所);肝脏胶原蛋白含量采用试剂盒双抗体夹心法测定(绿叶生物科技有限公司);饲料总能采用氧氮式热量计(SDACM5000, 长沙三德科技有限公司)测定。

1.5.3 血清生化指标

使用全自动血液生化分析仪(雅培C8000)测定血清总胆汁酸(TBA)、总蛋白(TP)、白蛋白(ALB)、球蛋白(GLB)、胆固醇(CHO)、甘油三酯(TG)、高密度脂蛋白胆固醇(HDL-C)、低密度脂蛋白胆固醇(LDL-C)含量及谷丙转氨酶(ALT)、谷草转氨酶(AST)、碱性磷酸酶(ALP)活性。所用试剂盒均购自上海执诚生物科技有限公司。

1.5.4 肝脏和后肠相关基因mRNA相对表达量

利用Trizol提取肝脏和后肠中RNA,提取后的RNA利用2%变性琼脂糖凝胶电泳检测其完整性,用核酸仪测定RNA的浓度。按照5XAll-In-One RT Master Mix (with AccuRT Genomic DNA Removal Kit)(abm)试剂盒方法,合成cDNA后放置于-20 ℃冰箱中保存。实时荧光定量PCR操作根据EvaGreen 2X qPCR Master Mix (abm)试剂盒说明书进行。每个反应体系共20 μL:6 μL分子级灭菌蒸馏水,2 μL稀释混合后引物,2 μL稀释后的cDNA模板以及10 μL的Eva Green 2X qPCR Master Mix。所用程序为:预变性95 ℃ 30 s,95 ℃变性5 s,60 ℃运行30 s进行退火和延伸,共进行40个循环。试验结果用2-ΔΔCt的方法分析定量相关基因mRNA相对表达量。实时荧光定量PCR引物序列见表 2

表 2 实时荧光定量PCR引物序列 Table 2 Primer sequences for quantitative real-time PCR
1.5.5 肝脏和后肠组织切片

将肝脏和后肠组织按常规程序制作石蜡切片,对肝脏切片进行马松(Masson)染色,对后肠组织切片进行苏木精-伊红(HE)染色,采用光学显微镜(Olympus BX51)进行观察并采用其成像系统拍摄。

1.6 数据统计与分析

试验数据采用SPSS 22.0软件进行统计分析,所有试验结果均以平均值±标准差(mean±SD)表示,各组间的差异采用独立样本t检验对比分析。P<0.05为差异显著。作图软件为Graphpad Prism 7.0。

2 结果 2.1 高DF饲粮中脂肪水平对大口黑鲈幼鱼生长性能的影响

表 3可知,与LL组相比,HL组大口黑鲈的WGR、SGR和CF显著增加(P<0.05),但FR、FCR、VSI和HSI在2组间差异不显著(P>0.05)。

表 3 高DF饲粮中脂肪水平对大口黑鲈幼鱼生长性能的影响 Table 3 Effects of lipid levels in high dietary fibre diets on growth performance of juvenile largemouth bass
2.2 高DF饲粮中脂肪水平对大口黑鲈幼鱼体成分和肝脏脂肪含量的影响

表 4可知,2组间鱼体粗蛋白质、粗脂肪和粗灰分含量无显著差异(P > 0.05)。HL组和LL组间肝脏脂肪含量也无显著差异(P > 0.05)。

表 4 高DF饲粮中脂肪水平对大口黑鲈幼鱼体成分和肝脏脂肪含量的影响(干物质基础) Table 4 Effects of lipid levels in high dietary fibre diets on body composition and liver lipid content of juvenile largemouth bass (DM basis)  
2.3 高DF饲粮中脂肪水平对大口黑鲈幼鱼血清生化指标的影响

表 5可知,HL组血清ALT活性显著低于LL组(P < 0.05),而血清AST、ALP活性及TP、ALB、GLOB、CHO、TG、LDL和HDL含量2组间无显著差异(P > 0.05)。

表 5 高DF饲粮中脂肪水平对大口黑鲈幼鱼血清生化指标的影响 Table 5 Effects of lipid levels in high dietary fibre diets on serum biochemical parameters of juvenile largemouth bass
2.4 高DF饲粮中脂肪水平对大口黑鲈幼鱼肝脏和后肠炎性基因表达的影响

图 1可知,HL组肝脏核因子-κβ(NF-κβ)和后肠NF-κβ、肿瘤坏死因子α (TNFα)、白细胞介素-10(IL-10)、转化生长因子β(TGFβ) mRNA相对表达量显著低于LL组(P < 0.05),而肝脏TGFβ mRNA相对表达量显著高于LL组(P < 0.05)

NF-κβ:核因子-κβ nuclear factor kappa-β;TNFα:肿瘤坏死因子α tumor necrosis factor α;IL-10:白细胞介素-10 interleukin-10;TGFβ:转化生长因子β transforming growth factor β。
数据柱形标注不同小写字母表示差异显著(P < 0.05), 无字母表示差异不显著(P>0.05)。图 2图 4同。
Value columns with different small letters mean significant difference (P < 0.05), while with no letter superscripts mean no significant difference (P > 0.05). The same as Fig. 2 and Fig. 4. 图 1 高DF饲粮中脂肪水平对大口黑鲈幼鱼肝脏和后肠炎性基因表达的影响 Fig. 1 Effects of lipid levels in high dietary fibre diets on expression of inflammatory genes in liver and hindgut of juvenile largemouth bass
2.5 高DF饲粮中脂肪水平对大口黑鲈幼鱼肝脏脂质代谢和胆汁酸受体基因表达的影响

图 2可知,HL组肝脏过氧化物酶增殖体激活受体α(PPARα)、肉毒碱棕榈酰转移酶1(CPT1)和脂蛋白A1(APOA1) mRNA相对表达量显著高于LL组(P < 0.05),肝脏脂肪酸合成酶(FAS)和脂蛋白B(APOB) mRNA相对表达量在HF组和LL组间差异不显著(P > 0.05)。肝脏法尼醇X受体(FXR)和G蛋白偶联胆汁酸受体5(TGR5) mRNA相对表达量与LL组无显著差异(P>0.05),但存在下降趋势。

PPARα: 过氧化物酶增殖体激活受体α peroxisome proliferators-activated receptor α; FAS:脂肪酸合成酶fatty acid synthase;CPT1:肉毒碱棕榈酰转移酶1 carnitine palmitoyltransferase 1;APOA1: 脂蛋白A1 apolipoprotein A1; APOB: 脂蛋白B apolipoprotein B; FXR: 法尼醇X受体farnesoid X receptor; TGR5: G蛋白偶联胆汁酸受体G protein-coupled bile acid receptor。 图 2 高DF饲粮中脂肪水平对大口黑鲈幼鱼肝脏脂质代谢和胆汁酸受体基因表达的影响 Fig. 2 Effects of lipid levels in high dietary fibre diets on expression of lipid metabolism and bile acid receptor genes in liver of juvenile largemouth bass
2.6 高DF饲粮中脂肪水平对大口黑鲈幼鱼肝肠组织学的影响

图 3可知,后肠组织切片显示2组鱼的肠道绒毛均较完整,未见明显组织损伤。马松染色的肝脏组织切片中可观察到HL组肝细胞间蓝色信号明显比LL组弱。由图 4可知,HL组肝脏胶原纤维含量显著低于LL组(P < 0.05)。

a和b为LL组和HL组后肠HE染色切片(200×);c和d为LL组和HL组肝脏MASSON染色切片(400×)。 a and b were HE-stained sections of hindgut in LL and HL groups (200×); c and d were MASSON stained sections of liver in LL and HL groups (400×). 图 3 大口黑鲈肝脏和后肠组织切片 Fig. 3 Tissue sections of liver and hindgut of juvenile largemouth bass
图 4 高DF饲粮中脂肪水平对大口黑鲈幼鱼肝脏胶原蛋白含量的影响 Fig. 4 Effects of lipid levels in high dietary fibre diets on collagen content in liver of juvenile largemouth bass
3 讨论

本研究结果表明,饲养8周后,大口黑鲈的尾增重15~17 g。彭祥和[32]的研究表明,以不同脂肪水平饲喂规格11.9 g的大口黑鲈,养殖56 d后鱼体增重在18~25 g。这表明无论饲料脂肪水平高低,DF高载均对鱼体生长具有抑制作用。已有研究表明,当饲粮中脂肪水平在12%~18%时,河鲈(Perca fluviatilis)的生长性能随着饲粮中脂质含量的提高而改善[33],饲粮脂肪水平在35%以下时,高首鲟(Acipenser transmontanus)的生长表现与饲粮脂肪水平呈正相关关系[34]。本研究表明,HL组大口黑鲈的SGR显著高于LL组,与上述报道结果相一致,表明鱼类对脂肪具有较好的利用能力。Chen等[35]报道大口黑鲈适宜的饲粮脂肪水平为11.5%~14%。Huang等[36]推荐大口黑鲈的脂肪水平为12%。本研究LL组和HL组饲粮的脂肪水平分别为12.81%和17.94%,而HL组SGR显著高于LL组,提示大口黑鲈幼鱼饲粮适宜的脂肪水平可能高于现有文献报道,也可能饲粮中适宜的脂肪水平还受DF含量的影响。

一般来说,过量的饲粮能量会导致鱼类体脂增加[37]。Wang等[38]报道,黄姑鱼(Nibea miichthioides)的HSI和体脂含量随着饲粮脂质水平的提高而增加。Guo等[39]、Xie等[40]报道当大口黑鲈饲喂高脂饲粮时,VSI和HSI较高。Zhang等[41]报道当饲粮脂肪水平增加时,杂交鳢(Channa maculata♀×Channa argus)的CF含量也有增加趋势。在本研究中,和LL组相比,HL组体成分、HSI和VSI均无显著差异,但CF含量显著提高,表明17.94%的脂肪水平虽然并未引起内脏脂肪的过度蓄积,但可能已超过大口黑鲈对脂肪的适宜需要量了。

DF具有结合胆汁酸[26]、降低胆汁酸的生物学效价[42-43]和阻碍胆汁酸重吸收率的作用[44],从而使胆汁酸受体FXR/TGR5的活性受到影响,而FXR/TGR5参与炎症反应的调节[45]。Ni等[26]报告高DF饲粮导致大口黑鲈肝脏FXR表达下降,致炎因子基因表达上调。本研究中未检测到2组鱼间FXRTGR5 mRNA相对表达量的显著变化,但HL组肝脏组织中致炎因子基因NF-κβ mRNA相对表达量高于HL组,对炎症反应有一定的抑制作用[46]TGFβ的mRNA相对表达量低于HL组。由于2组鱼的FR差异不显著,甚至HL组FR略高于LL组,因此,HL组较弱的炎性反应不是DF摄入量减少的缘故,可能是高水平脂肪缓解了炎性反应。当饲粮中DF含量相同时,较高的脂肪水平可能会降低DF的粘性[47],从而削弱DF对胆汁酸的结合作用,这可能是HL组炎性反应较弱的原因所在。炎性反应会引起肝脏组织损伤和纤维化[48]。本研究中肝脏组织切片MASSON染色后显示,HL组肝脏纤维化较LL轻,反映肝脏氧化损伤的血清ALT活性也是HL组显著低于LL组,表明HL组肝脏组织损伤较轻,与炎性反应相关基因表达结果相一致。

PPARα是脂质代谢的关键调控因子,诱导脂肪酸氧化的关键调节酶CPT1的表达[49],进而改善线粒体和过氧化物酶体的脂肪酸氧化[50]。载脂蛋白APOA1是HDL-C的主要成分。HDL-C能将胆固醇从外周细胞运送到肝脏代谢,从而降低脂质积累[51]。本研究中HL组PPARαCPT1APOA1的mRNA相对表达量显著高于LL组,这与Huang等[52]、Guilmeau等[53]的研究结果相一致,表明饲粮脂肪水平较高时,脂肪酸的转运及氧化分解加快。本研究中HL组不仅HSI与LL组无显著差异,肝脏脂肪含量也并没有升高,甚至还略低于LL组,可能是因为摄入的高水平的脂肪被充分氧化供能了。

肠道是鱼类吸收和利用营养物质的重要场所,肠道结构的完整性影响鱼类的生长发育[54]。研究表明,富含DF的豆粕型饲粮会引起非感染性肠炎[55],主要表现为肠道绒毛褶皱高度下降、固有层和黏膜下层的宽度增加、白细胞浸润[56]。高DF饲粮也会引起肠道组织损伤[13, 24],然而本研究中2组鱼均未出现明显的组织病理改变(图 3),这可能与养殖后期试验鱼摄食率下降有关。有研究表明,肠组织自我修复能力较强[57-58],停饲后较短时间内即可恢复正常[59]。尽管如此,HL组后肠组织中炎性反应相关基因NF-κβTNFαIL-10和TGFβ mRNA相对表达量均显著低于LL组,提示HL组罹患肠炎的风险较低。

4 结论

在DF含量较高的饲粮中,提高脂肪水平并未引起肝脏脂肪含量增加,却可改善大口黑鲈幼鱼生长性能,缓解氧化应激和炎性反应,降低肝脏和肠道组织损伤的风险。

参考文献
[1]
李梓铭, 李红爱. 膳食纤维研究现状的问题分析及发展方向的预测[J]. 现代食品, 2018, 5(10): 10-14, 18.
LI Z M, LI H A. The problems analysis of dietary fiber research on status quo and the forecast of development direction[J]. Modern Food, 2018, 5(10): 10-14, 18 (in Chinese).
[2]
STEPHEN A M, CHAMP M M J, CLORAN S J, et al. Dietary fibre in Europe: current state of knowledge on definitions, sources, recommendations, intakes and relationships to health[J]. Nutrition Research Reviews, 2017, 30(2): 149-190. DOI:10.1017/S095442241700004X
[3]
林静, 王晶, 马友彪, 等. 山东省玉米、豆粕、棉籽粕的概略养分分析及对鸡的表观代谢能估测[J]. 中国家禽, 2020, 42(11): 51-55.
LIN J, WANG J, MA Y B, et al. Feed proximate analysis of corn, soybean meal and cottonseed meal from Shandong province and evaluation of apparent metabolizable energy in chicken[J]. China Poultry, 2020, 42(11): 51-55 (in Chinese).
[4]
张克英. 鸭非常规饲料资源高效利用技术[J]. 饲料与畜牧, 2019(7): 52-58.
ZHANG K Y. Efficient use of non-conventional feed resources for ducks[J]. Animal Agriculture, 2019(7): 52-58 (in Chinese).
[5]
苗敬芝, 吕兆启, 曹泽虹, 等. 酶法提取豆粕中总膳食纤维的研究[J]. 中国食品添加剂, 2009(5): 120-124.
MIAO J Z, LV Z Q, CAO Z H, et al. Study on enzyme extraction of dietary fiber from soybean residue[J]. China Food Additives, 2009(5): 120-124 (in Chinese). DOI:10.3969/j.issn.1006-2513.2009.05.020
[6]
KNUDSEN K E B. Carbohydrate and lignin contents of plant materials used in animal feeding[J]. Animal Feed Science and Technology, 1997, 67(4): 319-338. DOI:10.1016/S0377-8401(97)00009-6
[7]
娄海伟, 迟玉杰. 挤压蒸煮对豆渣中可溶性膳食纤维含量的影响[J]. 中国粮油学报, 2009, 24(6): 31-35.
LOU H W, CHI Y J. Effects of extrusion-cooking on soluble dietary fiber in soybean residue[J]. Journal of the Chinese Cereals and Oils Association, 2009, 24(6): 31-35 (in Chinese).
[8]
ZHU R G, SUN Y D, HOU Y T, et al. Pectin penta-oligogalacturonide reduces cholesterol accumulation by promoting bile acid biosynthesis and excretion in high-cholesterol-fed mice[J]. Chemico-Biological Interactions, 2017, 272: 153-159. DOI:10.1016/j.cbi.2017.05.018
[9]
CRAIG W J. Health effects of vegan diets[J]. The American Journal of Clinical Nutrition, 2009, 89(5): 1627S-1633S. DOI:10.3945/ajcn.2009.26736N
[10]
YASUKAWA Z, INOUE R, OZEKI M, et al. Effect of repeated consumption of partially hydrolyzed guar gum on fecal characteristics and gut microbiota: a randomized, double-blind, placebo-controlled, and parallel-group clinical trial[J]. Nutrients, 2019, 11(9): 2170. DOI:10.3390/nu11092170
[11]
BEUKEMA M, FAAS M M, DE VOS P. The effects of different dietary fiber pectin structures on the gastrointestinal immune barrier: impact via gut microbiota and direct effects on immune cells[J]. Experimental & Molecular Medicine, 2020, 52(9): 1364-1376.
[12]
SINGH V, YEOH B S, CHASSAING B, et al. Dysregulated microbial fermentation of soluble fiber induces cholestatic liver cancer[J]. Cell, 2018, 175(3): 679-694. DOI:10.1016/j.cell.2018.09.004
[13]
REN S J, CAI C F, CUI G T, et al. High dosages of pectin and cellulose cause different degrees of damage to the livers and intestines of Pelteobagrus fulvidraco[J]. Aquaculture, 2020, 514: 734445. DOI:10.1016/j.aquaculture.2019.734445
[14]
CAI C F, REN S J, CUI G T, et al. Short-term stress due to dietary pectin induces cholestasis, and chronic stress induces hepatic steatosis and fibrosis in yellow catfish, Pelteobagrus fulvidraco[J]. Aquaculture, 2020, 516: 734607. DOI:10.1016/j.aquaculture.2019.734607
[15]
TURNER M D, NEDJAI B, HURST T, et al. Cytokines and chemokines: at the crossroads of cell signalling and inflammatory disease[J]. Biochimica et Biophysica Acta (BBA): Molecular Cell Research, 2014, 1843(11): 2563-2582. DOI:10.1016/j.bbamcr.2014.05.014
[16]
LAM F W S, WU S Y, LIN S J, et al. The expression of two novel orange-spotted grouper (Epinephelus coioides) TNF genes in peripheral blood leukocytes, various organs, and fish larvae[J]. Fish & Shellfish Immunology, 2011, 30(2): 618-629.
[17]
KNUDSEN D, URÁN P, ARNOUS A, et al. Saponin-containing subfractions of soybean molasses induce enteritis in the distal intestine of Atlantic salmon[J]. Journal of Agricultural and Food Chemistry, 2007, 55(6): 2261-2267. DOI:10.1021/jf0626967
[18]
GREEN A J, JONES C L W, BRITZ P J. The protein and energy requirements of farmed South African abalone Haliotis midae L. cultured at optimal and elevated water temperatures[J]. Aquaculture Research, 2011, 42(11): 1653-1663. DOI:10.1111/j.1365-2109.2010.02759.x
[19]
LEE S M, JEON I G, LEE J Y. Effects of digestible protein and lipid levels in practical diets on growth, protein utilization and body composition of juvenile rockfish (Sebastes schlegeli)[J]. Aquaculture, 2002, 211(1/2/3/4): 227-239.
[20]
DHINGRA D, MICHAEL M, RAJPUT H, et al. Dietary fibre in foods: a review[J]. Journal of Food Science and Technology, 2012, 49(3): 255-266. DOI:10.1007/s13197-011-0365-5
[21]
SAKAKIDA T, ISHIKAWA T, DOIT, et al. Water-soluble dietary fiber alleviates cancer-induced muscle wasting through changes in gut microenvironment in mice[J/OL]. Cancer Science(2022-02-24)[2022-02-30]. https://pubmed.ncbi.nlm.nih.gov/35201655/.
[22]
YAMADA K, TOKUNAGA Y, IKEDA A, et al. Effect of dietary fiber on the lipid metabolism and immune function of aged Sprague-Dawley rats[J]. Bioscience, Biotechnology, and Biochemistry, 2003, 67(2): 429-433. DOI:10.1271/bbb.67.429
[23]
RAMOS L R V, ROMANO L A, MONSERRAT J M, et al. Biological responses in mullet Mugil liza juveniles fed with guar gum supplemented diets[J]. Animal Feed Science and Technology, 2015, 205: 98-106. DOI:10.1016/j.anifeedsci.2015.04.004
[24]
GAO S Y, HAN D, ZHU X M, et al. Effects of guar gum on the growth performance and intestinal histology of gibel carp (Carassius gibelio)[J]. Aquaculture, 2019, 501: 90-96. DOI:10.1016/j.aquaculture.2018.11.009
[25]
FOLCH J, LEES M, STANLEY G H S. A simple method for the isolation and purification of total lipides from animal tissues[J]. Journal of Biological Chemistry, 1957, 226(1): 497-509. DOI:10.1016/S0021-9258(18)64849-5
[26]
NI Q, CAI C F, REN S J, et al. Pectin and soybean meal induce stronger inflammatory responses and dysregulation of bile acid (BA) homeostasis than cellulose and cottonseed meal, respectively, in largemouth bass (Micropterus salmoides), which might be attributed to their BA binding capacity[J]. Aquaculture Research, 2021, 52(7): 2963-2979. DOI:10.1111/are.15140
[27]
LIN S M, ZHOU X M, ZHOU Y L, et al. Intestinal morphology, immunity and microbiota response to dietary fibers in largemouth bass, Micropterus salmoide[J]. Fish & Shellfish Immunology, 2020, 103: 135-142.
[28]
YU L L, YU H H, LIANG X F, et al. Dietary butylated hydroxytoluene improves lipid metabolism, antioxidant and anti-apoptotic response of largemouth bass (Micropterus salmoides)[J]. Fish & Shellfish Immunology, 2018, 72: 220-229.
[29]
SUN P, JIN M, JIAO L F, et al. Effects of dietary lipid level on growth, fatty acid profiles, antioxidant capacity and expression of genes involved in lipid metabolism in juvenile swimming crab, Portunus trituberculatus[J]. British Journal of Nutrition, 2020, 123(2): 149-160. DOI:10.1017/S0007114519002563
[30]
CHEN Y F, SUN Z Z, LIANG Z M, et al. Addition of l-carnitine to formulated feed improved growth performance, antioxidant status and lipid metabolism of juvenile largemouth bass, Micropterus salmoides[J]. Aquaculture, 2020, 518: 734434. DOI:10.1016/j.aquaculture.2019.734434
[31]
XIE S W, YIN P, TIAN L X, et al. Lipid metabolism and plasma metabolomics of juvenile largemouth bass Micropterus salmoides were affected by dietary oxidized fish oil[J]. Aquaculture, 2020, 522: 735158. DOI:10.1016/j.aquaculture.2020.735158
[32]
彭祥和. 大口黑鲈对高脂饲料的生理适应机制[D]. 硕士学位论文. 重庆: 西南大学, 2017: 22.
PENG X H. The physiological adaptation mechanisms of Micropterus salmoides for high-lipid diet[D]. Master's Thesis. Chongqing: Southwest University, 2017: 22. (in Chinese)
[33]
KESTEMONT P, VANDELOISE E, MÉLARD C, et al. Growth and nutritional status of Eurasian perch Perca fluviatilis fed graded levels of dietary lipids with or without added ethoxyquin[J]. Aquaculture, 2001, 203(1/2): 85-99.
[34]
HUNG S S O, STOREBAKKEN T, CUI Y, et al. High-energy diets for white sturgeon, Acipenser transmontanus Richardson[J]. Aquaculture Nutrition, 1997, 3(4): 281-286. DOI:10.1046/j.1365-2095.1997.00047.x
[35]
CHEN Y J, LIU Y J, YANG H J, et al. Effect of dietary lipid Level and protein energy ratio on growth and body composition of largemouth bass Micropterus salmoides[J]. Aquaculture Nutrition, 2012, 18(3): 321-331. DOI:10.1111/j.1365-2095.2011.00900.x
[36]
HUANG D, WU Y B, LIN Y, et al. Dietary protein and lipid requirements for juvenile largemouth bass, Micropterus salmoides[J]. Journal of the World Aquaculture Society, 2017, 48(5): 782-790. DOI:10.1111/jwas.12417
[37]
BRIGHT L A, COYLE S D, TIDWELL J H. Effect of dietary lipid level and protein energy ratio on growth and body composition of largemouth bass Micropterus salmoides[J]. Journal of the World Aquaculture Society, 2005, 36(1): 129-134.
[38]
WANG Y, GUO J L, LI K, et al. Effects of dietary protein and energy levels on growth, feed utilization and body composition of cuneate drum (Nibea miichthioides)[J]. Aquaculture, 2006, 252(2/3/4): 421-428.
[39]
GUO J L, ZHOU Y L, ZHAO H, et al. Effect of dietary lipid level on growth, lipid metabolism and oxidative status of largemouth bass, Micropterus salmoides[J]. Aquaculture, 2019, 506: 394-400. DOI:10.1016/j.aquaculture.2019.04.007
[40]
XIE S W, YIN P, TIAN L X, et al. Dietary supplementation of astaxanthin improved the growth performance, antioxidant ability and immune response of juvenile largemouth bass (Micropterus salmoides) fed high-fat diet[J]. Marine Drugs, 2020, 18(12): 642. DOI:10.3390/md18120642
[41]
ZHANG Y F, SUN Z Z, WANG A L, et al. Effects of dietary protein and lipid levels on growth, body and plasma biochemical composition and selective gene expression in liver of hybrid snakehead (Channa maculata ♀×Channa argus ) fingerlings[J]. Aquaculture, 2017, 468(Part 1): 1-9.
[42]
GUNNESS P, MICHIELS J, VANHAECKE L, et al. Reduction in circulating bile acid and restricted diffusion across the intestinal epithelium are associated with a decrease in blood cholesterol in the presence of oat β-glucan[J]. The FASEB Journal, 2016, 30(12): 4227-4238. DOI:10.1096/fj.201600465R
[43]
GUNNESS P, FLANAGAN B M, GIDLEY M J. Molecular interactions between cereal soluble dietary fibre polymers and a model bile salt deduced from 13C NMR titration[J]. Journal of Cereal Science, 2010, 52(3): 444-449. DOI:10.1016/j.jcs.2010.07.009
[44]
FUCHS V I, SCHMIDT J, SLATER M J, et al. Influence of immunostimulant polysaccharides, nucleic acids, and Bacillus strains on the innate immune and acute stress response in turbots (Scophthalmus maximus) fed soy bean- and wheat-based diets[J]. Fish Physiology and Biochemistry, 2017, 43(6): 1501-1515. DOI:10.1007/s10695-017-0388-6
[45]
PATHAK P, LIU H L, BOEHME S, et al. Farnesoid X receptor induces Takeda G-protein receptor 5 cross-talk to regulate bile acid synthesis and hepatic metabolism[J]. Journal of Biological Chemistry, 2017, 292(26): 11055-11069. DOI:10.1074/jbc.M117.784322
[46]
WAHL S M, SWISHER J, MCCARTNEY-FRANCIS N, et al. TGF-β: the perpetrator of immune suppression by regulatory T cells and suicidal T cells[J]. Journal of Leukocyte Biology, 2004, 76(1): 15-24. DOI:10.1189/jlb.1103539
[47]
RUIZ-CAPILLAS C, TRIKI M, HERRERO A M, et al. Konjac gel as pork backfat replacer in dry fermented sausages: processing and quality characteristics[J]. Meat Science, 2012, 92(2): 144-150. DOI:10.1016/j.meatsci.2012.04.028
[48]
SHILO L, CHIN J H, AZHAR S, et al. Prolonged infusion of epinephrine down-regulates expression of the fatty acid synthase gene in adipocytes[J]. Endocrine, 1995, 3(6): 439-444. DOI:10.1007/BF02935650
[49]
GUO X Z, LIANG X F, FANG L, et al. Effects of lipid-lowering pharmaceutical clofibrate on lipid and lipoprotein metabolism of grass carp (Ctenopharyngodon idellal Val.) fed with the high non-protein energy diets[J]. Fish Physiology and Biochemistry, 2015, 41(2): 331-343. DOI:10.1007/s10695-014-9986-8
[50]
PYPER S R, VISWAKARMA N, YU S T, et al. PPARα: energy combustion, hypolipidemia, inflammation and cancer[J]. Nuclear Receptor Signaling, 2010, 8: e002.
[51]
RUTLEDGE J C, MULLICK A E, GARDNER G, et al. Direct visualization of lipid deposition and reverse lipid transport in a perfused artery: roles of VLDL and HDL[J]. Circulation Research, 2000, 86(7): 768-773. DOI:10.1161/01.RES.86.7.768
[52]
HUANG Z Z, CHANG C Q. [Advances of study on glucose and lipids metabolism of chlorogenic acid regulating][J]. Journal of Hygiene Research, 2008, 37(5): 637-639.
[53]
GUILMEAU S, BUYSE M, TSOCAS A, et al. Duodenal leptin stimulates cholecystokinin secretion: evidence of a positive leptin-cholecystokinin feedback loop[J]. Diabetes, 2003, 52(7): 1664-1672. DOI:10.2337/diabetes.52.7.1664
[54]
REFSTIE S, KORS∅EN ∅ J, STOREBAKKEN T, et al. Differing nutritional responses to dietary soybean meal in rainbow trout (Oncorhynchus mykiss) and Atlantic salmon (Salmo salar)[J]. Aquaculture, 2000, 190(1/2): 49-63.
[55]
HEDRERA M I, GALDAMES J A, JIMENEZ-REYES M F, et al. Soybean meal induces intestinal inflammation in zebrafish larvae[J]. Plos One, 2013, 8(7): e69983. DOI:10.1371/journal.pone.0069983
[56]
GU M, JIA Q, ZHANG Z Y, et al. Soya-saponins induce intestinal inflammation and barrier dysfunction in juvenile turbot (Scophthalmus maximus)[J]. Fish & Shellfish Immunology, 2018, 77: 264-272.
[57]
HAGEMAN J H, HEINZ M C, KRETZSCHMAR K, et al. Intestinal regeneration: regulation by the microenvironment[J]. Developmental Cell, 2020, 54(4): 435-446. DOI:10.1016/j.devcel.2020.07.009
[58]
WELLS J M, WATT F M. Diverse mechanisms for endogenous regeneration and repair in mammalian organs[J]. Nature, 2018, 557(7705): 322-328. DOI:10.1038/s41586-018-0073-7
[59]
CATTERSON J H, KHERICHA M, DYSON M C, et al. Short-term, intermittent fasting induces long-lasting gut health and TOR-independent lifespan extension[J]. Current Biology, 2018, 28(11): 1714-1724.e4. DOI:10.1016/j.cub.2018.04.015