动物营养学报  2013, Vol. 25 Issue (12): 2812-2817   PDF (1009KB)    
外周激素和营养素对家禽中枢单磷酸腺苷活化蛋白激酶的影响及其调控通路
孙晓蕾 , 刘磊, 宋志刚     
山东农业大学动物科技学院, 泰安 271018
摘要:单磷酸腺苷活化蛋白激酶(AMPK)是一种能被腺苷一磷酸(AMP)激活的蛋白激酶,在维持整个机体的能量平衡方面起着重要作用。在家禽下丘脑中,AMPK能够通过乙酰辅酶A羧化酶-肉碱棕榈酰转移酶(ACC-CPT1)信号通路和雷帕霉素靶蛋白-真核翻译起始因子4E结合蛋白和40S核糖体S6蛋白激酶(mTOR-4EBP1/p70s6k)信号通路调控中枢内食欲因子的表达,从而影响家禽的食欲。外周激素(瘦素、脂联素、胃饥饿素、胰岛素、内源性大麻素)能够通过调节中枢AMPK的活性来影响家禽的食欲。除此之外,一些营养物质如葡萄糖、脂肪酸和氨基酸也能够通过AMPK通路来将食欲信号传输到中枢,进而影响家禽的能量代谢。
关键词AMPK     食欲调控     下丘脑     家禽    
Effects of Peripheral Hormones and Nutrients on Central AMPK and Its Pathways in Poultry
SUN Xiaolei , LIU Lei, SONG Zhigang     
College of Animal Science and Technology, Shandong Agricultural University, Taian 271018, China
Abstract: AMPK, an adenosine 5'-monophosphate (AMP)-activated protein kinase, plays an important role in maintaining energy balance. In avian species, hypothalamic AMPK can regulate appetite through acetyl-CoA carboxylase (ACC)-carnitine palmitoyltransferase 1 (CPT1) and mammalian target of rapamycin (mTOR)-eukaryotic translation initiation factor 4E-binding protein 1 (4EBP1)/40sribosomal protein S6 kinase1 (p70s6k) pathways. Peripheral hormones (leptin, adiponectin, ghrelin, insulin and endocannabinoid) regulate the appetite in poultry through the hypothalamic AMPK signaling pathway. Besides, some nutrients, such as glucose, fatty acids and amino acids, can also transmit appetite-related signals to the center by AMPK pathway, and modulate energy metabolism.
Key words: AMPK     appetite regulation     hypothalamus     poultry    

家禽单磷酸腺苷活化蛋白激酶(AMPK)有α(α1、α2)、β(β1、β2)、γ(γ1、γ2、γ3)3种亚基,其中α为催化亚基,β和γ为调节亚基。当体内三磷酸腺苷(ATP)减少,腺苷一磷酸(AMP)增多时,AMPK活性增强。因此,AMPK被称为细胞内的“能量感受器”。低血糖、局部贫血、热休克和运动时都能使动物体内的AMP/TAP增加,从而激活AMPK[1, 2]。AMPK的活性调节对细胞代谢和维持整个机体的代谢能量平衡有着重要作用,在葡萄糖代谢、脂肪代谢、细胞生长、有丝分裂、自噬、细胞极性等过程中发挥重要作用[3, 4, 5]。最近的试验研究发现,AMPK在家禽的食欲调控中发挥重要的作用。在哺乳动物中,激活AMPK可促进食欲,增加食物摄入和体重[6]。Song等[7]发现,禁食能增加肉仔鸡下丘脑中AMPK的蛋白质磷酸化,并推测AMPK促采食量的影响是通过激活中枢中促进食欲的神经元[刺鼠相关蛋白(AgRP)和神经肽Y(NPY)]来调节的,而对抑制食欲的神经元[阿黑皮素原可卡因(POMC)和安非他命调节转录(CART)]没有显著影响。

1 激素对中枢AMPK的调节
1.1 瘦素

在哺乳动物中,瘦素由脂肪细胞分泌,能作用于中枢神经系统,对食欲调控、细胞营养和能量代谢都有着重要的影响。作为蛋白质激素,瘦素的多种生物学作用是通过靶细胞膜上的受体和相应信号转导系统实现的。瘦素通过下丘脑相关的反馈环实现抑制摄食、增加能量消耗和预防肥胖,在脂肪储存过程中发挥重要的作用。

由于采食量调控和肥胖现象同样是家禽生产面临的重要问题,有关家禽瘦素的研究也一度风行。然而关于家禽瘦素基因或转录产物的争论一直很多,这些争论在2008年达到顶峰。Sharp等[8]回顾了已有文献以及这些文献中的数据,通过比较基因组研究,得出结论认为,以往报道的家禽瘦素结构可能不存在,因为其与老鼠的结构相似性大于90%,这从进化学的角度讲不大可能。此外,Sharp等[8]也未能在家禽中检测到瘦素的放射免疫活性。据此,Sharp等[8]建议,在家禽瘦素基因及其转录蛋白被明确之前,有关家禽瘦素生理学作用方面的文章不能再被接收和发表。鉴于Sharp作为《普通与比较内分泌学》(General and Comparative Endocrinology)杂志主编的身份,此后关于瘦素在家禽上的作用及其机制的论文几乎绝迹。

与家禽瘦素面临的诸多争议不同,基于cDNA序列以及免疫组化结果,已经有足够的证据表明家禽体内具有瘦素受体[9],并且家禽瘦素受体具有激活酪氨酸激酶-信号传到子和转录激活子(JAK-STAT)通路的功能。其实尽管Sharp等[8]从进化学及放免测定的角度否定了家禽瘦素的研究结果,但这并不能否认众多其他研究中瘦素对于家禽存在作用的结论。因此我们更加认可《家禽科学》(Poultry Science)主编Scanes[9]的观点:1)家禽瘦素的结构可能是正确的,只是出于巧合(小概率事件)才与老鼠的结构非常相似;2)已经报道的家禽瘦素结构有误,“真正”的家禽瘦素结构仍有待研究;3)根本就不存在家禽瘦素这种物质。然而即使Scanes自己也承认,家禽不大可能缺乏瘦素这种物质,而这种可能性又不能排除,如果家禽没有瘦素,则必将存在某种孤儿配体(orphan ligand)能够结合到家禽瘦素受体上。因此,最大的可能是“已经报道的家禽瘦素结构是正确的或者真正的家禽瘦素(cDNA和基因组)仍有待阐明”。

在哺乳动物上,瘦素与受体结合后作用于下丘脑饱觉中枢,抑制弓状核神经元合成与释放NPY,降低食欲。外周注射瘦素显著降低家禽采食量,增加生长激素分泌[10]NPY、食欲素和食欲素受体表达量均显著下降,但AgRPPOMC和促肾上腺皮质激素释放激素(CRH)的基因表达量并没有发生变化[11]。瘦素调控哺乳动物机体能量代谢稳态主要是通过作用于体内的AMPK活性来实现的。瘦素对AMPK的影响具有组织特异性,能增加骨骼肌中AMPK的活性,降低下丘脑室旁核和弓状核中AMPK的活性,抑制采食。

家禽瘦素结构及基因组学相关内容的阐明,将有效促进家禽瘦素与中枢AMPK信号通路互作的研究。由于目前瘦素在家禽中的不确定性,家禽瘦素受体调控机体能量代谢稳态的机制正引起研究者的兴趣,中枢AMPK是否参与其中,有待阐明。

1.2 脂联素

脂联素也是由脂肪细胞产生,其作用与瘦素相反。有研究证明,脂联素受体(Adipo R1)mRNA在家禽骨骼肌、脂肪组织和脑中表达量最高,其次为肾脏、卵巢、肝脏、脑下垂体前叶和脾脏。禁食会导致鸡脑垂体中Adipo R1的mRNA的表达量显著下降,而脂肪组织中Adipo R1的mRNA的表达量显著增加[12, 13, 14, 15, 16]。啮齿动物方面的研究发现,脂联素可以通过其受体激活下丘脑中的AMPK,刺激食物摄入,减少能量消耗[17],作用于胰岛素和瘦素介导的信号通路[18]。家禽中,瘦素处理并不能引起下丘脑中脂联素的变化[19]。因此,我们推测家禽脂联素通路可能并没有哺乳动物那样敏感。

1.3 胃饥饿素(ghrelin)

在哺乳动物中ghrelin是一种诱食肽,饥饿时ghrelin的释放,不断激活中枢AMPK信号,激活弓形核中NPY和AgRP神经元,促使动物采食增加。在家禽中,ghrelin与人类的基因序列同源性有54%,主要在腺胃中表达,其次在胰腺、脑和肠中表达,并且其表达在生长过程中有着组织特异性[20]。ghrelin在家禽和哺乳动物中的作用相反,具有显著抑制AMPK磷酸化和抑制食欲的效果[21]

1.4 胰岛素

胰岛素是由胰岛β细胞分泌的蛋白质激素,对食欲调控和葡萄糖代谢有重要作用。在哺乳动物中,胰岛素能通过中枢AMPK信号抑制食欲。在家禽中,胰岛素也有相同的抑制食欲效果[22]。脑室注射胰岛素显著增加了家禽中枢中POMCCARTCRH基因的表达量,而NPYAgRP基因的表达量没有受到影响[23]。但胰岛素是否也能通过家禽中枢AMPK信号通路调节食欲还需进一步研究[24]

1.5 内源性大麻素

内源性大麻素包括内源性大麻素和2-花生四烯酸甘油。大麻素和大麻素受体(CB2)能通过调节食欲影响采食量,也能通过调节内分泌影响能量消耗。大麻素能激活小鼠下丘脑和心脏中的AMPK,抑制肝脏中AMPK活性[25]。有研究证明,CB2被激活后,可以通过磷酸化AMPK和环腺苷酸(cAMP)反应元件结合蛋白,来缓解脑缺血时的神经组织损伤[26]。在哺乳动物中,CB2信号通路是极强的促食欲调控点。在家禽中,脑室注射CB2激活剂显著增加了肉仔鸡的采食量,但能否影响到中枢AMPK信号通路还需进一步研究[27]

2 营养物质对中枢AMPK的调节
2.1 葡萄糖

葡萄糖分解产生ATP和丙酮酸,使ATP/AMP升高,并生成丙酰辅酶A,激活乙酰辅酶A羧化酶(ACC),使丙二酰辅酶A浓度增加,下丘脑NPY、AgRP浓度下降,POMC、CART浓度升高,最终降低采食量。葡萄糖抑制性神经元(glucose-inhibited neurons,GI)能减少对葡萄糖浓度增加的反应的灵敏性,主要分布在下丘脑腹内侧核和弓形核中,并且部分和促食欲神经元(NPY和AgRP)重叠[28]。研究表明,葡萄糖、胰岛素和瘦素等都能通过GI影响中枢AMPK的活性[29]

2.2 脂肪酸

饲料中的脂质进入肠道,被水解生成甘油脂和游离脂肪酸,长链游离脂肪酸能够刺激胆囊收缩素(CCK)的分泌,通过CCK向中枢传递饱感信号,抑制促食欲基因AgRP的表达,降低AMPK活性,从而调节采食量[30]。游离脂肪酸能通过血脑屏障进入下丘脑,作为营养过剩的信号作用于下丘脑神经元。不同的脂肪酸对食欲的调节作用是不同的,中枢油酸能抑制NPY,抑制食欲[31],中枢棕榈酸则能激活NPY[32]

2.3 氨基酸

氨基酸是蛋白质合成的前体物质,也是多种代谢途径的调节器,如雷帕霉素靶蛋白(mTOR)信号通路[33]。脑内氨基酸水平对采食量和体重有着调控作用。脑室注射L-亮氨酸2 h后,肉仔鸡下丘脑中NPYAgRP的mRNA表达量显著升高,采食量增加;脑室注射L-谷氨酸使肉仔鸡下丘脑中黑素皮质素受体4(MC4R)和促肾上腺素皮质激素释放因子(CRF)的mRNA表达量显著增加,采食量下降[34]。家禽饲粮中添加色氨酸能够提高体重和采食量[35]L-精氨酸单独进行脑室注射不影响采食量,但同时注射瘦素和L-精氨酸时,精氨酸能缓解瘦素引起的采食抑制作用[36]。不同的氨基酸通过中枢对家禽食欲的影响不同,对中枢AMPK的影响也可能不同,相关研究值得深入。

3 AMPK对中枢食欲因子的调控通路
3.1 AMPK-ACC-肉碱棕榈酰转移酶(CPT1)通路

AMPK激活后的一个直接效应就是引起ACC的磷酸化,使其活性下降,降低了细胞内丙二酰辅酶A浓度,从而解除丙二酰辅酶A对CPT-1的抑制,增加脂肪酸的氧化,产生更多的ATP供细胞利用。同时也造成体内活性氧的大量产生,刺激NPYAgRP或抑制POMCCART的转录[37]。研究发现ACC和脂肪酸合成酶(FAS)表达于下丘脑弓形核、腹内侧核等区域,并与促食欲的NPY神经元共表达[38]。这说明下丘脑神经元存在着脂肪酸再合成途径,且该途径与机体的摄食调控相关。

3.2 AMPK-mTOR-真核翻译起始因子4E结合蛋白(4E-BP1)和40S核糖体S6蛋白激酶(p70s6k)通路

mTOR是属于磷酸肌醇-3-激酶相关蛋白(PIKK)家族的一种蛋白激酶,主要是通过调节基因转录和蛋白质合成等来调节细胞的生长和代谢。雷帕霉素靶蛋白复合体1(mTORC1)能被氨基酸等营养物质、胰岛素、瘦素、胰岛素样生长因子以及ATP等激活。AMPK的激活会抑制mTOR,它可以直接磷酸化mTOR上的Raptor(regulatory associated protein of TOR)亚基,从而阻止mTOR激酶复合物对其的磷酸化,导致食欲增加[39]。有研究认为,脂联素也是通过激活AMPK通路来抑制mTOR[40]。AMPK也能磷酸化肿瘤抑制因子TSC2(TSC1-TSC2复合物是mTOR的上游)。mTOR信号激活后,磷酸化并激活p70s6K和4E-BP1,并参与翻译过程。研究发现,小鼠下丘脑中mTOR被磷酸化激活后,能调控4E-BP1和p70s6K 2条不同的下游通路,分别抑制NPYAgRP和促进POMC的基因表达[41]

4 小 结

无论是从农业生产还是从科学研究的角度来讲,从分子水平上研究家禽的能量平衡调控机制都非常重要。阐明家禽能量平衡的机制,对于改善家禽生产的经济指标如采食量、脂肪沉积以及繁殖效率等至关重要。家禽中枢中AMPK与很多信号通路和信号因子有着千丝万缕的联系,是整个机体代谢的枢纽,在机体的能量代谢调控中起着非常重要的作用。通过研究家禽中枢AMPK影响采食量和能量平衡的机制,对于家禽的有效管理、营养调控和疾病预防等具有重要意义。

参考文献
[1]HARDIE D G,ROSS F A,HAWLEY S A.AMPK:a nutrient and energy sensor that maintains energy homeostasis[J]. Nature Reviews Molecular Cell Biology,2012,13(4):251-262. (1)
[2]MIHAYLOVA M M,SHAW R J.The AMPK signalling pathway coordinates cell growth,autophagy and metabolism[J]. Nature Cell Biology,2011,13(9):1016-1023. (1)
[3]VAZQUEZ-MARTIN A,OLIWERAS-FERRAROS C,MENEDEZ J A.The active form of the metabolic sensor:AMP-activated protein kinase (AMPK) directly binds the mitotic apparatus and travels from centrosomes to the spindle midzone during mitosis and cytokinesis[J]. Cell Cycle,2009,8(15):2385-2398. (1)
[4]XI H B,BARREDO J C,MERCHAN J R,et al.Endoplasmic reticulum stress induced by 2-deoxyglucose but not glucose starvation activates AMPK through CaMKKβ leading to autophagy[J]. Biochemical Pharmacology,2013,85(10):1463-1477. (1)
[5]MIROUSE V,BILLAUD M.The LKB1/AMPK polarity pathway[J]. FEBS Letters,2011,585(7):981-985. (1)
[6]CLARET M,SMITH M A,BATTERHAM R L,et al.AMPK is essential for energy homeostasis regulation and glucose sensing by POMC and AgRP neurons[J]. Journal of Clinical Investigation,2007,117(8):2325-2336. (1)
[7]SONG Z G,LIU L,YUE Y S,et al.Fasting alters protein expression of AMP-activated protein kinase in the hypothalamus of broiler chicks (Gallus gallus domesticus)[J]. General and Comparative Endocrinology,2012,178(3):546-555. (1)
[8]SHARP P J,DUNN I C,WADDINGTON D,et al.Chicken leptin[J]. General and Comparative Endocrinology,2008,158(1):2-4. (4)
[9]SCANES C G.Absolute and relative standards-the case of leptin in poultry:first do no harm[J]. Poultry Science,2008,87(10):1927-1928. (2)
[10]ASHWELL C M,MCMURTRY J P,WANG X H,et al.Effects of growth hormone and pair-feeding on leptin mRNA expression in liver and adipose tissue[J]. Domestic Animal Endocrinology,1999,17(1):77-84. (1)
[11]DRIDI S,SWENNEN Q,DECUYPERE E,et al.Mode of leptin action in chicken hypothalamus[J]. Brain Research,2005,1047(2):214-223. (1)
[12]IWABU M,YAMAUCHI T,OKADA-IWABU M,et al.Adiponectin and AdipoR1 regulate PGC-1α and mitochondria by Ca2+ and AMPK/SIRT1[J]. Nature,2010,464(7293):1313-1319. (1)
[13]HUYPENS P,MOENS K,HEIMBERG H,et al.Adiponectin-mediated stimulation of AMP-activated protein kinase (AMPK) in pancreatic beta cells[J]. Life Sciences,2005,77(11):1273-1282. (1)
[14]CHABROLLE C,TOSCA L,CROCHET S,et al.Expression of adiponectin and its receptors (AdipoR1 and AdipoR2) in chicken ovary:potential role in ovarian steroidogenesis[J]. Domestic Animal Endocrinology,2007,33(4):480-487. (1)
[15]YUAN J,LIU W,LIU Z L,et al.cDNA cloning,genomic structure,chromosomal mapping and expression analysis of ADIPOQ (adiponectin) in chicken[J]. Cytogenetic and Genome Research,2006,112(1/2):148-151. (1)
[16]RAMACHANDRAN R,OCN-GROVE O M,METZGER S L.Molecular cloning and tissue expression of chicken AdipoR1 and AdipoR2 complementary deoxyribonucleic acids[J]. Domestic Animal Endocrinology,2007,33(1):19-31. (1)
[17]KUBOTA N,YANO W,KUBOTA T,et al.Adiponectin stimulates AMP-activated protein kinase in the hypothalamus and increases food intake[J]. Cell Metabolism,2007,6(1):55-68. (1)
[18]COOPE A,MILANSKII M,ARAJO E P,et al.AdipoR1 mediates the anorexigenic and insulin/leptin-like actions of adiponectin in the hypothalamus[J]. FEBS Letters,2008,582(10):1471-1486. (1)
[19]SINTUBIN P,DECUYPERE E,BUYSE J,et al.Leptin and cerulenin differently regulate adiponectin gene expression in chicken liver and hypothalamus[J]. Journal of Microbial and Biochemical Technology,2011,3:67-72. (1)
[20]KAIYA H,VAN DERGEYTEN S, KOJIMA M,et al.Chicken ghrelin: purification, cDNA cloning, and biological activity[J]. Endocrinology,2002,143(9):3454-3463. (1)
[21]XU P W,SIEGEL P B,DENBOW D M.Genetic selection for body weight in chickens has altered responses of the brain’s AMPK system to food intake regulation effect of ghrelin, but not obestatin[J]. Behaviour Brain Research,2011,221(1):216-226. (1)
[22]CZECH M P,TENCEROVA M,PEDERSEN D J,et al.Insulin signalling mechanisms for triacylglycerol storage[J]. Diabetologia,2013,56(5):949-964. (1)
[23]HOND K,KAMISOYAMA H,SANEYASU T,et al.Central administration of insulin suppresses food intake in chicks[J]. Neuroscience Letters,2007,423(2):153-157. (1)
[24]DUPONT J,TESSERAUD S,DEROUET M,et al.Insulin immuno-neutralization in chicken:effects on insulin signaling and gene expression in liver and muscle[J]. Journal of Endocrinology,2008,197(3):531-542. (1)
[25]KOLA B,HUBINA E,TUCCI S A,et al.Cannabinoids and ghrelin have both central and peripheral metabolic and cardiac effects via AMP-activated protein kinase[J]. Journal of Biological Chemistry,2005,280(26):25196-251201. (1)
[26]CHOI L Y,JU C,ANTHONY JALIN A M,et al.Activation of cannabinoid CB2 receptor-mediated AMPK/CREB pathway reduces cerebral ischemic injury[J]. The American Journal of Pathology,2013,182(3):928-939. (1)
[27]EMADI L,JONAIDI H,HOSSEINI AMIR ABAD E.The role of central CB2 cannabinoid receptors on food intake in neonatal chicks[J]. Journal of Comparative Physiology A,2011,197(12):1143-1147. (1)
[28]MOUNTJOY P D,BAILEY S J,RUTTER G A.Inhibition by glucose or leptin of hypothalamic neurons expressing neuropeptide Y requires changes in AMP-activated protein kinase activity[J]. Diabetologia,2007,50(1),168–177. (1)
[29]CANABAL D D,SONG Z,POTIAN J G,et al.Glucose,insulin,and leptin signaling pathways modulate nitric oxide synthesis in glucose-inhibited neurons in the ventromedial hypothalamus[J]. American Journal of Physiology:Regulatory Integrative and Comparative Physiology,2007,292(4):1418-1428. (1)
[30]MCLAUGHLIN J,GRAZIA LUCÀ M,JONES M N,et al.Fatty acid chain length determines cholecystokinin secretion and effect on human gastric motility[J]. Gastroenterology,1999,116(1):46-53. (1)
[31]MORGAN K,OBICI S,ROSSETTI L.Hypothalamic responses to long-chain fatty acids are nutritionally regulated[J]. Journal of Biological Chemistry,2004,279(30):31139-31148. (1)
[32]FICK J,FICK G H,BELSHAM D D.Palmitate alters the rhythmic expression of molecular clock genes and orexigenic neuropeptide Y mRNA levels within immortalized,hypothalamic neurons[J]. Biochemical and Biophysical Research Communications,2011,413(3):414-419. (1)
[33]LAVIANO A,MEGUID M M,INUI A,et al.Role of leucine in regulating food intake[J]. Science,2006,313(5791):1236-1238. (1)
[34]WANG S B,KHONDOWE P,CHEN S F,et al.Effects of 'Bioactive' amino acids leucine,glutamate,arginine and tryptophan on feed intake and mRNA expression of relative neuropeptides in broiler chicks[J]. Journal of Animal Science and Biotechnology,2012,3(1):27. (1)
[35]EMAD M,KAVEH K,JAHANSHIRI F,et al.Dietary tryptophan effects on growth performance and blood parameters in broiler chicks[J]. Journal of Animal and Veterinary Advances,2010,9(4):700-704. (1)
[36]YANG S J,DENBOW D M.Interaction of leptin and nitric oxide on food intake in broilers and leghorns[J]. Physiology and Behavior,2007,92(4):651-657. (1)
[37]VARELA L,VAZQUEZ M J,CORDIDO F,et al.Ghrelin and lipid metabolism:key partners in energy balance[J]. Journal of Molecular Endocrinology,2011,46(2):R43-R63. (1)
[38]KIM E K,MILLER I,LANDREE L E,et al.Expression of FAS within hypothalamic neurons:a model for decreased food intake after C75 treatment[J]. American Journal of Physiology Endocrinology and Metabolism,2002,283(5):E867-E879. (1)
[39]KIM J,KUNDU M,VIOLLET B,et al.AMPK and mTOR regulate autophagy through direct phosphorylation of ULK1[J]. Nature Cell Biology,2011,13(2):132-141. (1)
[40]SUGIYAMA M,TAKAHASHI H,HOSON K.Adiponectin inhibits colorectal cancer cell growth through the AMPK/mTOR pathway[J]. International Journal of Oncology,2009,34(2):339-344. (1)
[41]COTA D,PROULX K,SMITH K A,et al.Hypothalamic mTOR signaling regulates food intake[J]. Science,2006,312(5775):927-930. (1)