动物营养学报  2014, Vol. 26 Issue (4): 843-851   PDF (1114 KB)    
仔稚鱼营养需要及生长发育的营养调控
宫官1,2, 薛敏1, 王嘉1, 吴秀峰1, 韩芳1, 郑银桦1    
1. 国家水产饲料安全评价基地, 中国农业科学院饲料研究所, 北京 100081;
2. 中国农业科学院农业质量标准与检测技术研究所, 北京 100081
摘要:亲鱼期及开口期某些营养素的缺乏是导致人工育苗过程中仔稚鱼大量死亡以及发育不良的重要原因。因此,系统地研究从亲鱼期至仔稚期的营养需要及营养素对仔稚鱼生长发育的调控对于保证水产养殖业的快速发展具有重要作用。本文旨在从仔稚鱼亲鱼期和仔稚期的营养需要以及仔稚期的营养调控对其生长发育及后期代谢的影响等方面综述近年来国内外的最新研究进展。
关键词仔稚鱼     营养需要     营养调控    
Nutrition Requirement and Nutritional Regulation of Growth and Development for Fish Larvae
GONG Guan1,2, XUE Min1, WANG Jia1, WU Xiufeng1, HAN Fang1, ZHENG Yinhua1    
1. National Aquafeed Safety Assessment Station, Feed Research Institute, The Chinese Academy of Agricultural Sciences, Beijing 100081, China;
2. Institute of Quality Standard and Testing Technology for Agro-Products, The Chinese Academy of Agricultural Sciences, Beijing 100081, China
Abstract: Lack of some nutriments during broodstock and mouth opening period is the key reason for the high mortality and maldevelopment of fish larvae in artificial seeding. Therefore, systematic study in the nutrition requirement and nutritional regulation of growth and development from broodstock to larvae stage of fish is very important for the fast-growing aquiculture. This review provided an overview of the nutrition requirement on broodstock and larvae, and the effects of nutritional regulation on larvae growth and development and the metabolism in later life of fish.
Key words: fish larvae     nutrition requirement     nutritional regulation    

随着集约化水产养殖规模的不断扩大,仔稚鱼种的需求量逐渐增加,高品质的仔稚鱼种是进行成功养殖生产的基础和保证,而仔稚期的营养状况对于仔稚鱼品质具有重要的影响。仔稚鱼从吸收卵黄的内源性营养转变为摄食人工培养的浮游动物或人工配合饲料等外源性营养后,经常出现死亡高峰,某些营养物质的缺乏是造成该现象的一个重要原因。但相比成鱼和幼鱼,仔稚鱼在营养生理与营养调控上的研究相对落后,这主要与适合仔稚鱼摄食的人工配合饲料的配制和加工技术难度较大有关。而随着生物饵料营养强化技术和人工微颗粒饲料加工技术的逐渐成熟和完善,仔稚期营养生理研究已经得到了广泛的开展,本文旨在综述近年来有关仔稚鱼营养生理及生长发育营养调控的研究进展。

1 亲鱼营养对仔稚鱼生长发育的影响

人工育苗的成功,很大程度上依赖于所培育的亲鱼能够产生优质的卵子,而营养对亲鱼性腺的发育和繁殖力具有深远的影响。然而由于研究的难度和费用相对较大等原因,亲鱼营养仍然是研究最少的领域之一[ 1 ],并且所进行的研究仅仅局限在必需脂肪酸,特别是n-3系列高不饱和脂肪酸(n-3 HUFA)上。亲鱼饲料中合适的n-3 HUFA含量对于提高亲鱼的繁殖性能、促进仔稚鱼的正常生长发育具有重要作用。例如,牙鲆(Paralichthys olivaceus)孵化后正常仔鱼数量、存活率(3日龄)和饥饿耐受性随亲鱼饲料中n-3 HUFA添加量的增加而提高,但过高的花生四烯酸(20∶ 4 n-6,ArA,每100 g饲料添加1.2 g)对卵和仔鱼质量会产生负面影响[ 2,3 ]。Li等[ 4 ]证明花尾胡椒鲷(Plectorhynchus cinctus)亲鱼饲料中缺乏(1.12%)或过量(5.85%)的n-3 HUFA对于卵和仔鱼的质量均有负面影响,当饲料中含有2.40%和3.70%的n-3 HUFA时,或者n-3 HUFA水平为总脂肪酸的12.17%和18.63%时,其产卵性能最佳。真鲷(Sparus aurata)亲鱼饲料中n-3 HUFA 水平从25 g/kg提高至40 g/kg可显著提高其生产性能(如卵发育能力、孵化率和受精率),并显著提高卵中HUFA的含量,从而促进胚胎发育[ 5 ]。Zakeri等[ 6 ]分别用鱼油和一定比例的向日葵油作为脂肪源添加到黄鳍鲷(Acanthopagrus latus)亲鱼饲料中,可知相对繁殖力、上浮卵百分率、孵化率、3日龄仔鱼的存活率以及耐饥饿试验存活率均在鱼油组(n-3 HUFA的浓度为6.67%)最高;并且随着饲料n-3 HUFA水平的增加,亲鱼组织、卵以及仔鱼中亚油酸(18∶ 2 n-6)、亚麻酸(18∶ 3 n-3)和总n-6不饱和脂肪酸的沉积降低,同时二十二碳六烯酸(22∶ 6 n-3,DHA)、二十碳五烯酸(20∶ 5 n-3,EPA)和ArA的沉积增加。以上研究均证明,亲鱼饲料中的n-3 HUFA会通过影响卵中n-3 HUFA的含量和相对比例,从而对卵的受精、孵化等生殖性能以及仔稚鱼的生长发育产生影响。除了饲料中n-3 HUFA的含量外,亲鱼饲料中适宜的n-3与n-6脂肪酸的比例也同样影响生产性能和子代的发育。Liang等[ 7 ]发现半滑舌鳎(Cynoglossus semilaevis)亲鱼饲料中n-3/n-6为5.21和2.81时,相对产卵率、受精率和孵化后7 d的仔鱼成活率最高,并且n-3/n-6为2.81时仔鱼对饥饿的耐受性最强。目前对亲鱼营养的研究主要集中在对产卵雌鱼上,而营养素对雄鱼精子性能的影响研究较少。Martín等[ 8 ]给雄性真鲷亲鱼饲喂n-3、n-6 HUFA缺乏的饲料,发现在精子形成期间组织中的n-3 HUFA几乎耗尽,这说明必需脂肪酸,尤其是n-3 HUFA对于精子的形成是必需的。 2 仔稚期营养需要及营养素对仔稚鱼生长发育的影响

开口摄食阶段对于仔稚鱼而言是个体发育的关键阶段,在该阶段,用以维持个体发育的营养和能量由内源性的卵黄转变为外源性的饵料。为了完成该转变,在这个阶段有关摄食、消化和同化作用的组织和器官的结构和功能均需要为外源性摄食做好准备,同时需要具有足够可摄入的饵料[ 9 ]。传统上通常采用浮游动物,如轮虫、卤虫无节幼体和桡足类等作为仔稚鱼的开口饵料。但是,很多研究表明单纯的生物饵料并不能满足仔稚鱼在开口期的营养需要。Arago等[ 10 ]发现真鲷和塞内加尔鳎(Solea senegalensis)仔鱼在不同发育阶段体内氨基酸(AA)组成存在明显的变化,轮虫和不同发育阶段的卤虫幼体无法完全满足这2种鱼在发育过程中对AA,如组氨酸等的需要。Saavedra等[ 11 ]也证明酪氨酸和赖氨酸在摄食轮虫的囊重牙鲷(Diplodus sargus)仔鱼中是缺乏的。并且用AA平衡的微颗粒饲料作为开口饵料饲喂囊重牙鲷仔鱼,虽然成活率低于活饵料对照组,但能够显著降低仔鱼畸形率以及氨排放[ 12 ]。另外,未进行营养强化的轮虫中维生素B1、维生素A、锰、硒和铜等的含量无法满足大西洋鳕鱼(Gadus morhua)开口期的需要[ 13 ]。因此,系统地研究仔稚鱼开口期各种营养素的需要量是十分必要的。

2.1 仔稚鱼消化系统发育及消化酶变化规律

仔稚鱼消化系统的发育及消化酶的分泌是在开口期有效地利用外源营养物质的前提。通常刚孵化的仔鱼的消化道在组织形态上尚未分化,随着个体发育,逐渐形成口咽腔、胃、前肠、中肠和后肠。胃腺和幽门盲囊的出现被认为是仔稚期的结束和幼鱼期的开始。仔稚鱼消化道的分化和发育存在着种间差异。黄尾魳(Seriola lalandi)仔鱼在孵化后5日龄时消化道开始区分为咽下空穴、食道、胃、中肠和后肠,到18日龄时胃分为贲门、胃底和幽门区域[ 14 ]。豹纹鳃棘鲈(Plectropomus leopardus)和黄颡鱼(Pelteobagrus fulvidraco)仔鱼则是在2日龄即开始消化道分化,黄颡鱼仔鱼更是在3日龄时就出现了胃腺和幽门盲囊[ 15,16 ]。在消化道分化和发育的同时,也伴随着附属腺体的发育以及消化酶活性的变化。大多数鱼类仔鱼在开口摄食前就具有了对蛋白质、脂肪以及碳水化合物的消化能力,如黑线鳕(Melanogrammus aeglefinus)、大西洋鳕鱼[ 17 ]、海鲷(Dentex dentex)[ 18 ]以及双斑绚鲶(Ompok bimaculatus)[ 19 ]等。随着个体发育,仔鱼胃、肠和胰腺的消化酶变化呈现类似的趋势。波斯鲟(Acipenser persicus)仔鱼开口摄食(9日龄)时,胃蛋白酶活性增加,而碱性蛋白酶——胰蛋白酶和胰凝乳蛋白酶活性降低,其消化能力从分解卵黄蛋白质向分解外源性蛋白质过渡,同时从碱性消化向酸性消化过渡;在开口摄食后,胃和肠道中淀粉酶和脂肪酶活性增加;肠道碱性磷酸酶活性在19~24日龄逐渐增加并稳定,说明其肠道消化能力逐渐成熟并进入幼鱼消化模式[ 20 ]。双斑绚鲶[ 19 ]、大西洋鳙鲽(Hippoglossus hippoglossus L.)和大西洋鳕鱼[ 21 ]仔鱼分别在15~21日龄和40~50日龄起进入幼鱼消化模式。研究表明,仔稚鱼消化酶活性是受到内分泌调控的,Kurokawa等[ 22 ]发现日本鳗鲡(Anguilla japonica)肠道中胆囊收缩素(CCK)和酪酪肽(PYY)基因mRNA在8日龄即开始表达,胰腺消化酶的释放从开口摄食就受到CCK和PYY内分泌系统的调控。在21日龄的大西洋鳕鱼仔鱼中发现存在着CCK对胰蛋白酶活性的负反馈调节[ 23 ]。系统地研究仔鱼消化酶活性变化以及其内分泌调控机制,对于满足仔鱼在不同生长发育阶段的营养需求,制定合理有效的开口期人工投喂策略具有重要的理论指导意义。

2.2 蛋白质和AA

仔稚鱼营养中对蛋白质和AA,尤其是必需氨基酸(EAA)需要量的研究相对较少,这主要与外源性的AA在微颗粒饲料中的保留率不稳定以及无法有效在生物饵料中富集有关。通常仔稚鱼蛋白质的需要量比幼鱼和成鱼期要高,这主要是由于该阶段快速的生长发育需要更多蛋白质的积累。Mohanty[ 24 ]报道以鱼粉为主要蛋白质源时,以增重率、日增重、特定生长率和日组织蛋白质沉积率为评价指标,线鳢(Channa striata)仔鱼饲料中蛋白质的需要量为550 g/kg。此外,阿根廷大鳞脂鲤(Brycon orbignyanus)[ 25 ]、大西洋鳕鱼[ 26 ]以及黑鱼(Channa striatus)[ 27 ]仔鱼饲料中适宜的蛋白质含量分别为300、620和450 g/kg。不同的蛋白质来源也会对仔鱼的生长产生影响。分别以鱼水解蛋白和酵母、大豆浓缩蛋白和酵母以及鱼粉为蛋白质源配置开口饵料,发现鱼水解蛋白和酵母组欧洲鲈(Dicentrarchus labrax)和鲤鱼(Cyprinus carpio)仔鱼均具有最高的存活率和增重率[ 28 ]。欧洲鲈仔鱼摄食高水解蛋白(46%干物质)含量的饲料相比低水解蛋白(0和14%干物质)含量的饲料生长显著下降,且胰蛋白酶活性显著降低[ 29 ]。仔鱼AA需要量的研究更为匮乏,仅有的研究发现在塞内加尔鳎仔鱼浮游生活期补充牛磺酸能够显著地提高后期的生长性能和变态完成率,并显著提高仔鱼对AA的保留率,提高体内牛磺酸水平[ 30 ]。而真鲷仔鱼饲料中补充牛磺酸虽然对生长性能没有影响,但却显著提高了蛋氨酸的可利用性[ 31 ]。仔稚鱼最适蛋白质以及各种EAA的需要量数据不全是制约人工开口饲料开发的重要原因。

2.3 脂肪和脂肪酸

由于脂类物质可以在生物饵料培养过程中通过饲喂乳化油或富含某种脂肪酸的藻类等手段定向富集,因此在仔稚鱼各种营养素需要量的研究中,脂肪及脂肪酸的研究是开展最为广泛的。眼斑拟石首鱼(Sciaenops ocellatus)饲料中高含量(30%)的脂肪显著增加了仔鱼的体长,提高了其肠道内刷状缘膜消化能力,而低含量(15%)的脂肪显著降低了其脂肪酶活性[ 32 ]。大黄鱼(Pseudosciaena crocea)仔鱼在23 ℃下以存活率和特定生长率为评价指标,对饲料中脂肪的需要量为172~177g/kg饲料[ 33 ]。而相比总脂肪含量,开口期饵料中适宜HUFA和磷脂含量对于维持仔稚鱼正常的生长发育更为重要。

2.3.1 HUFA

饲料中适宜的HUFA含量对仔稚鱼生长具有明显的促进作用。饲料中高含量(总脂肪的43.3%)的DHA能够保证美洲黄盖鲽(Limanda ferruginea)仔鱼具有最快的生长速度,而升高的ArA则对其生长具有负作用[ 34 ]。饲料中升高的n-3 HUFA能够显著提高牙鲆仔鱼的生长[ 35 ],并且相比EPA和DHA,ArA对牙鲆是次要的必需脂肪酸[ 36 ]。Bransden等[ 37 ]用DHA含量为0.1~20.8 mg/g干重的强化卤虫饲喂六带牙鯻(Latris lineata)仔鱼,发现在最高DHA剂量组的仔鱼具有最快的生长速度,并且变态周期缩短。HUFA除了影响仔稚鱼的生长外,还对其正常的组织器官发育、色素沉积以及抗应激能力等产生显著的影响。DHA缺乏会延缓真鲷仔鱼大脑和视觉的发育速度[ 38 ];显著延缓牙鲆仔鱼的脑,尤其是小脑的发育[ 36 ];导致六带牙鯻仔鱼运动能力下降,脂肪积累和转运障碍,并导致肠道和肝脏组织出现空泡化病变[ 39 ]。对于鲆鲽类,如大西洋鳙鲽、欧洲鳎以及塞内加尔鳎等,饲料中高水平的n-3多不饱和脂肪酸(n-3 PUFA)和低水平的ArA对于其仔鱼正常的色素沉积是必需的[ 40,41,42,43,44,45 ];同时,饵料中富含DHA能够有效地预防红棘鬣鱼(Pagrus pagrus)仔鱼的畸形[ 46 ]、降低欧洲鳎仔鱼色素沉积异常和眼迁移异常的比例[ 41,42 ]、提高北美牙鲆(Paralichthys californicus)变态过程中仔鱼的存活率和色素沉积率[ 47 ]。高盐刺激后的牙鲆仔鱼存活率随DHA含量的增加而提高,而与EPA含量无关[ 35 ]。鰤鲈(Sander lucioperca L.)仔鱼饲料中缺乏PUFA在缺氧和高盐应激下死亡率升高,并且这种影响除与DHA有关外,还与EPA和ArA有关[ 48 ]

2.3.2 磷脂

仔稚鱼饵料中适宜的磷脂含量能够提高其生长速度,保证仔稚鱼的正常生长发育并提高其抗应激的能力。鰤鲈[ 49 ]和军曹鱼(Rachycentron canadum)[ 50 ]仔鱼饲料中最适的磷脂水平分别为95和80 g/kg。大黄鱼(Larmichthys crocea)仔鱼饲料中含57.2~85.1 g/kg的磷脂有利于其存活和生长性能,而高含量(69.5~85.1 g/kg)的磷脂水平能够催进消化道的发育并提高抗应激能力[ 51 ]。 饲料中添加40 g/kg的磷脂同样能够有效地提高美国红鱼(Pagrus major)仔鱼的抗应激能力[ 52 ]。除磷脂含量外,不同类型的磷脂比例对仔鱼的生长发育也有明显的影响,如饲料中卵磷脂/磷脂酰环己六醇比例为1.28时能够有效地降低真鲷仔鱼的畸形率[ 53,54 ]。磷脂还能够有效提高仔稚鱼对HUFA的利用率,Wold等[ 55,56 ]报道大西洋鳕鱼仔鱼利用磷脂中的DHA和EPA要比利用中性脂中的DHA和EPA更为有效。

2.4 维生素和矿物质

仔稚鱼营养中对维生素和矿物质需要量的研究相对匮乏,目前仅有少量关于维生素和矿物质需要量的报道,如以增重率为评价指标,牙鲆仔鱼饲料中最适维生素A含量为9 000 IU/kg[ 57 ];Darias等[ 58 ]证明欧洲鲈稚鱼(45日龄)维生素D3需要量为19.2 IU/g;分别以生长和最大组织维生素C含量为评价指标,鲤鱼仔鱼对维生素C的需要量分别为45和270 mg抗坏血酸等价物/kg[ 59 ]。饵料中适宜的维生素和矿物质含量是仔鱼正常生长发育所必需的,欧洲鲈仔鱼饲料中含5~70 mg/kg的维生素A能够降低椎骨和鳍条的畸形率,而在维生素A缺乏组Hoxd-9基因表达显著降低并导致部分或完全的腹鳍缺失[ 60 ]。自然水体中养殖的六带牙鯻仔鱼摄食的轮虫中每天包含超过123 ng/mg总维生素A能够有效减少脊柱畸形率[ 61 ]。六带牙鯻仔鱼饲料中含有≥437 μg/g的维生素E会显著提高仔鱼的生长和存活[ 62 ]。饲料中高含量的维生素E能够保护欧洲鲈幼鱼不受饲料中过多DHA氧化所造成的组织损伤,并提高成活率[ 63 ]。尖齿胡鲶(Clarias gariepinus)仔鱼食物中高含量的维生素C(每克饵料干重中超过1 500 μg 抗坏血酸)能有效提高仔鱼的生长性能和抗应激能力[ 64 ]。在矿物质方面,Nguyen等[ 65 ]证明美国红鱼仔鱼摄食的卤虫无节幼体中维持锰水平在12~42.8 μg/g时能够提高其生长性能,补充锌和锰能够促进其正常的骨骼发育。硒强化的轮虫能够提高大西洋鳕鱼仔鱼中硒依赖过氧化物酶的活性及其基因mRNA表达[ 66 ]。活饵料中强化硒能够提高塞内加尔鳎仔鱼谷胱甘肽过氧化物酶的活性和甲状腺素的水平[ 67 ]。用碘强化的轮虫和卤虫无机幼体饲喂在循环系统中养殖的塞内加尔鳎仔鱼能够有效地预防甲状腺肿[ 68 ]

3 仔稚期营养调控对后期代谢性能的影响

在哺乳动物中,存在着个体发育早期临界阶段的营养状况会对后期发育阶段的生理机能产生长期稳定影响的现象,这种现象称为早期营养规划(early nutritional programming)[ 69,70 ]。研究证明,在哺乳动物中可能存在保留早期营养规划的影响直到成年期的生物学机制,包括在细胞内部适应基因表达的变化、在目标组织中优先克隆经选择的合适的细胞以及根据规划分生不同的组织细胞类型等[ 69,71,72 ]。目前早期营养规划的概念已被应用到鱼类中,尝试通过开口期营养调控,改善养成期鱼类对某些营养物质,如碳水化合物、脂肪等的利用率。Geurden等[ 73 ]分别在虹鳟(Oncorhynchus mykiss)仔鱼开口和卵黄囊消失时给予其短时期的高糖刺激(饲料中含60%的糊精),发现显著地提高了虹鳟后期对碳水化合物的消化能力(α-淀粉酶基因mRNA表达量升高),但对碳水化合物的转运(钠-葡萄糖共转运载体,SGLT1)和糖代谢[葡萄糖激酶(GK)和葡萄糖-6-磷酸酶(G6Pase)]机能没有显著影响。Vagner等[ 74 ]在欧洲鲈仔鱼开口时饲喂低HUFA含量(0.8% EPA+DHA)的饲料,发现能够显著地提高其后期Δ-6脂肪酸去饱和酶基因mRNA的表达,从而提高HUFA的合成能力。以上研究均证明鱼类和哺乳动物类似,仔稚期的营养状况不仅会对仔稚鱼的生长发育产生重要的影响,并且会通过改变其自身的代谢机能而对后期的生长发育产生长期的影响。

参考文献
[1]IZQUIERDO M S,FERNÁNDEZ-PALACIOS H,TACON A G J.Effect of broodstock nutrition on reproductive performance of fish[J]. Aquaculture,2001,197(1/2/3/4):25-42. (1)
[2]FURUITA H,TANAKA H,YAMAMOTO T,et al.Effects of n-3 HUFA levels in broodstock diet on the reproductive performance and egg and larval quality of the Japanese flounder,Paralichthys olivaceus[J]. Aquaculture,2000,187(3/4):387-398. (1)
[3]FURUITA H,YAMAMOTO T,SHIMA T,et al.Effect of arachidonic acid levels in broodstock diet on larval and egg quality of Japanese flounder Paralichthys olivaceus[J]. Aquaculture,2003,220(1/2/3/4):725-735. (1)
[4]LI Y,CHEN W,SUN Z,et al.Effects of n-3 HUFA content in broodstock diet on spawning performance and fatty acid composition of eggs and larvae in Plectorhynchus cinctus[J]. Aquaculture,2005,245(1/2/3/4):263-272. (1)
[5]SCABINI V,FERNÁNDEZ-PALACIOS H,ROBAINA L,et al.Reproductive performance of gilthead seabream (Sparus aurata L.,1758) fed two combined levels of carotenoids from paprika oleoresin and essential fatty acids[J]. Aquaculture Nutrition,2011,17(3):304-312. (1)
[6]ZAKERI M,KOCHANIAN P,MARAMMAZI J,et al.Effects of dietary n-3 HUFA concentrations on spawning performance and fatty acids composition of broodstock,eggs and larvae in yellowfin sea bream,Acanthopagrus latus[J]. Aquaculture,2011,310(3/4):388-394. (1)
[7]LIANG M,LU Q,QIAN C,et al.Effects of dietary n-3 to n-6 fatty acid ratios on spawning performance and larval quality in tongue sole Cynoglossus semilaevis[J]. Aquaculture Nutrition,2013,DOI:10.1111/anu.12054. (1)
[8]MARTÍN M V,RODRÍGUEZ C,CEJAS J R,et al.Body lipid and fatty acid composition in male gilthead seabream broodstock at different stages of the reproductive cycle:effects of a diet lacking n-3 and n-6 HUFA[J]. Aquaculture Nutrition,2009,15(1):60-72. (1)
[9]YÚFERA M,DARIAS M J.The onset of exogenous feeding in marine fish larvae[J]. Aquaculture,2007,268(1/2/3/4):53-63. (1)
[10]ARAGÃO C,CONCEIÇÃO L,FYHN H,et al.Estimated amino acid requirements during early ontogeny in fish with different life styles:gilthead seabream (Sparus aurata) and Senegalese sole (Solea senegalensis)[J]. Aquaculture,2004,242(1/2/3/4):589-605. (1)
[11]SAAVEDRA M,CONCEIÇÃO L,HELLAND S,et al.Effect of lysine and tyrosine supplementation in the amino acid metabolism of Diplodus sargus larvae fed rotifers[J]. Aquaculture,2008,284(1/2/3/4):180-184. (1)
[12]SAAVEDRA M,POUSÃO-FERREIRA P,YÚFERA M,et al.A balanced amino acid diet improves Diplodus sargus larval quality and reduces nitrogen excretion[J]. Aquaculture Nutrition,2009,15(5):517-524. (1)
[13]HAMRE K,SRIVASTAVA A,RØNNESTAD I,et al.Several micronutrients in the rotifer Brachionus sp.may not fulfil the nutritional requirements of marine fish larvae[J]. Aquaculture Nutrition,2008,14(1):51-60. (1)
[14]CHEN B,QIN J,KUMAR M,et al.Ontogenetic development of the digestive system in yellowtail kingfish Seriola lalandi larvae[J]. Aquaculture,2006,256(1/2/3/4):489-501. (1)
[15]QU M,DING S,XU X,et al.Ontogenetic development of the digestive system and growth in coral trout (Plectropomus leopardus)[J]. Aquaculture,2012,334-337:132-141. (1)
[16]YANG R,XIE C,FAN Q,et al.Ontogeny of the digestive tract in yellow catfish Pelteobagrus fulvidraco larvae[J]. Aquaculture,2010,302(1/2):112-123. (1)
[17]PEREZ-CASANOVA J C,MURRAY H M,GALLANT J W,et al.Development of the digestive capacity in larvae of haddock (Melanogrammus aeglefinus) and Atlantic cod (Gadus morhua)[J]. Aquaculture,2006,251(2/3/4):377-401. (1)
[18]GISBERT E,GIMÉNEZ G,FERNÁNDEZ I,et al.Development of digestive enzymes in common dentex Dentex dentex during early ontogeny[J]. Aquaculture,2009,287(3/4):381-387. (1)
[19]PRADHAN P K,JENA J,MITRA G,et al.Ontogeny of the digestive enzymes in butter catfish Ompok bimaculatus (Bloch) larvae[J]. Aquaculture,2013,372-375:62-69. (2)
[20]BABAEI S S,ABEDIAN K A,NAZARI R,et al.Developmental changes of digestive enzymes in Persian sturgeon (Acipenser persicus) during larval ontogeny[J]. Aquaculture,2011,318(1/2):138-144. (1)
[21]KVÅLE A,MANGOR-JENSEN A,MOREN M,et al.Development and characterisation of some intestinal enzymes in Atlantic cod (Gadus morhua L.) and Atlantic halibut (Hippoglossus hippoglossus L.) larvae[J]. Aquaculture,2007,264(1/2/3/4):457-468. (1)
[22]KUROKAWA T,IINUMA N,UNUMA T,et al.Development of endocrine system regulating exocrine pancreas and estimation of feeding and digestive ability in Japanese eel larvae[J]. Aquaculture,2004,234(1/2/3/4):513-525. (1)
[23]TILLNER R,RØNNESTAD I,HARBOE T,et al.Hormonal control of tryptic enzyme activity in Atlantic cod larvae (Gadus morhua):involvement of cholecystokinin during ontogeny and diurnal rhythm[J]. Aquaculture,2013,402-403:133-140. (1)
[24]MOHANTY S S,SAMANTARAY K.Effect of varying levels of dietary protein on the growth performance and feed conversion efficiency of snakehead Channa striata fry[J]. Aquaculture Nutrition,1996,2(2):89-94. (1)
[25]BORBA M R,FRACALOSSI D M,PEZZATO L E.Dietary energy requirement of piracanjuba fingerlings,Brycon orbignyanus,and relative utilization of dietary carbohydrate and lipid[J]. Aquaculture Nutrition,2006,12(3):183-191. (1)
[26]HAMRE K,MANGOR-JENSEN A.A multivariate approach to optimization of macronutrient composition in weaning diets for cod (Gadus morhua)[J]. Aquaculture Nutrition,2006,12(1):15-24. (1)
[27]ALIYU-PAIKO M,HASHIM R,SHU-CHIEN A C.Influence of dietary lipid/protein ratio on survival,growth,body indices and digestive lipase activity in Snakehead (Channa striatus,Bloch 1793) fry reared in re-circulating water system[J]. Aquaculture Nutrition,2010,16(5):466-474. (1)
[28]CAHU C,ZAMBONINO I J,ESCAFFRE A M,et al.Preliminary results on sea bass (Dicentrarchus labrax) larvae rearing with compound diet from first feeding.Comparison with carp (Cyprinus carpio) larvae[J]. Aquaculture,1998,169(1/2):1-7. (1)
[29]CAHU C,RØNNESTAD I,GRANGIER V,et al.Expression and activities of pancreatic enzymes in developing sea bass larvae (Dicentrarchus labrax) in relation to intact and hydrolyzed dietary protein; involvement of cholecystokinin[J]. Aquaculture,2004,238(1/2/3/4):295-308. (1)
[30]PINTO W,FIGUEIRA L,RIBEIRO L,et al.Dietary taurine supplementation enhances metamorphosis and growth potential of Solea senegalensis larvae[J]. Aquaculture,2010,309(1/2/3/4):159-164. (1)
[31]PINTO W,FIGUEIRA L,SANTOS A,et al.Is dietary taurine supplementation beneficial for gilthead seabream (Sparus aurata) larvae?[J]. Aquaculture,2013,384-387:1-5. (1)
[32]BUCHET V,ZAMBONINO I J L,CAHU C.Effect of lipid level in a compound diet on the development of red drum (Sciaenops ocellatus) larvae[J]. Aquaculture,2000,184(3/4):339-347. (1)
[33]AI Q,ZHAO J,MAI K,et al.Optimal dietary lipid level for large yellow croaker (Pseudosciaena crocea) larvae[J]. Aquaculture Nutrition,2008,14(6):515-522. (1)
[34]COPEMAN L A,PARRISH C C,BROWN J A,et al.Effects of docosahexaenoic,eicosapentaenoic,and arachidonic acids on the early growth,survival,lipid composition and pigmentation of yellowtail flounder (Limanda ferruginea):a live food enrichment experiment[J]. Aquaculture,2002,210(1/2/3/4):285-304. (1)
[35]FURUITA H,KONISHI K,TAKEUCHI T.Effect of different levels of eicosapentaenoic acid and docosahexaenoic acid in Artemia nauplii on growth,survival and salinity tolerance of larvae of the Japanese flounder,Paralichthys olivaceus[J]. Aquaculture,1999,170(1):59-69. (2)
[36]FURUITA H,TANAKA H,YAMAMOTO T,et al.Effects of eicosapentaenoic and docosahexaenoic acids on growth,survival and brain development of larval Japanese flounder (Paralichthys olivaceus)[J]. Aquaculture,1998,161(1/2/3/4):269-279. (2)
[37]BRANSDEN M P,BATTAGLENE S C,MOREHEAD D T,et al.Effect of dietary 22∶ 6 n-3 on growth,survival and tissue fatty acid profile of striped trumpeter (Latris lineata) larvae fed enriched Artemia[J]. Aquaculture,2005,243(1/2/3/4):331-344. (1)
[38]BENÍTEZ-SANTANA T,MASUDA R,JUÁREZ C,et al.Dietary n-3 HUFA deficiency induces a reduced visual response in gilthead seabream Sparus aurata larvae[J]. Aquaculture,2007,264(1/2/3/4):408-417. (1)
[39]BRANSDEN M P,COBCROFT J M,BATTAGLENE S C,et al.Dietary 22∶ 6 n-3 alters gut and liver structure and behaviour in larval striped trumpeter (Latris lineata)[J]. Aquaculture,2005,248(1/2/3/4):275-285. (1)
[40]HAMRE K,HARBOE T.Critical levels of essential fatty acids for normal pigmentation in Atlantic halibut (Hippoglossus hippoglossus L.) larvae[J]. Aquaculture,2008,277(1/2):101-108. (1)
[41]LUND I,STEENFELDT S J,HANSEN B W.Effect of dietary arachidonic acid,eicosapentaenoic acid and docosahexaenoic acid on survival,growth and pigmentation in larvae of common sole (Solea solea L.)[J]. Aquaculture,2007,273(4):532-544. (1)
[42]LUND I,STEENFELDT S J,BENTA G,et al.The influence of dietary concentrations of arachidonic acid and eicosapentaenoic acid at various stages of larval ontogeny on eye migration,pigmentation and prostaglandin content of common sole larvae (Solea solea L.)[J]. Aquaculture,2008,276(1/2/3/4):143-153. (1)
[43]VILLALTA M,ESTÉVEZ A,BRANSDEN M P,et al.The effect of graded concentrations of dietary DHA on growth,survival and tissue fatty acid profile of Senegal sole (Solea senegalensis) larvae during the Artemia feeding period[J]. Aquaculture,2005,249(1/2/3/4):353-365. (1)
[44]VILLALTA M,ESTÉVEZ A,BRANSDEN M P,et al.Arachidonic acid,arachidonic/eicosapentaenoic acid ratio,stearidonic acid and eicosanoids are involved in dietary-induced albinism in Senegal sole (Solea senegalensis)[J]. Aquaculture Nutrition,2008,14(2):120-128. (1)
[45]VILLALTA M,ESTÉVEZ A,BRANSDEN M P,et al.Effects of dietary eicosapentaenoic acid on growth,survival,pigmentation and fatty acid composition in Senegal sole (Solea senegalensis) larvae during the Artemia feeding period[J]. Aquaculture Nutrition,2008,14(3):232-241. (1)
[46]ROO F J,HERNÁNDEZ-CRUZ C M,SOCORRO J A,et al.Effect of DHA content in rotifers on the occurrence of skeletal deformities in red porgy Pagrus pagrus (Linnaeus,1758)[J]. Aquaculture,2009,287(1/2):84-93. (1)
[47]VIZCAÍNO-OCHOA V,LAZO J P,BARÓN-SEVILLA B,et al.The effect of dietary docosahexaenoic acid (DHA) on growth,survival and pigmentation of California halibut Paralichthys californicus larvae (Ayres,1810)[J]. Aquaculture,2010,302(3/4):228-234. (1)
[48]LUND I,STEENFELDT S J.The effects of dietary long-chain essential fatty acids on growth and stress tolerance in pikeperch larvae (Sander lucioperca L.)[J]. Aquaculture Nutrition,2011,17(2):191-199. (1)
[49]HAMZA N,MHETLI M,KHEMIS I B,et al.Effect of dietary phospholipid levels on performance,enzyme activities and fatty acid composition of pikeperch (Sander lucioperca) larvae[J]. Aquaculture,2008,275(1/2/3/4):274-282. (1)
[50]NIU J,LIU Y,TIAN L,et al.The effect of different levels of dietary phospholipid on growth,survival and nutrient composition of early juvenile cobia (Rachycentron canadum)[J]. Aquaculture Nutrition,2008,14(3):249-256. (1)
[51]ZHAO J,AI Q,MAI K,et al.Effects of dietary phospholipids on survival,growth,digestive enzymes and stress resistance of large yellow croaker,Larmichthys crocea larvae[J]. Aquaculture,2013,410-411:122-128. (1)
[52]REN T,KOSHIO S,JIANG ZH,et al.Interactive effects of dietary vitamin C and phospholipid in micro-bound diet for growth,survival,and stress resistance of larval red sea bream,Pagrus major[J]. Aquaculture Nutrition,2010,16(5):475-482. (1)
[53]SANDEL E,NIXON O,LUTZKY S,et al.The effect of dietary phosphatidylcholine/phosphatidylinositol ratio on malformation in larvae and juvenile gilthead sea bream (Sparus aurata)[J]. Aquaculture,2010,304(1/2/3/4):42-48. (1)
[54]SALEH R,BETANCOR M B,ROO J,et al.Optimum krill phospholipids content in microdiets for gilthead seabream (Sparus aurata) larvae[J]. Aquaculture Nutrition,2013,19(4):449-460. (1)
[55]WOLD P A,HOEHNE-REITAN K,CAHU C,et al.Phospholipids vs.neutral lipids:effects on digestive enzymes in Atlantic cod (Gadus morhua) larvae[J]. Aquaculture,2007,272(1/2/3/4):502-513. (1)
[56]WOLD P A,HOEHNE-REITAN K,CAHU C,et al.Comparison of dietary phospholipids and neutral lipids:effects on gut,liver and pancreas histology in Atlantic cod (Gadus morha L.) larvae[J]. Aquaculture Nutrition,2009,15(1):73-84. (1)
[57]HERNANDEZ L H H,TESHIMA S I,ISHIKAWA M,et al.Dietary vitamin A requirements of juvenile Japanese flounder Paralichthys olivaceus[J]. Aquaculture Nutrition,2005,11(1):3-9. (1)
[58]DARIAS M J,MAZURAIS D,KOUMOUNDOUROS G,et al.Dietary vitamin D3 affects digestive system ontogenesis and ossification in European sea bass (Dicentrachus labrax,Linnaeus,1758)[J]. Aquaculture,2010,298(3/4):300-307. (1)
[59]GOUILLOU-COUSTANS M F,BERGOT P,KAUSHIK S J,et al.Dietary ascorbic acid needs of common carp (Cyprinus carpio) larvae[J]. Aquaculture,1998,161(1/2/3/4):453-461. (1)
[60]MAZURAIS D,GLYNATSI N,DARIAS M,et al.Optimal levels of dietary vitamin A for reduced deformity incidence during development of European sea bass larvae (Dicentrarchus labrax) depend on malformation type[J]. Aquaculture,2009,294(3/4):262-270. (1)
[61]NEGM R K,COBCROFT J M,BROWN M R,et al.The effects of dietary vitamin A in rotifers on the performance and skeletal abnormality of striped trumpeter Latris lineata larvae and post larvae[J]. Aquaculture,2013,404-405:105-115. (1)
[62]BROWN M R,DUNSTAN G A,NICHOLS P D,et al.Effects of α-tocopherol supplementation of rotifers on the growth of striped trumpeter Latris lineata larvae[J]. Aquaculture,2005,246(1/2/3/4):367-378. (1)
[63]BETANCOR M B,ATALAH E,CABALLERO M,et al.α-Tocopherol in weaning diets for European sea bass (Dicentrarchus labrax) improves survival and reduces tissue damage caused by excess dietary DHA contents[J]. Aquaculture Nutrition,2011,17(2):e112-e122. (1)
[64]MERCHIE G,LAVENS P,VERRETH J,et al.The effect of supplemental ascorbic acid in enriched live food for Clarias gariepinus larvae at startfeeding[J]. Aquaculture,1997,151(1/2/3/4):245-258. (1)
[65]NGUYEN V T,SATOH S,HAGA Y,et al.Effect of zinc and manganese supplementation in Artemia on growth and vertebral deformity in red sea bream (Pagrus major) larvae[J]. Aquaculture,2008,285(1/2/3/4):184-192. (1)
[66]PENGLASE S,NORDGREEN A,VAN DER MEEREN T,et al.Increasing the level of selenium in rotifers (Brachionus plicatilis ‘Cayman’) enhances the mRNA expression and activity of glutathione peroxidase in cod (Gadus morhua L.) larvae[J]. Aquaculture,2010,306(1/2/3/4):259-269. (1)
[67]RIBEIRO A R A,RIBEIRO L,SÆLE Ø,et al.Selenium supplementation changes glutathione peroxidase activity and thyroid hormone production in Senegalese sole (Solea senegalensis) larvae[J]. Aquaculture Nutrition,2012,18(5):559-567. (1)
[68]RIBEIRO A R A,RIBEIRO L,SÆLE Ø,et al.Iodine-enriched rotifers and Artemia prevent goitre in Senegalese sole (Solea senegalensis) larvae reared in a recirculation system[J]. Aquaculture Nutrition,2011,17(3):248-257. (1)
[69]LUCAS A.Programming by early nutrition:an experimental approach[J]. The Journal of Nutrition,1998,128(S2):401S-406S. (2)
[70]PATEL S,SRINIVASAN M.Metabolic programming:causes and consequences[J]. Journal of Biological Chemistry,2002,277:1629-1632. (1)
[71]JAENISH R,BIRD A.Epigenetic regulation of gene expression:how the genome integrates intrinsic and environmental signals[J]. Nature Genetics,2003,33:245-254. (1)
[72]WATERLAND R A,JIRTLE R L.Early nutrition,epigenetic changes at transposons and imprinted genes,and enhanced susceptibility to adult chronic diseases[J]. Nutrition,2004,20:63-68. (1)
[73]GEURDEN I,ARAMENDI M,ZAMBONINO-INFANTE J,et al.Early feeding of carnivorous rainbow trout (Oncorhynchus mykiss) with a hyperglucidic diet during a short period:effect on dietary glucose utilization in juveniles[J]. The American Journal of Physiology-Regulatory,Integrative and Comparative Physiology,2007,292:2275-2283. (1)
[74]VAGNER M,ZAMBONINO-INFANTE J,ROBIN J,et al.Is it possible to influence European sea bass (Dicentrarchus labrax) juvenile metabolism by a nutritional conditioning during larval stage?[J]. Aquaculture,2007,267(1/2/3/4):165-174. (1)