2. 挪威国家海产品营养研究所, 卑尔根 5817;
3. 挪威斯克雷廷水产研究中心, 斯塔万格 4002
2. National Institute of Nutrition and Seafood Research (NIFES), Bergen 5817, Norway;
3. Skretting Aquaculture Research Centre (ARC), Stavanger 4002, Norway
脂质是鱼类的主要能源之一,大西洋鲑(Salmo salar L.)所需能源的20%~30%来自饲料中的脂质[1]。由于全球渔业的有限捕捞量使鱼油作为饲料脂肪源的供应不足,因此,饲用鱼油急需由其他脂肪源来替代,而来源广泛、价格低廉的植物油则成为替代首选[2]。研究发现,植物油取代鱼油对鱼类生长无显著影响,但会改变鱼体组织脂肪酸组成,表现为十八碳脂肪酸含量的增加及二十碳高不饱和脂肪酸(HUFA)含量的减少[3, 4, 5, 6, 7, 8, 9, 10]。因此,不同脂肪源与鱼体脂质代谢密切相关,然而其机理尚需进一步研究。
在脂肪酸结合蛋白(fatty acid binding proteins,FABPs)以非共价键结合形式[11]的运送下,细胞内游离脂肪酸(free fatty acid,FFA)经以下途径进行代谢,一个途径是脂肪酸与磷酯酰甘油等合成磷脂(phospholipids,PLs),成为细胞膜结构脂质;另一个途径是脂肪酸与胞内一酰或二酰甘油在相应酶作用下合成三酰甘油(triacylglycerol,TAG)而成为贮存脂质。此外,脂肪酸可由肉碱棕榈酰转移酶-Ⅰ(CPT-Ⅰ)运入线粒体进行β-氧化供能,或在Δ5去饱和酶(delta 5 desaturase,D5D)和Δ6去饱和酶(delta 6 desaturase,D6D)等的作用下,转变成碳链更长及不饱和性更高的脂肪酸,同时脂肪酸也可进入细胞核内作为信号转录因子对细胞脂代谢进行调控[12]。随着机体代谢需要的不同,脂肪酸在细胞内会有不同的代谢途径,而不同脂肪源的饲喂是否影响细胞内脂肪酸的代谢途径尚需进一步研究。
为此,本试验分别以鱼油与大豆油为脂肪源制成2种试验饲料,对大西洋鲑进行5个月的饲养,然后分离培养大西洋鲑肝细胞并将其与碳14标记油酸([1-14C]OA)共孵育后,收集细胞并分析细胞内各脂质成分及β-氧化产物的放射活性,以研究不同脂肪源对细胞脂肪酸代谢的影响,为大西洋鲑饲料中植物油替代鱼油提供理论依据,为养殖鱼类脂肪源的选择及其饲料业的可持续发展提供参考。
将100尾大西洋鲑幼鲑[尾均重(165±15) g]随机分为2组,每组50尾,分别饲喂以鱼油(Nordsildmel,Norway)和大豆油(Denofa,Norway)为脂肪源的试验饲料。试验饲料组成及营养水平见表1。
![]() | 表1 试验饲料组成及营养水平(风干基础) Table 1 Composition and nutrient levels of experimental diets (air-dry basis) % |
饲养试验在挪威海洋研究所水产实验室的室内养殖缸中进行,每天09:00和15:00分2次饱食投喂,饲养时间为5个月。饲养期间平均海水温度为10 ℃,盐度为32~34,24 h连续光照。饲养后期鱼体尾均重为580 g,2组间鱼体尾均重无显著差异(P>0.05)。
试验结束后,鱼油组和大豆油组随机选取大西洋鲑各3尾,分别用50 L加氧海水运回实验室。将大西洋鲑用0.1 g/L MS-222(化学名为3-氨基苯甲酸乙酯甲烷磺酸盐)麻醉,剖开鱼腹,以两步灌注法[13]消化肝脏并分离肝细胞。将肝细胞用L-15完全培养液制成细胞悬液。用台盼蓝测定细胞活力,活细胞率>85%的细胞悬液可进行细胞培养。将细胞分别培养于培养瓶(25 cm2)及培养板(6孔)中,所培养的细胞浓度分别为1.0×107活细胞/瓶和3.8×106活细胞/孔。培养瓶和培养板中的细胞于12 ℃过夜培养,分别用以脂肪酸胞内代谢试验和细胞总RNA提取及相关基因的分析试验。每个处理3尾鱼,每尾鱼2个重复(n=6)。
参照Ghioni等[15]的方法,试验前先将[1-14C]OA(American Radiolabeled Chemicals Inc.,Norway)与非标记油酸(OA)(Sigma,UK)分别与牛血清白蛋白(bovine serum albumin,BSA)按摩尔比2.5∶ 1.0以非共价键结合,再将[1-14C]OA与非标记OA以1∶ 30摩尔比混合并溶于DMEM培养液中,使培养基中非标记OA浓度为37.50 μmol/L,而[1-14C]OA浓度为1.25 μmol/L,从而制备成放射性培养液。试验时,将培养瓶的细胞与放射性培养液共孵育,同时旋紧瓶盖,2 h后将细胞连同培养液转入离心管中,于4 ℃下500×g离心5 min,收集上层培养液,同时于下层细胞团内加入0.5 mL 0.88% KCl溶液制成细胞悬液。移取细胞悬液50 μL与8 mL闪烁液(National Diagnostic,USA)混合,用闪烁计数器(United Technologies Packard,UK)测定细胞内总放射活性。将余下样品于-40 ℃保存,用于以下指标的测定。
由氯仿/甲醇(2∶ 1,体积比)法[16]抽提细胞总脂并将其溶于含0.05% 2,6-二叔丁基对甲酚(BHT)的50 μL氯仿中。用微量取样针移取10 μL上述氯仿溶液并将其轻轻涂于高效薄层色谱板(HPTLC;Merk,Germany)的指定位点上,再将其置于10 mL异己烷/二乙醚/乙酸(160∶ 50∶ 3,体积比)的混合溶剂中进行展片与脂质分离,风干后将HPTLC板置于碘蒸气中显色,通过与标准品进行对照,刮取各类脂质并分别将其与8 mL闪烁液混合,用闪烁计数器测定其放射活性。
[1-14C]OA的β-氧化产物包括放射性酸溶性产物(acid soluble products,ASPs)和14CO2 2类,其分析方法参照文献[17]和[18]进行测定。将100 μL细胞样品及细胞培养液分别与50 μL BSA溶液(6 g/mL)混合,然后加入500 μL 4 mol/L高氯酸,混匀后于3 500×g离心10 min,移取上清250 μL与8 mL闪烁液混合,用闪烁计数器测定其放射活性。
收集培养板中的细胞并按Trizol (Invitrogen,USA)法提取细胞总RNA,再用RNAwiz protocalTM 试剂盒及DNA酶先后分别对所提总RNA进行纯化和处理后,由分光光度法测其质量。
根据TaqMan反转录试剂盒(Applied Biosystems,USA)在50 μL反应系统内合成cDNA (500 ng)。在这个反应系统内含1×TaqMan RT缓冲液,5.5 mmol/L MgCl2,每种脱氧核苷(dNTP)含量为500 μmol/L,18S rRNA Oligo d(T)16/六聚物为2.5 μmol/L,RNase抑制剂0.4 U/μL以及1.67 U/μL反转录酶。每个反应系统3个重复。反应条件为:初始温度25 ℃下反应10 min,接着48 ℃下反应60 min,然后95 ℃下作用5 min,最后降至4 ℃。同时,对总RNA进行2倍等比稀释以检测目标序列和内参序列的扩增效率。稀释曲线由6个系列的稀释浓度绘制,20 μL的总体积,最大浓度为50.000 0 ng/μL,最小浓度为1.562 5 ng/μL,每个稀释浓度3个重复。RT-qPCR的引物序列、GenBank登录号以及扩增产物大小见表2。
![]() | 表2 基因表达中的基因序列信息和引物设计
Table 2 Sequence information and primer design in gene expression
|
RT-qPCR采用羧基荧光素(FAM)荧光化学原理的LightCycler 480 RT-PCR系统(Roche Applied Sciences,Switzerland)进行分析,按照LightCycler 480 SYBR Green Master Mix Kit(Roche Applied Sciences,Switzerland)说明书进行操作,反应体系为20 μL。每个样品重复3次,同时以同一反应板中无模板组为对照。PCR开始时在50 ℃下反应2 min然后95 ℃下反应10 min,最后按照以下条件进行40个循环反应:95 ℃下15 s,60 ℃下1 min。
参照Tellman[19]方法对目的基因和管家基因的扩增效率进行分析。以转录延伸因子1-α(EF1-α)和β-肌动蛋白(β-actin)2个管家基因为基础的标准因子(normalizing factor,NF)来计算目的基因脂肪酸结合蛋白3(FABP3)、脂肪酸结合蛋白10(FABP10)、CPT-Ⅰ、D5D、D6D的相对表达量。目的基因的标准因子是由geNorm VBA应用程序[20]计算而来,通过Q-gene计算方法[21]及EF1-α和β-actin基因的表达量来计算目的基因的相对表达量。
先将来自于饲料及鱼体肝脏的脂质按文献[16]的方法进行提取,再将所提脂质用KOH进行皂化,再用12%三氟化硼(Sigma,UK)甲醇溶液甲基化,最后用气相色谱2000对脂肪酸进行分离,分离条件为:进样时柱温冷却,进样后升温,20 s升至60 ℃,25 ℃/min;28 min升至160 ℃,25 ℃/min;17 min 升至190 ℃,25 ℃/min;9 min升至220 ℃,25 ℃/min。色谱硅毛细管柱内径为0.32 mm。以标准品的甲酯混合物为对照,以脂肪酸滞留时间来确定脂肪酸的组成,脂肪酸的定量测定采用Totalchrom软件(Version 6.2,Perkin Elmer,USA)进行分析计算。每克组织脂肪酸的含量以C19∶ 0脂肪酸甲酯作内标进行测定。
数据以平均值±标准差(n=培养瓶数或培养皿数)表示。所有统计分析均用STATISTICA 6.1 软件(StatSoft Inc.,USA)分析组间差异的显著性。P<0.05表示差异显著。
经过5个月饲喂,饲料脂肪源对肝脏脂肪酸组成的影响显著,表现为大豆油组肝脏比鱼油组肝脏含有更低水平的n-3脂肪酸以及饱和脂肪酸(SFA)与单不饱和脂肪酸(MUFA),同时含有较高水平的n-6脂肪酸,这与大豆油组饲料含有更低水平的n-3脂肪酸、饱和与单不饱和脂肪酸以及含有较高水平的n-6脂肪酸的特点相对应(表3)。此外,鱼油组及大豆油组肝脏的n-3/n-6也与该组鱼所喂饲料的n-3/n-6一致(表3)。
![]() | 表3 饲料及大西洋鲑肝脏脂肪酸组成 Table 3 Dietary and Atlantic salmon hepatic fatty acid composition % |
由表4可知,肝细胞内与小分子蛋白结合的FFA放射活性百分率最高,在鱼油组与大豆油组之间无显著差异(P>0.05);肝细胞内PLs放射活性百分率较低,但在鱼油组与大豆油组之间也无显著差异(P>0.05);肝细胞内TAG放射活性百分率在鱼油组为(2.0±0.9)%,显著高于大豆油组的(0.8±0.4)%(P<0.05);肝细胞内脂肪酸β-氧化产物放射活性百分率在鱼油组和大豆油组分别为(1.0±0.3)%和(1.0±0.2)%,2组之间也无显著差异(P>0.05)。
![]() | 表4 大西洋鲑肝细胞脂质成分及脂肪酸β-氧化产物的放射活性百分率 Table 4 Radioactive activity percentage of lipid component and fatty acid β-oxidation products in Atlantic salmon hepatocytes (n=6) % |
由表5可知,大豆油组肝细胞内FABP3基因相对表达量均显著高于鱼油组(P<0.05),而FABP10和CPT-Ⅰ基因相对表达量在2组之间无显著差异(P>0.05)。
![]() | 表5 大西洋鲑肝细胞内FABP3、FABP10和CPT-Ⅰ基因相对表达量 Table 5 Relative expression levels of FABP3, FABP10 and CPT-Ⅰ genes in Atlantic salmon hepatocytes (n=6) |
由表6可知,大豆油组肝细胞内D5D、D6D基因的相对表达量均显著高于鱼油组(P<0.05)。
![]() | 表6 大西洋鲑肝细胞内D5D和D6D基因相对表达量 Table 6 Relative expression levels of D5D and D6D genes in Atlantic salmon hepatocytes (n=6) |
当脂肪酸经过跨膜吸收进入细胞后,可酯化为PLs和中性脂质(neutral lipids,NLs),也可以合成更长链的脂肪酸,或进入线粒体和过氧化酶体进行β-氧化[22],在脂肪酸进入以上细胞代谢途径前是由FABPs以非共价键结合的方式[11]进行运输,在大西洋鲑机体中也已发现了FABP3与FABP10等FABPs基因的表达[23, 24]。细胞内FFA的放射活性百分率在鱼油组与大豆油组间无显著差异,这在以往的研究中[18]也有类似报道。
本试验发现,鱼油组与大豆油组之间细胞内PLs放射活性百分率无显著差异,而大豆油组细胞内TAG的放射活性百分率则显著低于鱼油组,这与以大豆油取代75%鱼油的饲料饲喂大西洋鲑后,其肝细胞对脂肪酸酯化为TAG的量显著降低的结果[18]相一致。本试验中,脂肪酸进入胞内TAG合成途径的量(0.8%~2.0%)远低于脂肪酸进入胞内PLs合成途径的量(17.9%~20.9%),这在胖头鱼肌肉细胞系(FHM)对多不饱和脂肪酸(PUFA)代谢的试验中也有类似发现[25]。
细胞内脂肪酸的β-氧化是在线粒体与过氧化物酶体中完成[26, 27, 28]。本试验中,脂肪酸β-氧化产物放射活性百分率为1%,表明仅有少量的OA被肝细胞氧化降解。在以往的研究中也发现有较少的(2%~5%)C18∶ 2n-6和C18∶ 3n-3被大西洋鲑肝细胞氧化利用[29]。本试验还发现,鱼油组和大豆油组肝细胞间的脂肪酸β-氧化作用无显著差异,Stubhaug等[30]也发现,随着菜籽油对鱼油替代水平的逐渐增高,大西洋鲑肝细胞的β-氧化能力并未有显著变化。其他研究也发现,即使在大西洋鲑的整个生命周期里,其肝脏的β-氧化能力也并未受到饲料中植物油替代鱼油的影响[31, 32]。体外(in vitro)试验也发现,当大西洋鲑肝细胞与各种长链脂肪酸,如C18∶ 2n-6、C18∶ 3n-3、C20∶ 5n-3(EPA)和C22∶ 6n-3(DHA)等,分别共孵育后,细胞对进入胞内的[1-14C]18∶ 3n-3的β-氧化作用并受到影响[33]。CPT-Ⅰ是将长链脂肪酸运送到线粒体外膜以供其β-氧化的重要运送蛋白[34],CPT-Ⅰ在脂肪酸降解代谢中具有重要的调控作用[34, 35]。本试验中,肝细胞CPT-Ⅰ基因相对表达量在鱼油组与大豆油组之间无显著差异,与2组间β-氧化作用无显著差异的结果一致。
FABP3是负责细胞内脂肪酸β-氧化的运送蛋白[23]。本试验中虽然大豆油组肝细胞FABP3基因相对表达量显著高于鱼油组,但2组间β-氧化产物并未有显著差异,这可能与不同组织间的β-氧化能力有关。研究发现,FABP3可在大西洋鲑红肌与白肌中高度表达[23, 24],而在肝脏中表达水平较低,因此有研究者认为,FABP3是与肌肉组织内线粒体β-氧化有关的脂肪酸运输蛋白[36, 37, 38]。
本试验中,肝细胞FABP10基因相对表达量在鱼油组与大豆油组之间无显著差异,这与以往在大西洋鲑肝脏和肌肉的研究中发现FABP10基因的相对表达量不受饲料脂肪源的影响的结果[24, 25]相一致。研究还发现,饲料DHA含量影响鱼体肝脏中DHA含量但不影响肝脏FABP10基因的表达[39]。FABP10作为胞内的小分子蛋白,这种蛋白已从肺鱼和鲶鱼中分离了出来并发现该蛋白对C18∶ 1n-9有较高亲和力[40, 41]。此外,FABP10等小分子蛋白对胆汁酸盐的亲和力远高于对脂肪酸的亲和力,因此对鸡的研究认为,FABP10对胆汁酸盐的代谢可能有重要作用[42, 43]。因此,本试验中肝细胞FABP10基因相对表达量在鱼油组与大豆油组之间无显著差异可能与脂肪源对胆汁酸盐的代谢无影响有关,相关内容尚需进一步研究。
本试验中,大豆油组肝细胞D5D和D6D基因相对表达量均显著高于鱼油组,表现出富含十八碳脂肪酸的植物油比富含EPA、DHA的鱼油更能促进鱼体脂肪酸的去饱和与碳链的延长,这在以往大西洋鲑中的研究也有类似发现的结果[4, 17, 22, 44, 45, 46],这与EPA、DHA这样的HUFA能够抑制脂肪酸去饱和酶活性[47]或抑制脂肪酸去饱和酶基因表达[48]有关。相关研究表明,机体脂肪酸的去饱和与碳链的延长受饲料脂肪源的影响和调控。
大豆油替代饲料中的鱼油对大西洋鲑肝细胞内FFA、PLs合成及脂肪酸β-氧化等脂肪酸代谢途径无显著影响,但降低了肝细胞内TAG的合成,促进了肝细胞内脂肪酸的去饱和,因此大豆油替代鱼油在一定程度上影响了肝细胞内脂肪酸代谢。
[1] | VAN DEN THILLART G.Energy metabolism of swimming trout (Salmo gairdneri)[J]. Journal of Comparative Physiology Part B:Biochemical Systematic and Environmental Physiology,1986,156(4):511-520. (![]() |
[2] | BARLOW S.Fishmeal and fish oil:sustainable feed ingredients for aquafeeds[J]. Global Aquacult Advocate,2000,4:85-88. (![]() |
[3] | SARGENT J R,BELL J G,MCEVOY L,et al.Recent developments in the essential fatty acid nutrition of fish[J]. Aquaculture,1999,177(1/2/3/4):191-199. (![]() |
[4] | BELL J G,MCEVOY J,TOCHER D R,et al.Replacement of fish oil with rapeseed oil in diets of Atlantic salmon(Salmo salar)affects tissue lipid compositions and hepatocyte fatty acid metabolism[J]. The Journal of Nutrition,2001,131(5):1535-1543. (![]() |
[5] | BELL J G,HENDERSON R J,TOCHER D R,et al.Substituting fish oil with crude palm oil in the diet of Atlantic salmon (Salmo salar) affects muscle fatty acid composition and hepatic fatty acid metabolism[J]. The Journal of Nutrition,2002,132(2):222-230. (![]() |
[6] | BELL J G,TOCHER D R,HENDERSON R J,et al.Altered fatty acid compositions in Atlantic salmon (Salmo salar) fed diets containing linseed and rapeseed oils can be partially restored by a subsequent fish oil finishing diet[J]. The Journal of Nutrition,2003,133(9):2793-2801. (![]() |
[7] | TORSTENSEN B E,LIE Ø,FRØYLAND L.Lipid metabolism and tissue composition in Atlantic salmon(Salmo salar L.)—effects of capelin oil,palm oil,and oleic acid-enriched sunflower oil as dietary lipid sources[J]. Lipids,2000,35(6):653-664. (![]() |
[8] | TORSTENSEN B E,FRØYLAND L,LIE Ø.Replacing dietary fish oil with increasing levels of rapeseed oil and olive oil-effects on Atlantic salmon (Salmo salar L.) tissue and lipoprotein lipid composition and lipogenic enzyme activities[J]. Aquaculture Nutrition,2004,10(3):175-192. (![]() |
[9] | TORSTENSEN B E,BELL J G,ROSENLUND G,et al.Tailoring of Atlantic salmon (Salmo salar L.) flesh lipid composition and sensory quality by replacing fish oil with a vegetable oil blend[J]. Journal of Agriculture Food Chemistry,2005,53(26):10166-10178. (![]() |
[10] | BRANSDEN M P,CARTER C G,NICHOLS P D.Replacement of fish oil with sunflower oil in feeds for Atlantic salmon (Salmo salar L):effect on growth performance,tissue fatty acid composition and disease resistance[J]. Comparative Biochemistry and Physiology Part B:Biochemistry and Molecular Biology,2003,135(4):611-625. (![]() |
[11] | KAIKAUS R M,BASS N M,OCKNER R K.Functions of fatty acid binding proteins[J]. Experimetia,1990,46(6):617-630. (![]() |
[12] | GLATZ J F C,SCHAAP F G,BINAS B,et al.Cytoplasmic fatty acid-binding protein facilitates fatty acid utilization by skeletal muscle[J]. Acta Physiologica Scandinavica,2003,178(4):367-371. (![]() |
[13] | DANNEVIG B H,BERG T.Endocytosis of galactose-terminated glycoproteins by isolated liver cells of the rainbow trout (Salmo gairdneri)[J]. Comparative Biochemistry and Physiology B:Comparative Biochemistry,1985,82(4):683-688. (![]() |
[14] | NRC.Nutrient requirements of fish[S]. Washington,D.C.:National Academy Press,1993. (![]() |
[15] | GHIONI C,TOCHER D R,SARGENT J R.The effect of culture on morphology,lipid and fatty acid composition,and polyunsaturated fatty acid metabolism of rainbow trout (Oncorhynchus mykiss) skin cells[J]. Fish Physiology and Biochemistry,1997,16(6):499-513. (![]() |
[16] | FOLCH J,LEES M,SLOANE STANLEY G H.A simple method for the isolation and purification of total lipides from animal tissues[J]. Journal of Biology and Chemistry,1957,226(1):497-509. (![]() |
[17] | TOCHER D R,FONSECA-MADRIGAL J,BELL J G,et al.Effects of diets containing linseed oil on fatty acid desaturation and oxidation in hepatocytes and intestinal enterocytes in Atlantic salmon (Salmo salar)[J]. Fish Physiology Biochemistry,2002,26(2):157-170. (![]() |
[18] | STUBHAUG I,TOCHER D R,BELL J G,et al.Fatty acid metabolism in Atlantic salmon (Salmo salar L.) hepatocytes and influence of dietary vegetable oil[J]. Biochimica et Biophysica Acta,2005,1734(3):277-288. (![]() |
[19] | TELLMAN G.The E-Method:a highly accurate technique for gene-expression analysis[J]. National Methods,2006,3(7):i-ii.doi:10.1038/nmeth894. (![]() |
[20] | VANDESOMPELE J,DE PRETER K,PATTYN F,et al.Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes[J]. Genome Biology,2002,3(7):research0034.1-0034.11. (![]() |
[21] | SIMON P.Q-gene:processing quantitative real-time RT-PCR data[J]. Bioinformatics,2003,19(11):1439-1440. (![]() |
[22] | LEAVER M J,BAUTISTA J M,BJOMSSON B T,et al.Towards fish lipid nutrigenomics:current state and prospects for fin-fish aquaculture[J]. Fisheries Science,2008,16(Suppl.1):71-92. (![]() |
[23] | JORDAL A O,HORDVIK I,PELSERS M,et al.FABP3 and FABP10 in Atlantic salmon (Salmo salar L.)—general effects of dietary fatty acid composition and life cycle variations[J]. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology,2006,145(2):147-158. (![]() |
[24] | TORSTENSEN B E,NANTON D A,OLSVIK P A,et al.Gene expression of fatty acid-binding proteins,fatty acid transport proteins (cd36 and FATP) and β-oxidation-related genes in Atlantic salmon (Salmo salar L.) fed fish oil or vegetable oil[J]. Aquaculture Nutrition,2009,15(4):440-451. (![]() |
[25] | GREGORY M K,KING H W,BAIN P A,et al.Development of a fish cell culture model to investigate the impact of fish oil replacement on lipid peroxidation[J]. Lipids,2011,46(8):753-764 (![]() |
[26] | SMALL G,CONNOCK M.Palmitoyl-CoA oxidase in goldfish (Carassius auratus):detection in several tissues and subcellular location in intestinal peroxisomes[J]. Comparative Biochemistry and Physiology Part B:Biochemistry and Molecular Biology,1981,68:151-153. (![]() |
[27] | MANNAERTS G P,DEBEER L J,THOMAS J,et al.Mitochondrial and peroxisomal fatty acid oxidation in liver homogenates and isolated hepatocytes from control and clofibrate-treated rats[J]. Journal of Biology and Chemistry,1979,254(11):4585-4595. (![]() |
[28] | FOERSTER E C,FAHRENKEMPER F,RABE U,et al.Peroxisomal fatty acid oxidation as detected by H2O2 production in intact perfused rat liver[J]. Journal of Biochemistry,1981,196(3):705-712. (![]() |
[29] | RUYTER B,THOMASSEN M S.Metabolism of n-3 and n-6 fatty acids in Atlantic salmon liver:stimulation by essential fatty acid deficiency[J]. Lipids,1999,34(11):1167-1176. (![]() |
[30] | STUBHAUG I,FROYLAND L,TORSTENSEN B E.β-oxidation capacity of red and white muscle and liver in Atlantic salmon (Salmo salar L.)—effects of increasing dietary rapeseed oil and olive oil to replace capelin oil[J]. Lipids,2005,40(1):39-47. (![]() |
[31] | STUBHAUG I,LIE Ø,TORSTENSEN B E.β-oxidation capacity in liver increases during parr-smolt transformation of Atlantic salmon fed vegetable oil and fish oil[J]. Journal of Fish Biology,2006,69(2):504-517. (![]() |
[32] | STUBHAUG I,LIE Ø,TORSTENSEN B E. Fatty acid productive value and β-oxidation capacity in Atlantic salmon (Salmon salar L.) fed on different lipid sources along the whole growth period[J]. Aquaculture Nutrition,2007,13(2):145-155. (![]() |
[33] | TORSTENSEN B E,FRØYLAND L,ØMSRUD R,et al.Tailoring of a cardioprotective muscle fatty acid composition of Atlantic salmon (Salmo salar) fed vegetable oils[J]. Food Chemistry,2004,87(4):567-580. (![]() |
[34] | POWER G W,NEWSHOLME E A.Dietary fatty acids influence the activity and metabolic control of mitochondrial carnitine palmitoyltransferase Ⅰ in rat heart and skeletal muscle[J]. The Journal of Nutrition,1997,127(11):2142-2150. (![]() |
[35] | FRØYLAND L,MADSEN L,ECKHOFF K M,et al.Carnitine palmitoyltransferase Ⅰ,carnitine palmitoyltransferase Ⅱ,and acyl-CoA oxidase activities in Atlantic salmon (Salmo salar)[J]. Lipids,1998,33(9):923-930. (![]() |
[36] | HAUNERLAND N H,SPENER F.Fatty acid-binding proteins-insights from genetic manipulations[J]. Progress in Lipid Research,2004,43(4):328-349. (![]() |
[37] | VEERKAMP J H,VANMOERKERK H T B.Fatty acid-binding protein and its relation to fatty acid oxidation[J]. Molecular and Cellular Biochemistry,1993,123(1/2):101-106. (![]() |
[38] | FURUHASHI M,URA N,MURAKAMI H,et al.Fenofibrate improves insulin sensitivity by reducing muscle lipid content via increase of fatty acid binding protein and β-oxidation in muscle[J]. Journal of Hypertens,2002,20:S56. (![]() |
[39] | KO Y H,CHENG C H,SHEN T F,et al.Cloning and expression of Tsaiya duck liver fatty acid binding protein[J]. Poultry Science,2004,83(11):1832-1838. (![]() |
[40] | DI PIETRO S M,SANTOME J A.Structural and biochemical characterization of the lungfish(Lepidosiren paradoxa)liver basic fatty acid binding protein[J]. Archives of Biochemistry and Biophysics,2001,388(1):81-90. (![]() |
[41] | DI PIETRO S M,DELL’ANGELICA E C,SCHLEICHER C H,et al.Purification and structural characterization of a fatty acid-binding protein from the liver of the catfish Rhamdia sapo[J]. Comparative of Biochemistry and Physiology Part B:Biochemistry & Molecular Biology,1996,113(3):503-509. (![]() |
[42] | NICHESOLA D,PERDUCA M,CAPALDI S,et al.Crystal structure of chicken liver basic fatty acid-binding protein complexed with cholic acid[J]. Biochemistry,2004,43(44):14072-14079. (![]() |
[43] | NOLAN V,PERDUCA M,MONACO H L,et al.Chicken liver bile acid-binding protein is in a compact partly folded state at acidic pH.Its relevance to the interaction with lipid membranes[J]. Biochemistry,2005,44(23):8486-8493. (![]() |
[44] | ZHENG X Z,TOCHER D R,DICKSON C A,et al.Effects of diets containing vegetable oil on expression of genes involved in highly unsaturated fatty acid biosynthesis in liver of Atlantic salmon (Salmo salar)[J]. Aquaculture,2004,236(1/2/3/4):467-483. (![]() |
[45] | ZHENG X Z,TORSTENSEN B E,TOCHER D R,et al.Environmental and dietary influences on highly unsaturated fatty acid biosynthesis and expression of fatty acyl desaturase and elongase genes in liver of Atlantic salmon (Salmo salar)[J]. Biochimica et Biophysica Acta,2005,1734(1):13-24. (![]() |
[46] | JORDAL A E,TORSTENSEN B E,TSOI S,et al.Dietary rapeseed oil affects the expression of genes involved in hepatic lipid metabolism in Atlantic salmon (Salmo salar L.)[J]. The Journal of Nutrition,2005,135(10):2355-2361. (![]() |
[47] | BRENNER R R.Nutritional and hormonal factors influencing desaturation of essential fatty acids[J]. Progress in Lipid Research,1981,20:41-47. (![]() |
[48] | TOCHER D R,BELL J G,DICK J R,et al.Effects of dietary vegetable oil on Atlantic salmon hepatocyte fatty acid desaturation and liver fatty acid compositions[J]. Lipids,2003,38(7):723-732. (![]() |