动物营养学报  2014, Vol. 26 Issue (2): 311-321   PDF (1485KB)    
葡萄原花青素的生理活性及其在家禽上的应用
杨金玉 , 张海军 , 武书庚, 岳洪源, 齐广海     
中国农业科学院饲料研究所, 农业部饲料生物技术重点开放实验室, 北京 100081
摘要:葡萄原花青素(GPC)是来源于葡萄的天然植物多酚,在葡萄籽中含量最为丰富。国内外研究已表明,GPC具有抗氧化、细胞保护和免疫调节等多种生理功能。本文就GPC的生理活性及其在家禽上的应用进行综述,以期为GPC更好地应用于家禽养殖生产提供理论依据和参考。
关键词葡萄原花青素     生物学活性     家禽    
Biological Functions and Application of Grape Procyanidine in Poultry
YANG Jinyu , ZHANG Haijun , WU Shugeng, YUE Hongyuan, QI Guanghai     
Key Laboratory of Feed Biotechnology of Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Science, Beijing 100081, China
Abstract: Grape procyanidine (GPC), the natural plant polyphenol derived from grape, is most abundantly distributed in grape seed. At home and abroad, studies showed that GPC possessed multiple biological functions including antioxidation, cytoprotection, immunomodulation and so on. This paper reviewed recent studies on the biological functions of GPC and discussed the prospect of GPC application in poultry,to provide the theoretical basis and reference for GPC better used in poultry production.
Key words: grape procyanidine     biological functions     poultry    

植物多酚是广泛存在于植物体内的次级代谢产物,在植物中的含量仅次于纤维素、半纤维素和木质素,主要存在于植物皮、根、木、叶、果中[1]。因多酚类物质能与蛋白质结合[2],降低消化酶活性,影响营养物质的吸收,植物多酚过去一直被认为是抗营养因子。但近年来,随着多酚抗氧化、清除自由基和免疫调节等活性的不断发现,植物多酚逐渐成为了营养、食品等研究领域和应用的研究热点[3]

葡萄原花青素(grape procyanidine, GPC)是一种来源丰富的有代表性的植物多酚,在葡萄的皮、籽中含量丰富,其中在葡萄籽中含量约为1%。国内外大量研究表明GPC在抗氧化、细胞保护等方面发挥重要作用,其多种独特的生理功能已引起家禽从业者的关注,并逐渐应用于家禽养殖。本文就GPC的生理活性及其在家禽上的应用做一综述,以期为GPC用于家禽养殖生产提供理论依据和参考。

1 GPC的组成与结构

GPC是由儿茶素、表儿茶素和表儿茶素没食子酸3种单体[4](图1),通过C4→C8或C4→C6键结合成为不同聚合度的原花青素(OPC)分子[5],图2即是典型的GPC的结构示意图。

图1 GPC单体

Fig.1 The monomers of GPC

图2 GPC典型结构

Fig.2 The typical structures of GPC[4]

GPC主要由单体、二聚体直至十八聚体等成分组成[6]。冯建光等[7]通过反相液相色谱得到色谱图(图3),色谱图显示0~60 min主要是低聚(2~7聚合度)OPC成分。

图3 GPC高效液相色谱

Fig.3 HPLC of GPC

2 GPC的生理活性
2.1 抗氧化

GPC具有多个酚羟基,易被氧化,氧化后释放H+,竞争性地与自由基及氧化物结合,阻止自由基的链式反应。研究发现,GPC体外抗氧化活性极强;其体内抗氧化活性更是其他抗氧化剂不可比拟的,约是维生素C的50倍,维生素E的20倍[8]

2.1.1 清除自由基

机体内自由基的过度积累是造成生物大分子氧化损伤,诱发多种疾病的重要根源。GPC具有极强的清除自由基能力[9]。王传现等[10]运用电子自旋捕集技术,发现GPC浓度达到1 000 mg/L时,对羟基自由基、超氧阴离子和脂类自由基清除率分别可达57.7%、72.1%和71.4%。余莹等[11]研究表明,GPC对l,l-二苯基-2-三硝基苯肼(DPPH)体系的半抑制浓度和2-脱氧-D-核糖体系产生的羟自由基(OH·)清除率分别为44 mg/L和80%。孙芸[4]通过采用亚油酸、脂质体、DPPH及超氧离子(O2-·)等多体系,发现GPC对前二者的半抑制浓度高于合成抗氧化剂丁基羟基甲苯(BHT),对后二者的半抑制浓度分别为2.5 μg/L和15.4 μg/L,抗氧化性均高于或接近于维生素E和维生素C。

GPC的抗氧化和清除自由基能力与聚合度和构象有关,但目前的研究结果并不一致。一般认为二聚体抗氧化性最强,但Plumb等[12]研究认为单体到三聚体的抗氧化能力逐渐增强,三聚体到十聚体逐渐下降。另外Bagchi等[13]发现二聚体和三聚体之间存在协同效应。而Konishi等[14]研究GPC抑制脱氢酶活性时,发现高聚体对还原型辅酶Ⅰ(NADH)脱氢酶有较强的抑制作用,二聚体无此作用。此外,二聚体和三聚体不同的连接方式(C4→C8,C4→C6)对自由基的捕获和抗氧化能力都有影响,酯化作用还可提高其自由基捕获能力[15]

2.1.2 食品储存

GPC抗氧化性能在食品储存中应用广泛。GPC可与脂质等营养物质争夺氧气,避免其氧化。Mohamed等[16]证实,0.1%的GPC可显著减少肉品脂质氧化。GPC的抗氧化、抗腐败等作用日益受到食品安全学者的青睐[17]。近年来国内外对GPC在食品储存中的部分研究汇总如表1所示。

表1 GPC在食品储存中的作用 Table 1 The role of GPC in food storage
2.2 心血管保护作用
2.2.1 保护心肌

GPC的抗氧化能力可发挥心肌细胞保护作用。Demirkaya等[32]利用阿里霉素(DXR)构建心脏中毒模型,发现试验鼠每日摄入100 mg GPC,可以有效抑制由DXR造成的心肌氧化损伤,Zhang等[33]和Bagchi等[34]也有类似的报道。GPC可抑制超氧化物歧化酶(SOD)、嘌呤氧化酶(XO)活性,提高过氧化氢酶(CAT)活性,抑制血清中肌酸激酶(CK)活性,防止心肌DNA损伤,进而保护心肌。

GPC对心肌缺血再灌注损伤具有积极恢复作用。心肌缺血再灌注产生的大量氧自由基(O2-·和过氧亚硝基等)是引起心脏缺血炎症和心律失常的重要原因[35, 36]。Pataki等[37]发现GPC可通过清除OH·和H2O2等自由基,帮助心脏缺血的恢复治疗。Bagchi等[34]研究心肌缺血病变的分子机制,发现GPC可以显著抑制JNK-1和c-fos蛋白介导的早期凋亡信号,抑制JNK-1和c-JUN的表达,从而阻断凋亡信号传递。

胶原蛋白、弹性蛋白和透明质酸等大分子的完整性,是血管壁和血管内皮完整性的重要保障。GPC可非竞争性抑制胶原酶、弹性酶和透明质酸酶对上述大分子的分解作用,从而保持血管完整性[38]

2.2.2 抗动脉粥样硬化

动脉粥样硬化在人类疾病引起的死亡原因中位居首位。高血脂和高胆固醇是造成动脉粥样硬化的主要原因;氧化低密度脂蛋白(oxidized low density lipoprotein,ox-LDL)是动脉粥样硬化形成的重要中心环节[39]。马亚兵等[40]发现GPC可降低家兔血液总胆固醇(TC)、血脂、低密度脂蛋白(LDL)等浓度,升高高密度脂蛋白(HDL)浓度,进而对动脉粥样硬化起到防治作用。GPC可显著抑制LDL氧化,延缓动脉粥样硬化的发生[41]

2.2.3 降血压和舒张血管

GPC在降血压和舒张血管方面也有积极作用,该效果通过降低胆固醇,调节血管舒缩相关的酶实现。Meunier等[42]发现给兔静脉注射GPC后,由血管紧张素Ⅰ、Ⅱ导致的血管加压反应受到抑制,体外试验显示GPC能有效抑制血管紧张素Ⅰ转化酶。GPC能够剂量依赖性抵抗去甲肾上腺素(NE)的血管收缩作用;GPC还能够通过增强内皮一氧化氮合酶(NOS)活性,提高一氧化氮(NO)的水平,起到内皮依赖性的血管舒张作用[43]

GPC的舒血管作用有助于机体抗水肿。Zafirov等[44]用2 mg/kg的GPC对大鼠连续6 d灌胃,显著抑制了注射角叉菜胶或葡聚糖造成的后爪水肿。

2.3 细胞保护与抗癌

GPC可抑制多种癌细胞的毒性,促进正常细胞生长[45]。有研究认为,100 mg/L GPC可以减少300 μg/mL烟草诱导的口腔角质细胞的凋亡[46]。GPC还能显著削弱对乙酰氨基酚诱导的肝中毒和肝细胞DNA损伤作用,降低谷丙转氨酶活性[47, 48]。此外,GPC对二甲基亚硝胺(DMNA)诱导的脾细胞毒性也有较好的缓解作用[49]。多项研究已证明GPC对多种肿瘤细胞包括皮肤癌、肺癌和胃癌等具有不同程度地抑制作用[50, 51, 52]

2.4 免疫调节
2.4.1 抗炎

抗炎是GSE在免疫调节方面的重要作用。GSE通过调节某些炎症因子,如核因子-κB(NF-κB)、C-反应蛋白(CRP)等抑制炎症。

NF-κB是一种可诱导的核转录因子,其活化具有促进炎症的作用[53]。OPC可以抑制NF-κB入核移位,进而起到抗炎的作用[54, 55]。Gessner等[56]发现饲喂GSE和葡萄渣提取物的仔猪,十二指肠NF-κB活性显著受到抑制,仔猪肠炎发生率降低。

肥胖人群的炎症生物信号分子CRP的水平显著高于正常人群,这提示CRP与肥胖性炎症有密切关系[57, 58]。Hogan等[59]给小鼠饲喂添加GSE的高脂饲粮,发现GSE显著降低了CRP水平,该结果表明GSE对高脂诱导的肥胖性炎症具有抵抗作用。Terra等[54, 60]在肥胖性炎症方面的研究显示,GSE尚可降低前炎症因子白细胞介素-6(IL-6)、肿瘤坏死因子α(TNF-α)水平。以上研究表明,GSE可能通过降低多种炎症因子发挥抗炎作用。

2.4.2 调节免疫因子

大量文献表明葡萄源多酚类物质具有调节免疫因子的作用。葡萄籽OPC可抑制紫外线诱导的免疫抑制,通过提高白细胞介素-12(IL-12)和促进细胞毒性T细胞而发挥抗皮肤癌作用[61]。Magrone等[62]发现,葡萄酒多酚可促进IL-12、干扰素-γ(IFN-γ)、白细胞介素-10(IL-10)及免疫球蛋白的分泌释放,对多种免疫紊乱疾病有积极作用,其还可促进NO释放,保护感染组织。葡萄渣发酵物和GPC对许多与炎性细胞因子TNF-α相关的疾病如2-型糖尿病、风湿性关节炎、炎性肠病等均发挥有益调节作用[63]。Mukherjee等[64]报道酿酒用葡萄皮或果肉可有效抑制氧化应激造成的免疫紊乱,促进血管再生,有效防治乙醇引起的心脑血管疾病。

3 GPC在家禽上的应用

GPC在家禽养殖中的应用主要集中于蛋鸡和肉鸡。GPC在肉鸡上的应用较为广泛;而蛋鸡应用还仅限于实际生产中用于降低饲料成本。

3.1 抗营养作用

GPC是一种常见的单宁物质。有报道称,单宁含量较高的饲料可提高反刍动物对饲粮蛋白质的利用率,提高活体增重等[65, 66],此系瘤胃微生物的分解消化作用使然。

家禽肠道微生物数量少,缺乏分解单宁的能力。饲粮中较高剂量的GPC可抑制家禽蛋白质、碳水化合物、脂质和矿物质消化吸收,这与单宁干扰肠道营养物质的跨膜运输有关[67]

GPC的来源可能对家禽生产性能也具有不同影响。Viveros等[68]研究发现,饲喂肉鸡OPC含量相当(2.7~2.9 g/kg)的葡萄渣浓缩物和GSE,肉鸡的生产性能出现差异,GSE对肉鸡生长不利,此或系GSE中游离多酚存在形式所致。有研究表明,GPC添加量小于3.6 g/kg时,不影响肉鸡的生产指标[69],但GPC的安全上限剂量尚不清楚。因此,将GPC应用于家禽饲料时,选择适宜的添加剂量至关重要。

3.2 GPC在蛋鸡上的应用

GPC在蛋鸡养殖中的应用,国内研究较多,其主要的目的在于开发新饲料资源,降低饲养成本。孔祥浩等[70]认为对260日龄蛋鸡添加7.4%以下的葡萄渣,不会影响产蛋率,并可以提高经济效益;于维等[71]给280日龄的蛋鸡饲喂6%葡萄籽粕,可提高产蛋性能,节约饲养成本;王敬勉等[72]在290日龄的蛋鸡饲粮中添加7%的葡萄皮渣,产蛋性能和经济效益显著提高。但是上述生产指标的改善除GPC外,可能还与葡萄渣中的其他成分有关,对此有待于进一步研究。

Park等[73]研究发现,OPC对SPF白莱航鸡有显著的免疫调节作用,在饲喂OPC数周后,白莱航鸡外周血中单核细胞、B细胞、脾淋巴细胞和胸腺淋巴细胞数目显著增加;并显著促进了辅助性T细胞1的细胞因子(IFN-γ)和辅助性T细胞2的细胞因子(IL-6)的释放。这提示OPC对蛋鸡免疫系统有明显的调节作用。

此外,Keshavarz等[74]通过蛋鸡换羽期间交替进行葡萄渣饲粮饲喂和绝食处理,研究发现这一换羽方法同常规绝食处理效果相近,不影响产蛋性能,并由于葡萄渣饲粮提供相当的营养物质,可显著改善换羽期间动物福利。

3.3 GPC在肉鸡上的应用
3.3.1 改善免疫性能

肉鸡生长速度较快,整个生长期几乎都处于雏鸡阶段,淋巴系统不健全,消化道相对较短,肠道黏膜屏障脆弱,极易受到有害菌和寄生虫感染而发病。GPC系天然植物提取成分,具有安全无残留的优势,将其作为改善肉鸡免疫机能的饲料添加剂的应用已受到越来越多的关注。

病原体入侵时,肉鸡外周血中γδT细胞参与机体的初期防御。与人和其他哺乳动物外周血中只有很少比例(3%~5%)γδT细胞不同,家禽外周血中γδT细胞占到约50%左右[75, 76],这就表明在受到病原体入侵时,家禽黏膜上皮和外周血中的γδT细胞在机体的初期防御发挥重要作用。OPC是近年来发现的能够以非依赖性激活γδT细胞的有效因子[77, 78]。因此推测GPC对肉鸡的γδT细胞具有调节作用。但目前为止,GPC对家禽γδT细胞影响的研究报告未见报道[79]。张海军等[80]饲喂肉鸡GPC,仅观察到外周血γδT细胞数量有增加的趋势,这可能与GPC中多酚的用量、有效成分含量以及采样时间有关。Tayer等[81]研究了不同添加水平绿葡萄叶对肉鸡免疫指标的影响,发现1.5%添加量可显著减少白细胞数目,提高异嗜性细胞比率,以上结果提示绿葡萄叶可调节肉鸡免疫功能,并具有防治某些疾病的潜力。

3.3.2 抗球虫

球虫病是严重危害世界家禽业的肠道寄生虫疾病。多酚类物质尤其是GPC对球虫感染的肉鸡肠道具有保护作用。近期研究发现,红坚木中提取的多酚可显著提高肉鸡在混合球虫攻毒后的体增重和肠绒毛长/腺窝深,减少卵囊排出[82]。Wang等[83]报道GPC可以改善柔嫩艾美尔球虫造成的生长受阻,并且有助于治疗因柔嫩艾美尔球虫引起的并发症。Mc Dougald等[84]研究发现,饲粮中添加2%圆叶葡萄渣(MP),可以显著降低球虫引起的肠道损伤评分;并且通过产气荚膜梭菌和多种球虫诱导的坏死性肠炎模型,发现0.5%~2.0%MP显著降低了死亡率和肠道损伤评分。但是Allen等[85]认为GPC抵抗球虫的作用仅限于特定的艾美尔球虫属,特别是堆型和巨型艾美尔球虫。GPC是否对艾美尔球虫具有选择性抑制作用,有待进一步研究。

3.3.3 改善肠道微生物区系

GPC在体外对多种微生物有抑制作用,如大肠杆菌[86]、金黄色葡萄球菌和肠球菌等[87]。Viveros等[68]发现肉鸡饲粮中添加葡萄渣和GSE,能有效调整肠道形态和肠道微生态区系,提高肠道的微生物学多样性。值得关注的是,Viveros等[68]试验显示饲喂葡萄渣或GSE的肉鸡肠道中酚降解菌数量有所增加,这提示GPC在肠道中的代谢过程极可能是通过微生物降解实现的。

3.3.4 提高胴体品质

与其他动物肉品质相比,鸡肉中多不饱和脂肪酸(PUFA)含量相对较高,这与肉鸡饲粮中高含量不饱和脂肪酸有关[88, 89]。鸡肉中脂肪酸的这种组成特点使得鸡肉易氧化腐败,货架期相对较短。如前所述,食品中添加GPC显著改善畜产品品质。但单宁容易与口腔中蛋白质结合,造成食品风味变涩,食品颜色变暗。作为饲料添加剂饲喂肉鸡,就可避免GPC造成的食品风味变次、色泽变差。Smet等[90]发现,饲喂GPC可有效抑制鸡肉脂质氧化。Brenes等[91]于21~42日龄肉鸡饲粮中添加60 g/kg葡萄渣浓缩物,可显著提高胸肌的抗氧化能力,效果与维生素E相当。这与Go?i等[92]研究结果一致。Smet等[90]研究几种天然植物提取物对鸡肉脂质和蛋白质抗氧化作用时,发现GPC抗氧化性能虽低于化学合成抗氧化剂,但其抗氧化性能仍值得关注。这也为食品安全提供了另一条途径。虽然GPC在肉鸡体内的代谢机理尚不清楚,但显然饲料中添加GPC可有效延长鸡肉货架期,延缓脂质过氧化。

4 小 结

GPC作为饲料添加剂应用的研究尚处于初级阶段,有较多问题仍待解决。1)质量控制标准的建立,提取工艺、质量控制指标必须标准化,保证GPC产品性能稳定;2)不同聚合体和不同连接方式的GPC抗氧化和清除自由基能力差异显著[12],但是就其确切变化而言,研究并不一致,故有必要对GPC有效成分进行结构分析,建立稳定的构效关系;3)家禽应用中,在不降低消化率和生产性能基础上,探讨饲粮中的最佳添加量,确定生产应用的有效推荐剂量和耐受剂量范围;4)家禽处于某些特殊疾病条件时,如球虫感染或肠道炎症等,研究其作用机理和最佳剂量,以有效降低或替代治疗药物的用量;5)GPC各组分间是否存在互作,目前尚无研究,故有必要对GPC进行营养活性组学[93]研究,探讨GPC最佳组分组合的添加效果;6)动物营养成分间存在联系与作用,并保持动态平衡,研究GPC与其他营养素之间的组合效应和平衡理论[93, 94],有利于优化GPC的饲料添加技术。

随着“回归自然”的号召,医学家们已经逐渐把植物提取物视为解决医学难题的重要途径[25]。GPC是体内抗氧性最强的植物提取物之一,在机体抗氧化、心脑血管疾病防治和免疫系统改善等方面显示出了良好的生理活性。尤其在我国成功加入了WTO之后,中药要走向世界,必须定量化、科学化;随着国际对中药的逐渐接受了解,科研工作者不该仅将目光锁在单一组分上,而应该多关注营养活性物质的整体功能和优化组合。因此,有必要在对GPC进行分析、筛选有效成分,通过体内体外试验,研究其最佳效应组分和最适用量的同时,进一步研究GPC组分间及其与其他营养成分的互作效应。当前,饲料添加剂的发展已进入“后抗生素”时代,植物提取物因其安全有效等特性,逐渐成为了添加剂的主流产品。GPC作为家禽饲料添加剂的研究和应用将会进一步得到加强和深化。

参考文献
[1]宋立江, 狄莹, 石碧.植物多酚研究与利用的意义及发展趋势[J]. 化学进展, 2000, 12(2):162-170. (1)
[2]BI S, HE X Q, HASLAM E.Gelatin-polyphenol interaction[J]. Journal of American Leather Chemists Association, 1994, 89(4):98-104. (1)
[3]YORUK R, MARSHALL M R.Physicochemical properties and function of plant polyphenol oxidase:a review[J]. Journal of Food Biochemistry, 2003, 27(5):361-422. (1)
[4]孙芸.葡萄籽原花青素聚合度与功效关系的研究[D]. 博士学位论文.无锡:江南大学, 2004. (3)
[5]SANTOS-BUELGA C, SCALBERT A.Proanthocyanidins and tannin-like compounds-nature, occurrence, dietary intake and effects on nutrition and health[J]. Journal of the Science of Food and Agriculture, 2000, 80(7):1094-1117. (1)
[6]PRIEUR C, RIGAUD J, CHEYNIER V, et al.Oligomeric and polymeric procyanidins from grape seeds[J]. Phytochemistry, 1994, 36(3):781-784. (1)
[7]冯建光, 陈利琼.葡萄籽提取物中OPC的测定[J]. 中国食品添加剂, 2007(4):156-159. (1)
[8]SHI J, YU J, POHORLY P E, KAKUDA Y.Polyphenolics in grape seeds-Biochemistry and functionality[J]. Journal of Medicinal Food, 2003, 6(4):291-299. (1)
[9]GONZÁLEZ-PARAMÁS A M, ESTEBAN-RUANO S, SANTOS-BUELGA C, et al.Flavanol content and antioxidant activity in winery byproducts[J]. Journal of Agricultural and Food Chemistry, 2004, 52(2):234-238. (1)
[10]王传现, 钟进义.葡多酚对活性氧自由基的清除作用研究[J]. 营养学报, 2001, 23(2):170-173. (1)
[11]余莹, 粟武, 魏东芝.原花青素体外清除自由基活性的研究[J]. 华东理工大学学报:自然科学版, 2002, 28(3):318-320. (1)
[12]PLUMB G W, DE PASCUAL-TERESA S D, SANTOS-BUELGA C, et al.Antioxidant properties of catechins and proanthocyanidins:effect of polymerisation, galloylation and glycosylation[J]. Free Radical Research, 1998, 29(4):351-358. (2)
[13]BAGCHI D, GARG A, KROHN R J, et al.Protective effects of grape seed proanthocyanidins and selected antioxidants against TPA-induced hepatic and brain lipid peroxidation and DNA fragmentation, and peritoneal macrophage activation in mice[J]. Gen Pharmacology:The Vascular System, 1998, 30(5):771-776. (1)
[14]KONISHI K, ADACHI H, ISHIGAKI N, et al.Inhibitory effects of tannins on NADH dehydrogenases of various organisms[J]. Biological and Pharmaceutical Bulletin, 1993, l6(7):716-718. (1)
[15]SILVA J M R, DARMON N, FERNANDEZ Y, et al.Oxygen free radical scavenger capacity in aqueous models of different procyanidins from grape seeds[J]. Journal of Agricultural and Food Chemistry, 1991, 39(9):1549-1552. (1)
[16]MOHAMED A, JAMILAH B, ABBAS K A, et al.A review on lipid oxidation of meat in active and modified atmosphere packaging and usage of some stabilizers[J]. Journal of Food, Agriculture & Environment, 2008, 6(3/4):76-81. (1)
[17]PERUMALLA A V S, HETTIARACHCHY N S.Green tea and grape seed extracts-Potential applications in food safety and quality[J]. Food Research International, 2011, 44(4):827-839. (1)
[18]O'GRADY M N, CARPENTER R, LYNCH P B, et al.Addition of grape seed extract and bearberry to porcine diets:influence on quality attributes of raw and cooked pork[J]. Meat Science, 2008, 78(4):438-446. (1)
[19]SASSE A, COLINDRES P, REWER M S B.Effect of natural and synthetic antioxidants on the oxidative stability of cooked, frozen Pork Patties[J]. Journal of Food Science, 2009, 74(1):30-35. (1)
[20]GARRIDO M D, AUQUI M, MARTI N, et al.Effect of two different red grape pomace extracts obtained under different extraction systems on meat quality of pork burgers[J]. Food Science and Technology, 2011, 44(10):2238-2243. (1)
[21]CARPENTER R, O'GRADY M N, O'CALLAGHAN Y C, et al.Evaluation of the antioxidant potential of grape seed and bearberry extracts in raw and cooked pork[J]. Meat Science, 2007, 76(4):604-610. (1)
[22]SÁNCHEZ-ALONSO I, JIMÉNEZ-ESCRIG A, SAURA-CALIXTO F, et al.Effect of grape antioxidant dietary fibre on the prevention of lipid oxidation in minced fish:evaluation by different methodologies[J]. Food Chemistry, 2007, 101(1):372-378. (1)
[23]ODRIGO M R, MCOLI V, FUNES L, et al.Incorporation and interaction of grape seed extract in membranes and relation with efficacy in muscle foods[J]. Journal of Agricultural and Food Chemistry, 2010, 58(14):8365-8374. (1)
[24]SAMPAIO G R, SALDANHA T, SOARES R A M, et al.Effect of natural antioxidant combinations on lipid oxidation in cooked chicken meat during refrigerated storage[J]. Food Chemistry, 2012, 135(3):1383-1390. (1)
[25]金立志.植物提取物添加剂在动物营养中的应用及其机制的研究进展[J]. 动物营养学报, 2010, 22(5):1154-1164. (2)
[26]ELIANA J, CRISTINA M M A, SUSANA P A, et al.Effect of dietary grape seed extract and Cistus ladanifer L.in combination with vegetable oil supplementation on lamb meat quality[J]. Meat Science, 2012, 92(4):841-847. (1)
[27]VAITHIYANATHAN S, NAVEENA B M, MUTHUKUMAR M, et al.Effect of dipping in pomegranate (Punica granatum) fruit juice phenolic solution on the shelf life of chicken meat under refrigerated storage(4 ℃)[J]. Meat Science, 2011, 88(3):409-414. (1)
[28]BASAPPA M N, ARUP R S, ROSE P K, et al.Antioxidant activity of pomegranate rind powder extract in cooked chicken patties[J]. International Journal of Food Science and Technology, 2008, 43(10):1807-1812. (1)
[29]SELANI M M, CONTRERAS-CASTILLO C J, SHIRAHIGUE L D, et al.Wine industry residues extracts as natural antioxidants in raw and cooked chicken meat during frozen storage[J]. Meat Science, 2011, 88(3):397-403. (1)
[30]TSENG A, ZHAO Y Y.Wine grape pomace as antioxidant dietary fibre for enhancing nutritional value and improving storability of yogurt and salad dressing[J]. Food Chemistry, 2013, 138(1):356-365. (1)
[31]BENJARUK V, VARAPON L.Recovery of antioxidants from grape seeds and its application in fried food[J]. Journal of Food Processing and Technology, 2012, 3(4):152. (1)
[32]DEMIRKAYA E D E, AVCI A A A, KESIK V K V, et al.Cardioprotective roles of aged garlic extract, grape seed proanthocyanidin, and hazelnut on doxorubicin-induced cardiotoxicity[J]. Canadian Journal of Physiology and Pharmacology, 2009, 87(8):633-640. (1)
[33]ZHANG X Y, LI W G, WU Y J, et al.Amelioration of doxorubicin-induced myocardial oxidative stress and immunesuppression by grape seed proanthocyandins in tumour-bearing mice[J]. Journal of Pharmacy and Pharmacology, 2005, 57(8):1043-1052. (1)
[34]BAGCHI D, SEN C K, RAY S D, et al.Molecular mechanisms of cardioprotection by a novel grape seed proanthocyanidin extract[J]. Mutation Research, 2003, 523-524:87-97. (2)
[35]GARLICK P B, DAVIES M J, HEARSE D J, et al.Direct detection of free radicals in the reperfused rat heart using electron spin resonance spectroscopy[J]. Circulation Research, 1987, 61(5):757-760. (1)
[36]LIU P, HOCK C E, NAGELE R, et al.Formation of nitric oxide, superoxide, and peroxynitrite in myocardial ischemia-reperfusion injury in rats[J]. American Journal of Physiology, 1997, 272(5):H2327-H2336. (1)
[37]PATAKI T, BAK I, KOVACS P, et al.Grape seed proanthocyanidins improved cardiac recovery during reperfusion after ischemia in isolated rat hearts[J]. The American Journal of Clinical Nutrition, 2002, 75(5):894-902. (1)
[38]FACINO R M, CARINI M, ALDINI G, et al.Free radicals scavenging action and anti-enzyme activities of procyanidines from Vitis vinifera.A mechanism for their capillary protective action[J]. Arzneimittel-Forschung, 1994, 44(5):592-601. (1)
[39]PETIT L, LESNIK P, DACHET C, et al.Tissue factor pathway inhibitor is expressed by human monocyte-derived macrophages:relationship to tissue factor induction by cholesterol and oxidized LDL[J]. Arteriosclerosis, Thrombosis, and Vascular Biology, 1999, 19(2):309-315. (1)
[40]马亚兵, 高海青, 由倍安, 等.葡萄籽原花青素抗兔动脉粥样硬化形成的实验研究[J]. 山东大学学报:医学版, 2003, 41(6):646-666. (1)
[41]江璐, 李素君, 刘宗林, 等.红曲与葡萄籽原花青素混合剂对动脉粥样硬化大鼠血脂的影响[J]. 食品科学, 2008, 29(7):420-423. (1)
[42]MEUNIER M T, VILLIÉ F, JONADET M, et al.Inhibition of angiotensin I converting enzyme by flavanolic compounds:in vitro and in vivo studies[J]. Planta Madica, 1987, 53(1):12-15. (1)
[43]常徽, 蒋宝泉.葡萄籽提取物原花青素生物药理活性研究进展[J]. 国外医学:卫生学分册, 2005, 32(2):72-76. (1)
[44]ZAFIROV D, BREDY-DOBREVA G, LITCHEV V, et al.Antiexudative and capillaritonic effects of procyanidines isolated from grape seeds (V.vinifera)[J]. Acta Physiologica et Pharmacologica Bulgarica, 1990, 16(3):50-54. (1)
[45]YE X, KROHN R L, LIU W, et al.The cytotoxic effects of a novel IH636 grape seed proanthocyanidin extract on cultured human cancer cells[J]. Molecular and Cellular Biochemistry, 1999, 196(1/2):99-108. (1)
[46]BAGCHI M, BALMOORI J, BAGCHI D, et al.Smokeless tobacco, oxidative stress, apoptosis, and antioxidants in human oral keratinocytes[J]. Free Radical Biology and Medicine, 1999, 26(7/8):992-1000. (1)
[47]RAY S D, KUMAR M A, BAGCHI D, et al.A novel proanthocyanidin IH636 grape seed extract increases in vivo bcl-XL expression and prevents acetaminophen-induced programmed and unprogrammed cell death in mouse liver[J]. Archives of Biochemistry and Biophysics, 1999, 369(1):42-58. (1)
[48]RAY S D, PARIKH H, HICKEY E, et al.Differential effects of IH636 grape seed proanthocyanidin extract and a DNA repair modulator 4-aminobenzamide on liver microsomal cytochrome P4502E1-dependent aniline hydroxylation[J]. Molecular and Cellular Biochemistry, 2001, 218(1/2):27-33. (1)
[49]RAY S D, WONG V, RINKOVSKY A, et al.Unique organoprotective properties of a novel IH636 grape seed proanthocyanidin extract on cadmium chloride-induced nephrotoxicity, dimethylnitrosamine (DMN)-induced splenotoxicity and MOCAP-induced neurotoxicity in mice[J]. Research Communications in Molecular Pathology and Pharmacology, 2000, 107(1/2):105-128. (1)
[50]SHAPIRA N.Nutritional approach to sun protection:a suggested complement to external strategies[J]. Nutrition Reviews, 2010, 68(2):75-86. (1)
[51]LIVIERO L, PUGLISI P P, MORAZZONI P, et al.Antimutagenic activity of procyanidins from Vitis.vinifera[J]. Fitoterapia, 1994, 65:203-209. (1)
[52]BOMSER J A, SINGLETARY K W, WALLIG M A, et al.Inhibition of TPA-induced tumor promotion in CD-l mouse epidermis by a polyphenolic fraction from grape seeds[J]. Cancer Letters, 1999, 135(2):15l-l57. (1)
[53]SACCANI S, PANTANO S, NATOLI G.Two waves of nuclear factor κB recruitment to target promoters[J]. The Journal of Experimental Medicine, 2001, 193(12):1351-1360. (1)
[54]TERRA X, MONTAGUT G, BUSTOS M, et al.Grape-seed procyanidins prevent low-grade inflammation by modulating cytokine expression in rats fed a high-fat diet[J]. The Journal of Nutritional Biochemistry, 2009, 20(3):210-218. (2)
[55]MARTINEZ-MICAELO N, GONZLEZ-ABUN N, TERRA X, et al.Omega-3 docosahexaenoic acid and procyanidins inhibit cyclo-oxygenase activity and attenuate NF-κB activation through a p105/p50 regulatory mechanism in macrophage inflammation[J]. Biochemical Journal, 2012, 441(2):653-663. (1)
[56]GESSNER D K, FIESEL A, MOST E, et al.Supplementation of a grape seed and grape marc meal extract decreases activities of the oxidative stress-responsive transcription factors NF-κB and Nrf2 in the duodenal mucosa of pigs[J]. Acta Veterinaria Scandinavica, 2013, 55(1):18-28. (1)
[57]DEVRIES M C, HAMADEH M J, GLOVER A W, et al.Endurance training without weight loss lowers systemic, but not muscle, oxidative stress with no effect on inflammation in lean and obese women[J]. Free Radical Biology and Medicine, 2008, 45(4):503-511. (1)
[58]BLOCK G, DIETRICH M, NORKUS E, et al.Intraindividual variability of plasma antioxidants, markers of oxidative stress, C-reactive protein, cotinine, and other biomarkers[J]. Epidemiology, 2006, 17(4):404-412. (1)
[59]HOGAN S, CANNING C, SUN S, et al.Effects of grape pomace antioxidant extract on oxidative stress and inflammation in diet induced obese mice[J]. Journal of Agricultural and Food Chemistry, 2010, 58(21):11250-11256. (1)
[60]TERRA X, PALLARÉS V, ARDÈVOL A, et al.Modulatory effect of grape-seed procyanidins on local and systemic inflammation in diet-induced obesity rats[J]. The Journal of Nutritional Biochemistry, 2011, 22(4):380-387. (1)
[61]KATIYAR S K.UV-induced immune suppression and photocarcinogenesis:chemoprevention by dietary botanical agents[J]. Cancer Letters, 2007, 255(1):1-11. (1)
[62]MAGRONE T, CANDORE G, CARUS C, et al.Polyphenols from red wine modulate immune responsiveness:biological and clinical significance[J]. Current Pharmaceutical Design, 2008, 14(26):2733-2748. (1)
[63]KAWAGUCHI K, MATSUMOTO T, KUMAZAWA Y.Effects of antioxidant polyphenolson TNF-alpha-related diseases[J]. Current Topics in Medicinal Chemistry, 2011, 11(14):1767-1779. (1)
[64]MUKHERJEE S, DAS S K, VASUDEVAN D M.Dietary grapes (Vitis vinifera) feeding attenuates ethanol-induced oxidative stress in blood and modulates immune functions in mice[J]. Indian Journal of Biochemistry and Biophysics, 2012, 49(5):379-385. (1)
[65]LOWRY J B, MCSWEENEY C S, PALMER B.Changing perceptions of the effect of plant phenolics on nutrient supply in the ruminant[J]. Australian Journal of Agricultural Research, 1996, 47(6):829-842. (1)
[66]MLAMBO V, SMITH T, OWEN E, et al.Tanniniferous Dichrostachys cinerea fruits do not require detoxification for goat nutrition:in sacco and in vivo evaluations[J]. Livestock Production Science, 2004, 90(2/3):135-144. (1)
[67]KIM H S, MILLER D D.Proline-rich proteins moderate the inhibitory effect of tea on iron absorption in rats[J]. The Journal of Nutrition, 2005, 135(3):532-537. (1)
[68]VIVEROS A, CHAMORRO S, PIZARRO M, et al.Effects of dietary polyphenol-rich grape products on intestinal microflora and gut morphology in broiler chicks[J]. Poultry Science, 2011, 90(3):566-578. (3)
[69]BRENES A, VIVEROS A, GOI I, et al.Effect of grape seed extract on growth performance, protein and polyphenol digestibilities, and antioxidant activity in chickens[J]. Spanish Journal of Agricultural Research, 2010, 8(2):326-333. (1)
[70]孔祥浩, 秦建华, 郭金双, 等.搭配葡萄渣饲粮饲喂产蛋鸡的代谢试验研究[J]. 河北畜牧兽医, 1997, 13(2):60-62. (1)
[71] 于维, 刘海燕, 苏秀侠, 等.产蛋鸡应用葡萄籽粕日粮的饲养试验报告 //动物营养与饲料研究.吉林省畜牧兽医学会2007学术年会论文集.吉林:吉林省畜牧兽医学会, 2007:127-130.(1)
[72]王敬勉, 廖德胜, 张永洪.发酵葡萄皮渣喂蛋鸡和猪的研究[J]. 饲料研究, 1998(2):5-6. (1)
[73]PARK I J, CHA S Y, KANG M, et al.Effect of proanthocyanidin-rich extract from Pinus radiata bark on immune response of specific-pathogen-free White Leghorn chickens[J]. Poultry Science, 2011, 90(5):977-982. (1)
[74]KESHAVARZ K, QUIMBY F W.An investigation of different molting techniques with an emphasis on animal welfare[J]. The Journal of Applied Poultry Research, 2002, 11(1):54-67. (1)
[75]BERNDT A, METHNER U.Gamma/delta T cell response of chickens after oral administration of attenuated and non-attenuated Salmonella typhimurium strains[J]. Veterinary Immunology and Immunopathology, 2001, 78(2):143-161. (1)
[76]BERNDT A, PIEPER J, METHNER U.Circulating γδ T cells in response to Salmonella enterica serovar enteritidis exposure in chickens[J]. Infection and Immunity, 2006, 74(7):3967-3978. (1)
[77]JUTILA M A, HOLDERNESS J, GRAFT J C, et al.Antigen-independent priming:a transitional response of bovine γδ-T cells to infection[J]. Animal Health Research Reviews, 2008, 9(1):47-57. (1)
[78]HOLDERNESS J, JACKIW L, KIMMEL E, et al.Select plant tannins induce IL-2Ralpha up-regulation and augment cell division in gammadelta T cells[J]. Journal of Immunology, 2007, 179(10):6468-6478. (1)
[79]PERCIVAL S S.Grape consumption supports immunsity in animals and humans[J]. Journal Nutrition, 2009, 139(9):1801S-1805S. (1)
[80]张海军, 徐磊, 岳洪源, 等.葡多酚对肉鸡生产性能和免疫机能的影响[J]. 中国畜牧兽医, 2012, 39(3):99-103. (1)
[81]TAYER M, NOBAKHT A, PISHJANGH J.Effects of different levels of green grape (Vitis vinifera) leaves on performance, carcass traits, blood biochemical and immunity parameters of broilers[J]. International Research Journal of Applied and Basic Sciences, 2012, 3(1):103-111. (1)
[82]EMANUEL C, SILVINA P, FLORENCIA P, et al.Evaluation of quebracho red wood (Schinopsis Lorentzii) polyphenolic vegetable extract for the reduction of coccidiosis in broiler chicks[J]. International Journal of Poultry Science, 2011, 10(5):344-349. (1)
[83]WANG M L, SUO X, GU J H, et al.Influence of grape seed proanthocyanidin extract in broiler chickens:effect on chicken coccidiosis and antioxidant status[J]. Poultry Science, 2008, 87(11):2273-2280. (1)
[84]MC DOUGALD L R, HOFACRE C, MATHIS G, et al.Enhancement of resistance to coccidiosis and necrotic enteritis in broiler chickens by dietary muscadine pomace[J]. Avian Diseases, 2008, 52(4):646-651. (1)
[85]ALLEN P C, FETTERER R H.Recent advances in biology and immunobiology of Eimeria species and in diagnosis and control of infection with these coccidian parasites of poultry[J]. Clinical Microbiology Reviews, 2002, 15(1):58-65. (1)
[86]LAI Y F, YINRONG L U, AMY B H, et al.The structure of cranberry proanthocyanidins which inhibit adherence of uropathogenic P-fimbriated Escherichia coli in vitro[J]. Phytochemistry, 2000, 54(2):173-181. (1)
[87]刘胜贵, 张祺麟, 李娟.显齿蛇葡萄提取物体外抑菌试验的研究[J]. 氨基酸和生物资源, 2006, 28(2):12-14. (1)
[88]ASGHAR A, LIN C F, GRAY J I, et al.Effects of dietary oils and α-tocopherol supplementation on membranal lipid oxidation in broiler meat[J]. Journal of Food Science, 1990, 55(1):46-50. (1)
[89]RHEE K S, ANDERSON L M, SAMS A R.Lipid oxidation potential of beef, chicken, and pork[J]. Journal of Food Science, 1996, 61(1):8-12. (1)
[90]SMET K, RAES K, HUYGHEBAERT G, et al.Lipid and protein oxidation of broiler meat as influenced by dietary natural antioxidant supplementation[J]. Poultry Science, 2008, 87(8):1682-1688. (2)
[91]BRENES A, VIVEROS A, GO?I I, et al.Effect of grape pomace concentrate and vitamin E on digestibility of polyphenols and antioxidant activity in chickens[J]. Poultry Science, 2008, 87(2):307-316. (1)
[92]GOI I, BRENES A, CENTENO C, et al.Effect of dietary grape pomace and vitamin E on growth performance, nutrient digestibility, and susceptibility to meat lipid oxidation in chickens[J]. Poultry Science, 2007, 86(3):508-516. (1)
[93]卢德勋.饲料科学的新概念——用系统思维诠释饲料科学的一些理论和技术问题[J]. 饲料工业, 2012, 33(1):1-7. (2)
[94]卢德勋.饲料科学的新概念——用系统思维诠释饲料科学的一些理论和技术问题[J]. 饲料工业, 2012, 33(2):1-4. (1)