食欲素(orexin)A和B(又称orexin 1和orexin 2)是一对来自同一食欲素前体(preproorexin)的神经肽[1]。orexin神经元主要分布于下丘脑外侧区、穹隆周区以及下丘脑后核,且呈对称的间断性分布[2]。orexin通过作用于细胞表面G蛋白偶联受体而产生生理效应,食欲素A受体(OX1R)和食欲素B受体(OX2R)分布在大脑的不同区域[3],OX1R mRNA集中表达在下丘脑腹内侧核,而OX2R mRNA集中表达在结节乳头核、室旁核、弓状核、下丘脑外侧区及穹隆周区[4, 5, 6]。此外,orexin及其受体也广泛存在于外周器官,表达细胞主要为内分泌细胞,如胸交感干神经节、胃、肠、胰腺、肾脏、肾上腺、胎盘、睾丸、附睾等[7]。事实上,orexin神经元通过响应外周血液葡萄糖、瘦素以及胃饥饿素的代谢信号能直接感受有机体的营养状况[8, 9, 10]。一方面,当血液葡萄糖水平低时,preproorexin mRNA会呈现高表达,反之亦然[7, 11];另一方面,orexin缺陷会导致嗜眠发作,诱发肥胖症和2型糖尿病发作[12]。preproorexin基因敲除鼠和orexin神经元剔除鼠尽管进食减少,但均会表现发作性嗜眠和迟发性肥胖症状[13, 14, 15]。因此,orexin是一个衔接能量状况与唤醒水平的重要基因[16]。
下丘脑是最重要的糖代谢及能量平衡中枢调节部位。最新研究表明,下丘脑小胶质细胞和星形胶质细胞,尤其是星形胶质细胞释放的细胞因子在能量代谢及肥胖诱导方面发挥着重要作用[17]。同时,在下丘脑中存在着多种激素和神经肽,它们共同参与和协调外周组织的糖代谢平衡,如肝脏和骨骼肌[17, 18, 19]。然而,下丘脑中复杂的代谢信号整合及其分子机制尚未明确。但有研究报道,下丘脑orexin不仅感应外围组织的代谢信号,而且通过自主神经系统调节糖的产生和利用[19, 20],提示orexin可能是作为一个主调节器来调节中枢与外周组织的激素水平,进一步维持整个机体能量代谢平衡。本文综述了下丘脑orexin在糖代谢中的作用模式及其分子机制。
中枢神经系统能够感应机体的营养状况,并做出适当的食欲调节行为和相应的代谢反应,以维持机体的能量平衡。然而,能量自我平衡机制的紊乱将会导致机体代谢异常而引起相关疾病。下丘脑是各种食欲调节信号的主要整合中枢之一,而糖感应神经元主要分布在下丘脑、脑干等大脑的特定区域,根据脑脊液正常生理范围中外源性糖水平的变化,将其分为2组,即糖兴奋性神经元(GE)和糖抑制性神经元(GI)[21, 22]。外侧区orexin神经元和弓状核神经肽Y(NPY)神经元属于GI,而下丘脑外侧区促黑色素激素神经元和弓状核阿黑皮素原神经元属于GE[21, 23]。
在GE中,有2个糖感应途径,要么是依赖胞质糖代谢的,要么是独立糖代谢的。新陈代谢中的糖感应与从葡萄糖到ATP的糖激酶依赖性代谢相关,通过关闭ATP敏感性钾通道(KATP)来增加神经活动;反之,在新陈代谢中,非糖激酶依赖性代谢是通过钠-葡萄糖协同转运蛋白来调节的。
orexin神经元的糖感应效应,主要是一类GI的活动,属于独立的新陈代谢类型,因其糖感应效应不受糖激酶抑制剂的影响,并且被非代谢葡萄糖类似物2-脱氧葡萄糖所替代[24],而准确的机制,尤其是与糖诱导抑制物相关的功能性分子机制尚未明晰[19]。orexin神经元不会被L-葡萄糖、半乳糖、α-甲基-D-葡萄糖苷或果糖抑制,然而GE却能感应半乳糖[24]。最新报道,根据功能将orexin神经元视为“条件性糖感受器”,当细胞内能量水平(胞质中的丙酮酸、乳酸盐或ATP)低时,orexin神经元的电活动会被糖有效地抑制;反之,高能量水平时这种抑制作用将会减弱[25]。
orexin神经元糖感应效应的另一个重要作用是对葡萄糖产生“适应性反应”。有研究报道,小鼠约70%的orexin神经元表现出时间依赖性,即适应性关闭离子通道(如钾离子通道)来抑制葡萄糖水平的恢复[26]。由此表明,orexin神经元能通过感应基础血液葡萄糖识别血液葡萄糖水平的变化,同时能在任何内环境血液葡萄糖水平下保持其兴奋性。该特征有助于饭后避免发作性嗜眠症的攻击。此外,orexin神经元可表现出非适应性糖感应,这可能在检测葡萄糖的绝对水平中发挥着重要作用,从而有助于维持机体的能量代谢平衡。
orexin神经元进一步表现出独特的体内糖感应效应。如在侧脑室注射orexin A后会使该小鼠增加甜味食物的消耗量,如糖精和蔗糖[27, 28];此外,preproorexin基因敲除小鼠的蔗糖摄入量显著低于野生型小鼠,提示下丘脑orexin系统能促进甜味营养食物的消耗,而有利于提高有机体的生存概率[29]。
与葡萄糖抑制相比,氨基酸是通过ATP敏感性钾离子通道的抑制和α-氨基酸转运系统的激活作用于orexin神经元电活动,其中优先运输非必需氨基酸[30]。事实上,人体非必需氨基酸是较必需氨基酸更能有效地激活orexin神经元。氨基酸能抑制葡萄糖对orexin神经元的抑制,其对orexin神经元独特的感应效应可能在机体氨基酸循环水平的监测中发挥着重要作用。此外,当机体缺乏必需氨基酸时,独立于循环的血液葡萄糖水平而促进食物的摄入,而体内脂肪酸不会影响orexin神经元的活动。orexin有助于棕色脂肪组织的产生,棕色脂肪不同于白色脂肪的储存效应,是燃烧产生热量,与orexin增加机体自主性活动、生热作用以及抗肥胖机制高度一致[31]。orexin B可通过对胰岛素分泌的调节降低血液葡萄糖而增加摄食[31],还可通过胰岛素对脂肪的同化作用直接导致肥胖和胰岛素抵抗的发生和发展[32],因此,orexin可能是参与调节“脂肪-胰岛轴”的关键基因。在orexin神经元中,仅orexin A可刺激胃酸分泌,而切断迷走神经可抑制orexin A的作用,表明orexin A是通过迷走神经介导胃酸分泌的[33]。因此,饮食不均衡,如长时间食用富含碳水化合物或蛋白质的食物,可改变orexin神经元的营养感应信号途径或相关激素调节水平,从而影响整个机体的能量平衡[30]。综上所述,orexin神经元对机体营养状况的感应作用是葡萄糖动态平衡调节中非常重要的机制之一。
研究表明,orexin在体内葡萄糖平衡的调节中发挥着非常重要的作用[19, 20]。然而,orexin在一定试验条件下能产生截然相反的生理效应,即升血液葡萄糖效应和降血液葡萄糖效应。
在大鼠非空腹情况下,一次性皮下注射orexin A(1 nmol)会使其血液葡萄糖和胰岛素水平均升高[34]。同样,在非空腹非麻醉状态下,第三脑室注射orexin A(15 nmol)也会使其血液葡萄糖和胰岛素水平升高,以及体温升高和移行性活动增多,但不会影响棕色脂肪组织解偶联蛋白-1(UCP1)基因的表达[35]。给动物灌注orexin A可促进饮食增强,但随着灌注时间延长,这种作用将逐渐减弱,原因可能是持续给orexin A引起脑脊液中肽类物质蓄积,从而引起orexin受体不敏感[36]。在家兔有意识非空腹状态下,侧脑室注射orexin A(100 pmol)可引发平均动脉压升高、肾交感神经活动增加以及血浆肾上腺素和葡萄糖水平升高[37]。在大鼠禁食5 h后,连续经侧脑室注射orexin A(1 mmol/L,5 μL/h),可导致血液葡萄糖水平升高,并且可阻止白天内源性肝糖元生成量(endogenous hepatic glucose production,EGP)的减少[38];在肝脏去交感神经后,orexin可诱导EGP显著升高。此外,γ-氨基丁酸受体拮抗剂给于穹隆周区时,可激活orexin神经元,基底EGP升高,而胰岛素介导EGP的抑制效应减弱,但胰岛素诱导的葡萄糖代谢功能却增强。上述结果表明,orexin的中枢功能是刺激交感神经,促进肝脏EGP的合成和骨骼肌对葡萄糖的摄取[38]。
有研究表明[39],在不改变血清胰岛素浓度的条件下,正常小鼠和链脲霉素诱导的糖尿病小鼠,静脉注射orexin A(0.01~1.00 nmol/kg)会导致空腹血液葡萄糖水平的降低;脑室注射低剂量(2 fmol)orexin A也会得到类似的效果;而在进食条件下orexin A降血液葡萄糖效应却没有观察到。在葡萄糖耐受性试验中,对大鼠进行腹腔注射orexin A(55 μg/kg),发现禁食过夜的大鼠血液葡萄糖水平下降[40];其与野生型小鼠相比,同一个标准饮食条件下,过表达orexin转基因小鼠体内的血液葡萄糖水平却正常,但胰岛素和瘦素浓度较低;此外,orexin转基因小鼠与野生型小鼠相比,高脂肪饮食会引发肥胖和葡萄糖非耐受性降低[41]。这一效应在orexin转基因小鼠和OX2R-/-小鼠的杂交后代中均消失,但在OX1R-/-小鼠的杂交后代中却仍然存在;而且,连续侧脑室注射OX2R选择性激动剂可抑制野生型小鼠因饮食引发的肥胖,但却并不影响缺乏瘦素ob/ob小鼠的体重。由此推测,orexin可能是通过OX2R依赖性机制来提高瘦素和胰岛素敏感性的,与此相反,在与肥胖相关的疾病中,OX1R信号会引发一些对机体不利的葡萄糖代谢效应[41];缺乏OX1R的小鼠若摄食高脂肪食品,高血液葡萄糖和高胰岛素症状则会减轻而不影响体重[41];对于肥胖ob/ob小鼠,OX1R拮抗剂可减少食物的摄入量,而体重将会下降;同时,会使空腹血液葡萄糖和血浆胰岛素水平降低,并增加代谢率[42]。
最近,为了解orexin中枢调节外周葡萄糖代谢功能的作用机制,Shuchi等[43]通过下丘脑腹内侧核注射orexin A(5 pmol)发现,orexin A可直接激活该核团神经元,增强骨骼肌对葡萄糖的摄取,并促进肌肉中胰岛素诱导的葡萄糖的摄取和糖原的合成,而这种效应却在白色脂肪组织中未发生;在骨骼肌肌细胞和非肌细胞中,orexin的上述效应是由与β2-肾上腺素受体信号相关联的交感神经系统的活化来调控。此外,Ramadori等[44]运用下丘脑腹内侧核神经元缺陷小鼠,研究了该核团神经元在体内葡萄糖平衡中的调控机制,当喂高热量食物时,与对照组相比,该缺陷小鼠表现出体重大幅增加,而能量消耗和瘦素抵抗均降低;此外,该突变小鼠表现出高胰岛素血症,葡萄糖耐受不良以及胰岛素抵抗,甚至出现重度肥胖等症状;有趣的是,对照组连续侧脑室注射orexin A(0.5 nmol/d),可改善高血液葡萄糖和高胰岛素血症,但对于该突变小鼠却未起到任何改善效果。上述结果表明,下丘脑腹内侧核是orexin A调节肌肉对葡萄糖利用的主要功能场所,然而,内源性orexin对肝葡萄糖体内平衡的中枢调控及其具体功能和复杂的受体亚型等机理仍待进一步研究。
另外,值得注意的是,在实验室使用的小鼠常常会表现出交感神经兴奋性增强,这可能是由相对较低的环境温度及自身所需热量所导致的[45];尽管整夜禁食可使交感神经兴奋显著降低,但短期禁食(1~2 h)也会使交感神经的兴奋性有所降低[46]。因此,orexin可能是通过自主神经平衡的微调来调节葡萄糖的代谢,在不同的试验条件下,不同的自主神经兴奋的程度是不同的,可能是orexin对2种糖代谢平衡不同效应调控的合理解释。
为了揭示长期缺乏orexin对葡萄糖稳态的影响,Cai等[47]研究了preproorexin基因敲除小鼠在发育过程中胰岛素的敏感性,在该小鼠(2~3月龄)的下丘脑中,通过蛋白激酶B磷酸化能诱发胰岛素信号出现紊乱,但却没有检测到明显的代谢异常;进一步研究发现,该小鼠(9月龄)的糖耐受性和胰岛素抗性均受到损坏;且在其下丘脑、肝脏及骨骼肌中,由蛋白激酶B途径介导的胰岛素信号被严重破坏;此外,该雌性小鼠随着年龄的增长会表现出高胰岛素血症。饥饿、限食、血液葡萄糖降低均可使preproorexin mRNA表达增多,但对于胰岛素注射后的大鼠,如果给予葡萄糖维持血液葡萄糖水平或允许大鼠进食,preproorexin mRNA表达则无显著变化[48, 49, 50];当老年鼠给予orexin时却不能使摄食增加,可能与老年鼠orexin受体水平下降有关[51]。上述研究结果表明,orexin的缺乏会导致下丘脑和外周组织胰岛素代谢功能的严重损伤,且随着年龄的增长,orexin是阻止胰岛素耐受性功能的一个关键因子。
参与葡萄糖代谢的主要外周器官功能受交感神经和副交感神经系统的双重调节[18]。下丘脑外侧区的刺激可促进肝迷走神经的活动;相反,其腹内侧核的刺激却可抑制迷走神经的活动[52];通过逆行神经示踪法分析表明,下丘脑外侧区orexin神经元可直接投射到肝脏和脂肪组织[53];进一步研究表明,orexin神经元在脊髓中间外侧柱与交感神经节前神经元接触,而脊髓中间外侧柱到肝脏的神经投射能促进肝脏葡萄糖的产生[54, 55, 56, 57];此外,orexin神经元的分布贯穿于大鼠的整个脑干,包括迷走神经背核和孤束核等[58, 59];且orexin A和orexin B能直接使迷走神经背核神经元去极化,对于外围组织包括肝脏是副交感神经支配的主要靶器官[55]。因此,orexin系统可能会通过交感和副交感神经的平衡变化来双重调节葡萄糖的代谢。低剂量的orexin A可能是通过副交感神经降低靶器官中脂类分解的[56],而高剂量的orexin A是通过交感神经促进靶器官中脂肪分解的[60];低剂量的orexin A会引起心血管抑制效应,相反高剂量的orexin A则会导致心血管兴奋[61, 62]。
据报道,生物钟调节肝脏和其他外周组织的血液葡萄糖和血脂代谢[63, 64, 65]。下丘脑orexin神经元接受来自大脑众多神经核团纤维的密集投射,包括视前区、背内侧核、下丘脑后部、外侧隔及终纹床核;且穹隆周区orexin神经元受视交叉上核谷氨酸能和γ-氨基丁酸能神经元的支配,而视交叉上核是生物钟的中枢调节部位;进一步研究证明,orexin神经元参与睡眠/觉醒周期、食欲、情绪、自主神经活动以及昼夜节律性的调节[54, 64]。而且,已有研究表明,穹隆周区和下丘脑背内侧核的orexin神经元具有昼夜节律性活动,而下丘脑外侧区orexin神经元却没有该功能[66, 67]。
orexin基因表达和orexin在脑脊液浓度的变化均具有昼夜节律性[68, 69, 70, 71]。据报道,视交叉上核不仅调控睡眠/觉醒周期或进食/禁食行为,也节律性调节血液葡萄糖水平,主要通过交感神经和副交感神经感应肝葡萄糖的产生、变化来调节[51]。血液葡萄糖水平节律性的变化独立于日常摄食节律或者独立于调节葡萄糖的激素水平,如胰岛素、胰高血糖素和皮质酮等[51]。在睡眠结束时,脑室注射orexin拮抗剂会完全阻止内源性葡萄糖水平的上升,这表明穹隆周区orexin神经元是调控血液葡萄糖水平昼夜节律性变化的主要因素[52]。因此,orexin在生物钟,尤其在睡眠/觉醒周期和葡萄糖体内平衡相互联系之间发挥着重要的作用。在不同试验条件下,虽然orexin A独立表现出升高或降低血液葡萄糖的效应,但各自的效应可能是相互关联的,尤其是血液葡萄糖水平昼夜节律性的上升和下降。在正常生理条件下,orexin如何充分协调相反效应的具体机制,仍需进一步研究。
有研究表明,orexin具有调节外围组织能量平衡和葡萄糖动态平衡的功能[72],但其功能意义尚未明确。主要原因可能是orexin的循环水平非常低,且在胰腺、肝脏、脂肪或肌肉组织中并未检测到preproorexin以及OX1R和OX2R的mRNA[73]。最近,Skrzypski等[74]研究表明,orexin A能促进机体靶器官对葡萄糖的摄取、脂质的积累及脂联素的分泌,其效应是由磷酸肌醇3激酶(PI3K)和过氧化物酶体增殖物激活受体γ2(PPARγ2)介导的,表明在白色脂肪组织中orexin是作为胰岛素的增敏剂;Sellayah等[75]发现,在preproorexin基因敲除小鼠中,高脂肪饮食诱导的肥胖与受损的褐色脂肪组织产热功能有关,并且该小鼠产热功能的丧失是由于棕色脂肪细胞无法完成分化所致;此外,在棕色脂肪前体细胞培养中,orexin A可通过OX1R、蛋白激酶激活p38分裂素和骨形态发生蛋白受体-1a依赖性信号转导蛋白(Smad1/5)而促进褐色脂肪细胞分化[75]。中枢orexin A并不影响解偶联蛋白1基因的表达水平,而该蛋白在大鼠褐色脂肪组织中却是一种产热调节因子[76]。有研究表明,对于由高脂肪饮食诱导的肥胖,orexin可能是通过增加自主性活动和增强与orexin偶联的下丘脑神经元的敏感性来抵抗的[77]。然而,中枢orexin是否通过自主神经系统参与调节脂肪细胞分化及其功能,还有待进一步探讨。
在下丘脑外侧区中,多数具有功能性瘦素受体的神经元含有神经降压素,而这些神经元与orexin神经元和脑边缘多巴胺能系统存在某种联系[77];特别是没有瘦素受体的缺陷性神经降压素神经元的小鼠,表现出食物摄入量增加,而患早发性肥胖症,且自发活动也减少[78]。该研究结果表明,在下丘脑外侧区,含神经降压素的瘦素神经元是通过orexin神经元的激活以及中脑边缘多巴胺能系统来调控有机体能量平衡的。另外,orexin与下丘脑其他调节摄食的神经元有着密切而复杂的联系,如,NPY神经元位于下丘脑弓状核,在下丘脑稳态包括能量稳态的调控中发挥着重要作用,中枢途径给予NPY可增加摄食和体重;阿黑皮素原(proopiomelanocortin,POMC)是抑制食欲的神经多肽α-黑素细胞刺激素(α-MSH)的前体,orexin神经元与NPY神经元和POMC神经元都有突触联系,能兴奋NPY神经元协同增加摄食,而对POMC神经元则是抑制作用[79]。
限制性饮食可有效提高辅酶Ⅰ(NAD+)依赖去乙酰化酶沉默调节因子1(SIRT1)基因的表达水平,且诱导下丘脑背内侧核和外侧核神经元的活化[80];脑特异性SIRT1转基因小鼠下丘脑背内侧核和外侧核神经元的活性增强、体温升高及觅食活动增加,而SIRT1基因缺陷小鼠没有观察到该反应。在下丘脑背内侧核和外侧核中,限制性饮食以SIRT1基因表达依赖性的方式诱导OX2R基因的表达增强;进一步研究表明,SIRT1可直接提高OX2R的启动子活性,而对OX1R未产生影响。上述研究结果表明,下丘脑背内侧核和外侧核神经元OX2R介导的激活作用的增强可能是对饮食限制产生的适应性反应,如增加产热和觅食活动等[81]。
叉头框转录因子(Foxa2)集中表达在下丘脑外侧区orexin神经元和黑色素浓集激素神经元,其亚细胞水平的表达受胰岛素的调节[82]。禁食期间,Foxa2与orexin和黑色素浓集激素启动子结合,激活其基因表达;而在进食状态下,胰岛素信号诱导Foxa2核排斥,从而减少orexin和黑色素浓集激素基因的表达[82]。在Foxa2突变体小鼠大脑中,orexin和黑色素浓集激素基因的表达增强,且食物摄入量和自发性活动均有增加,有趣的是,在胰岛素耐受测试中,该突变小鼠也表现出胰岛素敏感性增强[82]。上述研究结果表明,在下丘脑外侧区,orexin神经元通过胰岛素在葡萄糖稳态的中枢调控中发挥着至关重要的作用。
下丘脑orexin神经元能精确地感应外周组织的营养状态,通过改变自主神经平衡来调节血液葡萄糖的平衡,并以组织依赖性调控葡萄糖的生产和利用。由此推测,下丘脑orexin系统可能是通过对自主神经系统的双向调节参与睡眠与觉醒周期、饮食、葡萄糖动态平衡及昼夜节律等多项任务,进一步协同调控动物机体内糖和能量的平衡代谢。在全球范围内,代谢性疾病患者与日俱增,严重影响着人类的健康与发展。到目前为止,尽管在下丘脑orexin参与糖和能量代谢的研究方面已取得巨大突破,但其具体机理还需进一步深究。因此,本综述将为相关代谢性疾病病理研究及治疗药物的研发提供必要的信息与新思路。
[1] | SAKURAL T.The neural circuit of orexin (hypocretin):maintaining sleep and wakefulness[J]. Nature Reviews Neuroscience,2007,8(3):171-181. (![]() |
[2] | DE LECEA L,KILDUFF T S,PEYRON C,et al.The hypocretins:hypothalamus-specific peptides with neuroexcitatory activity[J]. Proceedings of the National Academy of Sciences of the United States of America,1998,95(1):322-327. (![]() |
[3] | SAKURAL T,MIEDA M.Connectomics of orexin-producing neurons:interface of systems of emotion,energy homeostasis and arousal[J]. Trends in Pharmacological Sciebces,2011,32(8):451-462. (![]() |
[4] | WILLIE J T,TAKAHIRA H,SHIBAHARA M,et al.Ectopic overexpression of orexin alters sleep/wakefulness states and muscle tone regulation during REM sleep in mice[J]. Journal of Molecular Neuroscience,2011,43(2):155-161. (![]() |
[5] | TRIVEDI P,YU H,MACNEIL D J,et al.Distribution of orexin receptor mRNA in the rat brain[J]. FEBS Letters,1998,438(1/2):71-75. (![]() |
[6] | MARCUS J N,ASCHKENASI C J,LEE C E,et al.Differential expression of orexin receptors 1 and 2 in the rat brain[J]. The Journal of Comparative Neurology,2001,435(1):6-25. (![]() |
[7] | 赵玉岩,郭磊,都健,等.增食欲素受体l在大鼠胰岛细胞中的表达研究[J]. 中国医科大学学报,2008,37(3):304-306. (![]() |
[8] | MORIGUCHI T,SAKURAI T,NAMBU T,et al.Neurons containing orexin in the lateral hypothalamic area of the adult rat brain are activated by insulin-induced acute hypoglycemia[J]. Neuroscience Letters,1999,264(1/2/3):101-104. (![]() |
[9] | YAMANAKA A,BEUCKMANN C T,WILLIE J T,et al.Hypothalamic orexin neurons regulate arousal according to energy balance in mice[J]. Neuron,2003,38(5):701-713. (![]() |
[10] | BURDAKOV D,GERASIMENKO O,VERKHRATSKY A.Physiological changes in glucose differentially modulate the excitability of hypothalamic melanin-concentrating hormone and orexin neurons in situ[J]. The Journal of Neuroscience,2005,25(9):2429-2433. (![]() |
[11] | GRIFFOND B,RISOLD P Y,JACQUEMARD C,et al.Insulin-induced hypoglycemia increases preprohypocretin (orexin) mRNA in the rat lateral hypothalamic area[J]. Neuroscience Letters,1999,262(2):77-80. (![]() |
[12] | SCHULD A,HEBEBRAND J,GELLER F,et al.Increased body-mass index in patients with narcolepsy[J]. Lancet,2000,355(9211):1274-1275. (![]() |
[13] | KOTZ C,NIXON J,BUTTERICK T,et al.Brain orexin promotes obesity resistance[J]. Annals of the New York Academy of Sciences,2012,1264(1):72-86. (![]() |
[14] | HARA J,BEUCKMANN CT,NAMBU T,et al.Genetic ablation of orexin neurons in mice results in narcolepsy,hypophagia,and obesity[J]. Neuron,2001,30(2):345-354. (![]() |
[15] | HARA J,YANAGISWA M,SAKURAI T.Difference in obesity phenotype between orexin-knockout mice and orexin neuron-deficient mice with same genetic background and environmental conditions[J]. Neuroscience Letters,2005,380(3):239-242. (![]() |
[16] | BURDAKOV D,ALEXOPOULOS H.Metabolic state signalling through central hypocretin/orexin neurons[J]. Journal of Cellular and Molecular Medicine,2005,9(4):795-803. (![]() |
[17] | GARCÍA-CÁCERES C,YI C X,TSCHOP M H.Hypothalamic astrocytes in obesity[J]. Endocrinology and Metabolism Clinics of North America,2013,42(1):57-66. (![]() |
[18] | MARINO J S,XU Y,HILL J W.Central insulin and leptin-mediated autonomic control of glucose homeostasis[J]. Trends in Endocrinology and Metabolism,2011,22(7):275-285. (![]() |
[19] | KARNANI M,BURDAKOV D.Multiple hypothalamic circuits sense and regulate glucose levels[J]. American Journal of Physiology:Regulatory,Integrative and Comparative Physiology,2011,300(1):R47-R55. (![]() |
[20] | TSUNEKI H,WADA T,SASAOKA T.Role of orexin in the regulation of glucose homeostasis[J]. Acta Physiologica,2010,198(3):335-348. (![]() |
[21] | BURDAKOV D,GONZÁLEZ J A.Physiological functions of glucose-inhibited neurones[J]. Acta Physiologica,2009,195(1):71-78. (![]() |
[22] | GONZALEZ J A,REIMANN F,BURDAKOV D.Dissociation between sensing and metabolism of glucose in sugar sensing neurones[J]. Journal of Physiologica,2009,587(1):41-48. (![]() |
[23] | BURDAKOV D,LUCKMAN S M,VERKHRATSKY A.Glucose-sensing neurons of the hypothalamus[J]. Philosophical Transactions of the Royal Society of London:Series B,Biological Sciences,2005,360:2227-2235. (![]() |
[24] | GONZÁLEZ J A,JENSEN L T,FUGGER L,et al.Metabolism-independent sugar sensing in central orexin neurons[J]. Diabetes,2008,57(10):2569-2576. (![]() |
[25] | VENNER A,KARNANI M M,GONZALEZ J A,et al.Orexin neurons as conditional glucosensors:paradoxical regulation of sugar sensing by intracellular fuels[J]. Journal of Physiology,2011,589(Pt 23):5701-5708. (![]() |
[26] | WILLIAMS R H,ALEXOPOULOS H,JENSEN L T,et al.Adaptive sugar sensors in hypothalamic feeding circuits[J]. Proceedings of the National Academy of Sciences of the United States of America,2008,105(33):11975-11980. (![]() |
[27] | FURUDONO Y,ANDO C,YAMAMOTO C,et al.Involvement of specific orexigenic neuropeptides in sweetener-induced overconsumption in rats[J]. Behavioural Brain Research,2006,175(2):241-248. (![]() |
[28] | BAIRD J P,CHOE A,LOVELAND J L,et al.Orexin-A hyperphagia:hindbrain participation in consummatory feeding responses[J]. Endocrinology,2009,150(3):1202-1216. (![]() |
[29] | MATSUO E,MOCHIZUKI A,NAKAYAMA K,et al.Decreased intake of sucrose solutions in orexin knockout mice[J]. Journal of Molecular Neuroscience,2011,43(2):217-224. (![]() |
[30] | KARNANI M M,APERGS-SCHOUTE J,ADAMANTIDIS A,et al.Activation of central orexin/hypocretin neurons by dietary amino acids[J]. Neuron,2011,72(4):616-629. (![]() |
[31] | PEREZ-LEIGHTON C E,BUTTERCK-PETERSON T A,BILLINGGTON C J,et al.Role of orexin receptors in obesity:from cellular to behavioral evidence[J]. International Journal of Obesity,2013,37(2):167-174. (![]() |
[32] | YOSHIMICHI G,YOSHIMATSU H,MASAKI T,et al.Orexin-A regulates body temperature in coordination with arousal status[J]. Experimental Biology and Medicine (Maywood),2001,226(5):468-476. (![]() |
[33] | CAI X J,EVANS M L,LISTER C A,et al.Hypoglycemia activates orexin neurons and selectively increases hypothalamic orexin-B levels:responses inhibited by feeding and possibly mediated by the nucleus of the solitary tract[J]. Diabetes,2001,50(1):105-112. (![]() |
[34] | OUEDRAOGO R,NASLUND E,KIRCHGESSNER A L.Glucose regulates the release of orexin-A from the endocrine pancreas[J]. Diabetes,2003,52(1):111-117. (![]() |
[35] | SAKURAI T.Roles of orexins in regulation of feeding and wakefulness[J]. Neuroreport,2002,13(8):987-995. (![]() |
[36] | MATSUMURA K,TSUCHIHASHI T,ABE I.Central orexin-a augments sympathoadrenal outflow in conscious rabbits[J]. Hypertension,2001,37(6):1382-1387. (![]() |
[37] | YI C X,SERLIE M J,ACKERMANS M T,et al.A major role for perifornical orexin neurons in the control of glucose metabolism in rats[J]. Diabetes,2009,58(9):1998-2005. (![]() |
[38] | TSUNEKI H,SUGIHARA Y,HONDA R,et al.Reduction of blood glucose level by orexins in fasting normal and streptozotocin-diabetic mice[J]. European Journal of Pharmacology,2002,448(2/3):245-252. (![]() |
[39] | DUCROC R,VOISIN T,EL FIRAR A,et al.Orexins control intestinal glucose transport by distinct neuronal,endocrine,and direct epithelial pathways[J]. Diabetes,2007,56(10):2494-2500. (![]() |
[40] | INUI A.Transgenic approach to the study of body weight regulation[J]. Pharmacological Reviews,2000,52(1):35-61. (![]() |
[41] | FUNATO H,TSAI A L,WILLIE J T,et al.Enhanced orexin receptor-2 signaling prevents diet-induced obesity and improves leptin sensitivity[J]. Cell Metabolism,2009,9(1):64-76. (![]() |
[42] | HAYNES A C,CHAPMAN H,TAYLOU C,et al.Anorectic,thermogenic and anti-obesity activity of a selective orexin-1 receptor antagonist in ob/ob mice[J]. Regulatory Peptides,2002,104(1/2/3):153-159. (![]() |
[43] | SHUCHI T,HAPUE M S,OKAMOTO S,et al.Hypothalamic orexin stimulates feeding-associated glucose utilization in skeletal muscle via sympathetic nervous system[J]. Cell Metabolism,2009,10(6):466-480. (![]() |
[44] | RAMADORI G,FUJIKAWA T,ANDERSON J,et al.SIRT1 deacetylase in SF1 neurons protects against metabolic imbalance[J]. Cell Metabolism,2011,14(3):301-312. (![]() |
[45] | WILLIAMS T D,CHAMBERS J B,ROBERTS L M,et al.Diet-induced obesity and cardiovascular regulation in C57BL/6J mice[J]. Clinical and Experimental Pharmacology and Physiology,2003,30(10):769-778. (![]() |
[46] | TANNER J M,KEARNS D T,KIM B J,et al.Fasting-induced reductions in cardiovascular and metabolic variables occur sooner in obese versus lean mice[J]. Experimental Biology and Medicine,2010,235(12):1489-1497. (![]() |
[47] | CAI X J,WIDDOWSON P S,HARROLD J,et al.Hypothalamic orexin expression:modulation by blood glucose and feeding[J]. Diabetes,1999,48(11):2132-2137. (![]() |
[48] | GRIFFOND B,RISOLD P Y,JACQUEMARD C,et al.Insulin-induced hypoglycemia increases preprohypocretin(orexin)mRNA in the rat lateral hypothalamic area[J]. Neuroscience Letters,1999,262(2):77-80. (![]() |
[49] | TAKANO S,KANAI S,HOSOYA H,et al.Orexin-a does not stimulate food intake in old rats[J]. American Journal of Physiology:Gastrointestinal and Liver Physiology,2004,287(6):1182-1187. (![]() |
[50] | TSUNEKI H,MURATA S,ANZAWA Y,et al.Age-related insulin resistance in hypothalamus and peripheral tissues of orexin knockout mice[J]. Diabetologia,2008,51(4):657-667. (![]() |
[51] | YOSHIMATSU H,NIIJIMA A,OOMURA Y,et al.Lateral and ventromedial hypothalamic influences on hepatic autonomic nerve activity in the rat[J]. Brain Research Bulletin,1988,21(2):239-244. (![]() |
[52] | STANLEY S,PINTO S,SEGAL J,et al.Identification of neuronal subpopulations that project from hypothalamus to both liver and adipose tissue polysynaptically[J]. Proceedings of the National Academy of Sciences of the United States of America,2010,107(15):7024-7029. (![]() |
[53] | VAN DEN TOP M,NOLAN M F,LEE K,et al.Orexins induce increased excitability and synchronisation of rat sympathetic preganglionic neurones[J]. Journal of Physiology,2003,549(3):809-821. (![]() |
[54] | KALSBEEK A,YI C X,LA FLEUR S E,et al.The hypothalamic clock and its control of glucose homeostasis[J]. Trends in Endocrinology and Metabolism,2010,21(7):402-410. (![]() |
[55] | KALSBEEK A,SCHEER F A,PERREAU-LEBZ S,et al.Circadian disruption and SCN control of energy metabolism[J]. FEBS Letters,2011,585(10):1412-1426. (![]() |
[56] | PEYRON C,TIGHE D K,VAN DEN POL A N,et al.Neurons containing hypocretin(orexin)project to multiple neuronal systems[J]. Journal of Neuroscience,1998,18(23):9996-10015. (![]() |
[57] | HARRISON T A,CHEN C T,DUN N J,et al.Hypothalamic orexin A-immunoreactive neurons project to the rat dorsal medulla[J]. Neuroscience Letters,1999,273(1):17-20. (![]() |
[58] | HWANG L L,CHEN C T,DUN N J.Mechanisms of orexin-induced depolarizations in rat dorsal motor nucleus of vagus neurones in vitro[J]. Journal of Physiology,2001,537(2):511-520. (![]() |
[59] | KREIER F,BUIJS R M.Evidence for parasympathetic innervation of white adipose tissue,clearing up some vagaries[J]. American Journal of Physiology:Regulatory,Integrative and Comparative Physiology,2007,293(1):R548-R549. (![]() |
[60] | SHEN J,TANIDA M,YAO J F,et al.Biphasic effects of orexin-A on autonomic nerve activity and lipolysis[J]. Neuroscience Letters,2008,444(24):166-171. (![]() |
[61] | TANIDA M,NIIJIMA A,SHEN J,et al.Dose-different effects of orexin-A on the renal sympathetic nerve and blood pressure in urethane-anesthetized rats[J]. Experimental Biology and Medicine (Maywood),2006,231(10):1616-1625. (![]() |
[62] | SHIH C D,CHUANG Y C.Nitric oxide and GABA mediate bi-directional cardiovascular effects of orexin in the nucleus tractus solitarii of rats[J]. Neuroscience,2007,149(3):625-635. (![]() |
[63] | BASS J,TAKAHASHI J S.Circadian integration of metabolism and energetics[J]. Science,2010,330:1349-1354. (![]() |
[64] | FROY O.Metabolism and circadian rhythms-implications for obesity[J]. Endocrine Reviews,2010,31(1):1-24. (![]() |
[65] | HUANG W Y,RAMSEY K M,MARCHEVA B,et al.Circadian rhythms,sleep,and metabolism[J]. Journal of Clinical Investigation,2011,121(6):2133-2141. (![]() |
[66] | YOSHIDA K,MCCORMACK S,ESPAR A,et al.Afferents to the orexin neurons of the rat brain[J]. Journal of Comparative Neurology,2006,494(5):845-861. (![]() |
[67] | ESTABROOKE I V,MCCARTHY M T,KO E,et al.Fos expression in orexin neurons varies with behavioral state[J]. Journal of Neuroscience,2001,21(5):1656-1662. (![]() |
[68] | GOMPF H S,ASTON-JONES G.Role of orexin input in the diurnal rhythm of locus coeruleus impulse activity[J]. Brain Research,2008,1224:43-52. (![]() |
[69] | TAHERI S,SUNTER D,DAKIN C,et al.Diurnal variation in orexin A immunoreactivity and prepro-orexin mRNA in the rat central nervous system[J]. Neuroscience Letters,2000,279(2):109-112. (![]() |
[70] | FUJIKI N,YOSHIDA Y,RIPLEY B,et al.Changes in CSF hypocretin-1 (orexin A) levels in rats across 24 hours and in response to food deprivation[J]. Neuroreport,2001,12(5):993-997. (![]() |
[71] | YOSHIDA Y,FUJIKI N,NAKAJIMA T,et al.Fluctuation of extracellular hypocretin-1 (orexin A) levels in the rat in relation to the light-dark cycle and sleep-wake activities[J]. European Journal of Neuroscience,2001,14(7):1075-1081. (![]() |
[72] | DESARNAUD F,MURILLO-RODRIGUEZ E,LIN L,et al.The diurnal rhythm of hypocretin in young and old F344 rats[J]. Sleep,2004,27(5):851-856. (![]() |
[73] | HEINONEN M V,PURHONEN A K,MÄKELÄ K A,et al.Functions of orexins in peripheral tissues[J]. Acta Physiologica,2008,192(4):471-485. (![]() |
[74] | JÖHREN O,NEIDERT S J,KUMMER M,et al.Prepro-orexin and orexin receptor mRNAs are differentially expressed in peripheral tissues of male and female rats[J]. Endocrinology,2001,142(8):3324-3331. (![]() |
[75] | SKRZYPSKI M,LE T T,KACEMAREK P,et al.Orexin A stimulates glucose uptake,lipid accumulation and adiponectin secretion from 3T3-L1 adipocytes and isolated primary rat adipocytes[J]. Diabetologia,2011,54(7):1841-1852. (![]() |
[76] | BUTTERICK T A,NIXON J P,BILLINGTON C J,et al.Orexin A decreases lipid peroxidation and apoptosis in a novel hypothalamic cell model[J]. Neuroscience Letters,2012,524(1):30-34. (![]() |
[77] | SELLAYAH D,BHARAJ P,SIKDER D.Orexin is required for brown adipose tissue development,differentiation,and function[J]. Cell Metabolism,2011,14(4):478-490. (![]() |
[78] | LEINNINGER G M,OPLAND D M,JO Y H,et al.Leptin action via neurotensin neurons controls orexin,the mesolimbic dopamine system and energy balance[J]. Cell Metabolism,2011,14(4):313-323. (![]() |
[79] | MUROYA S,FUNAHASHI H,YAMANAKA A,et al.Orexins (hypocretins) directly interact with neuropeptide Y,POMC and glucose-responsive neurons to regulate Ca2+ signaling in a reciprocal manner to leptin:orexigenic neuronal pathways in the mediobasal hypothalamus[J]. European Journal of Neuroscience,2004,19(6):1524-1534. (![]() |
[80] | SATOH A,BRACE C S,BEN-JOSEF G,et al.SIRT1 promotes the central adaptive response to diet restriction through activation of the dorsomedial and lateral nuclei of the hypothalamus[J]. Journal of Neuroscience,2010,30(30):10220-10232. (![]() |
[81] | SILVA J P,VON MEYENN F,HOWELL J,et al.Regulation of adaptive behaviour during fasting by hypothalamic Foxa2[J]. Nature,2009,462:646-650. (![]() |
[82] | WILD S,ROGLiC G,GREEN A,et al.Global prevalence of diabetes:estimates for the year 2000 and projections for 2030[J]. Diabetes Care,2004,27(5):1047-1053. (![]() |