动物营养学报  2014, Vol. 26 Issue (6): 1430-1434   PDF (1054KB)    
胎盘胎儿复合体谷氨酸-谷氨酰胺循环和交换的生理作用及其调控
谢春艳1, 张宇喆1, 吴信1,2 , 范志勇2, 印遇龙1,2     
1. 中国科学院亚热带农业生态研究所, 中国科学院亚热带农业生态过程重点实验室, 湖南省畜禽健康养殖工程 技术中心, 长沙 410125;
2. 湖南农业大学, 动物科学技术学院, 长沙 410128
摘要:氨基酸是胎儿生长发育、蛋白质生物合成和核酸代谢以及神经发育等的重要前体物质,氨基酸从母体到胎儿的转运及其代谢对生命活动具有极其重要的意义。谷氨酸(Glu)和谷氨酰胺(Gln)是胎盘组织中最丰富,也是妊娠后期猪胎儿中沉积最多的氨基酸;而Glu是由胎儿血浆净输出的唯一氨基酸,Gln转运到胎儿循环中速率最高。母体、胎盘和胎儿之间Glu-Gln循环、交换和代谢对胎儿生长发育具有关键的作用,可能是母体与胎儿发育之间的主要介导途径。本文综述了胎盘胎儿复合体Glu-Gln代谢规律、生理功能及其可能的调控机制,探讨了N-氨甲酰谷氨酸对胎盘胎儿复合体中Glu-Gln循环的影响及其调控机制,为Glu-Gln在胎盘胎儿复合体的代谢及其调控的研究提供参考。
关键词谷氨酸     谷氨酰胺     胎盘胎儿复合体     妊娠母猪     N-氨甲酰谷氨酸    
Physiological Functions of Glutamate-Glutamine Cycle and Exchange in Placenta-Fetus Unit and Its Regulation
XIE Chunyan1, ZHANG Yuzhe1, WU Xin1,2 , FAN Zhiyong2, YIN Yulong1,2     
1. Hunan Animal Health Aquaculture Engineering Center, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China;
2. College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
Abstract: Amino acids are important precursor substances for the development and growth of fetus, the biosynthesis of proteins, metabolism of nucleotides, and neurodevelopment. The transfer from mother to fetus and its metabolites of amino acids are extremely important for life activities. Glutamate and glutamine are the most abundant in placenta, and the maximum deposition of amino acids in fetus of pigs during late pregnancy. Glutamate is the only amino acid net output from the fetal plasma, and glutamine transported to the fetal circulation with the highest rate. Glutamate-glutamine cycle, exchange and metabolism between mother, placenta and fetus play a key role on fetal growth and development. This may be the main mediated pathway between maternal and fetal development. This paper reviews glutamate-glutamine metabolic, physiological functions and possible regulating mechanism in placenta-fetus unit, and the effect of N-carbamoylglutamate on glutamate-glutamine cycle in placenta-fetus unit and the regulating mechanism, to provide a reference for the study of metabolism and its regulation of glutamate-glutamine in placenta-fetus unit.
Key words: glutamate     glutamine     placenta-fetus unit     pregnant sows     N-carbamoylglutamate    

L-谷氨酸(L-Glu)和谷氨酸盐在自然界普遍存在,是合成蛋白质的主要成分。作为生物体内氮代谢的基本氨基酸之一,谷氨酸(Glu)参与谷氨酸脱氢酶(GDH)为中心的联合脱氨基作用(Glu被脱去氨基),在鸟氨酸循环(尿素合成)中线粒体的GDH将Glu的氨基脱去,为氨甲酰磷酸的合成提供游离的氨[1]。谷氨酰胺(Gln)是氨的主要运输形式。细胞内2个主要的谷氨酰胺代谢酶是谷氨酰胺分解酶和谷氨酰胺合成酶,前者将Gln分解成Glu和氨,后者将Glu和氨合成Gln,其在人体不同组织有不同的反应。Glu和Gln是胎盘组织中最丰富的氨基酸,在妊娠后期猪胎儿中的沉积也最多;Glu是胎儿血浆净输出的唯一氨基酸,而Gln被转运到胎儿循环中速率最高。母体、胎盘和胎儿之间Glu-Gln循环、交换和代谢对胎儿生长发育具有关键的作用,机体中Glu和Gln相互转化可能是母体与胎儿发育之间的主要介导途径,具有重要的生理意义。

1 胎盘屏障结构与氨基酸的转运

胎盘由胎儿与母体组织共同构成,是进行物质交换、产生妊娠期激素和屏障外来微生物或毒素侵入,以保证胎儿正常发育的一个重要器官。胎儿所需要的各种营养、水分、氧气和电解质等可经过子宫动脉带到胎盘转运给胎儿。胎盘绒毛与子宫血窦之间的屏障称为胎盘屏障。胎盘屏障具有特殊的结构,其中的绒毛膜是胎盘的主要功能部分,随着妊娠的发展,绒毛的数目越来越多,但单个绒毛的体积越来越小,因而母体胎儿间的接触面积越来越大,加之胎儿血管与绒毛间隙的组织厚度越来越薄。妊娠期间,母体、胎盘和胎儿相互作用,以保证胎儿的生长发育[2]

在妊娠期间,胎儿的主要能量来源是葡萄糖,但据报道,母体供给胎儿能量中氨基酸来源也占20%~40%[3]。氨基酸是胎儿生长所需要的关键营养素之一,是胎儿生长发育、蛋白质生物合成和核酸代谢以及神经发育等的重要前体物质,氨基酸从母体到胎儿的转运及其代谢对生命活动具有极其重要的意义[4,5]。妊娠后期胎儿体内蛋白质代谢十分旺盛,胎儿血浆游离氨基酸浓度会高于母体,而低于胎盘。除色氨酸外,绒毛间的所有的血浆游离氨基酸浓度高于母体静脉186%[6]

2 胎盘胎儿复合体Glu-Gln循环、交换和代谢及其生理功能

早在半个世纪前,研究者就提出了胎盘和胎儿肝脏之间的器官内Glu-Gln循环假说。用绵羊作为模型研究发现,除了Glu、丝氨酸和天门冬酸外,其他所有的氨基酸均明显出现由胎盘到胎儿净流入的现象,而Glu、丝氨酸和天门冬酸则出现从胎儿向胎盘净流入的现象。近些年来,随着对胎盘胎儿的氨基酸营养研究手段的发展和深入,发现Glu-Gln在胎盘胎儿复合体中对胎儿的生长发育具有极其重要的生理功能。

胎盘组织中最丰富的3种氨基酸分别是Glu [(3 500±343) μmol/kg]、Gln[(2 836±208) μmol/kg] 和甘氨酸[(3 732 ±194) μmol/kg][7]。妊娠20~40 d期间,猪胎盘Gln浓度极显著增加;在40~60 d时达到最高,可能是20 d的2倍,然后开始下降[8]

Glu和Gln在胎盘和胎儿之间的转运和代谢特别是在胎儿发育期,具有各自独特的特点,Glu是Gln的主要前体物质,这强化了胎盘和胎儿肝脏直接的联系。研究表明,在所有的氨基酸中,Glu是在胎儿血浆净输出到胎盘中唯一的氨基酸。大约90%的Glu被排出到胎盘,相应地,胎儿肝脏也有Glu的净流出和Gln的净流入[9]。胎儿肝脏所摄取的Gln中(45.3±7.9)%以Glu的形式外排,从胎儿的左肝叶与整个肝Glu输出的比例是(0.149±0.013)。胎儿肝脏大量的Glu外排以致脐静脉中Glu的浓度比胎儿动脉中大约增加了6~10倍,胎儿肝脏中大量的Glu净输出维持着胎儿体内Glu浓度,而Gln是以最高的速率被转运到胎儿循环中。

胎儿肝脏通过产生一定比例的Glu,控制着胎盘重要的氧化物质。所以,从胎儿血浆输送到胎盘Glu的速率与脐静脉的Glu输送速率高度相关。研究表明,13C标记的Glu注入到胎儿循环中,大约70%的Glu被氧化,包括被胎盘所吸收的部分。胎盘从胎儿循环中对Glu的摄取部分转化为Gln,约占脐静脉Gln摄入量的5%。胎盘内谷氨酰胺合成酶表达量较高,谷氨酰胺合成酶能将不易通过胎盘的Glu转变成容易通过胎盘的Gln,协助Glu向胎盘转运,Gln进入胎儿循环后在胎儿肝脏中转化为Glu的速率大约每分钟3~4 μmol/kg BW[10,11]

胎盘胎儿复合体Glu-Gln的循环代谢具有重要的生理功能。Glu和Gln是胎盘和胎儿肝脏能量主要来源,可以为嘌呤的合成提供氮源,但其转运紊乱会引起宫内生长迟缓(intrauterine growth retardation,IUGR)现象。Glu-酮戊二酸转氨基作用与支链氨基酸的转氨基作用相关,可以使氮源用于嘌呤合成。试验证明,氧化的Glu为胎盘提供产生类固醇的辅助因子——还原型辅酶Ⅱ(NADPH),这也是胎盘组织没有戊糖磷酸化途径的一个因素[12]。然而,胎盘的睾酮诱导的胎盘氨基酸转运下降,可能导致IUGR现象[13]。研究表明,绵羊中双胎的羔羊比单胎的羔羊体重降低16%,胎盘重量也降低28%,其附属物重量降低35%[14]。双胎羔羊脐动脉血浆Glu浓度比胎儿或者脐静脉血浆显著降低,同时Gln浓度则显著升高,但是氨基酸浓度与单胎相比则差异不显著[14]。还有试验发现,IUGR的母体胎盘从胎儿摄取的Glu浓度极显著降低,这个摄取量与胎儿肝脏/体重相关[15]

妊娠期出现IUGR的胎盘GDH基因和蛋白表达水平均显著下降,出现IUGR的胎盘中Glu-酮戊二酸转运水平降低,GDH表达水平的降低相应地降低了胎儿肝脏Glu的输出和脐静脉的Glu浓度[16]。近期研究表明,IUGR改变了胎儿肝脏蛋白质组成,IUGR胎儿肝脏谷草转氨酶显著高于正常胎儿[17]。受到一些消炎药诱发流产或者自然分娩等因素影响,胎儿肝脏Glu的输出量降低,胎儿体内Glu浓度也快速地降低,相应地胎盘摄取Glu的比例也降低[18]

Glu是哺乳动物神经系统的主要兴奋性神经递质之一,高浓度Glu可能会对胎儿有神经毒害作用,胎儿环境Glu浓度必须要稳定在一定范围内[19],妊娠期Glu过量特别是妊娠后期可能会导致妊娠期母体负担。然而,用大鼠作为模型研究表明,在妊娠期母鼠饲粮中添加2.5和4.0 g/kg的谷氨酸钠,其子代的增重显著增加[20]。据近期研究报道,谷氨酸钠不仅影响母鼠的体重,对子代体重和代谢的影响更大[21]

3 Glu-Gln相关氨基酸对妊娠母猪繁殖性能及其胎儿的影响

Glu是饲粮中非常丰富的基本营养素之一,而且是Gln、精氨酸(Arg)、脯氨酸(Pro)和亮氨酸等氨基酸的重要前体物质。因此,妊娠期母体Glu的代谢调控具有重要的生理意义。研究表明,在母猪妊娠第30~114天期间,在饲粮中添加1.0%的精氨酸盐酸盐可使产活仔数增加2头、初生窝重提高24%[22,23]

4 N-氨甲酰谷氨酸(NCG)对仔猪和妊娠母猪繁殖性能的影响及其对Glu家族的代谢调控

N-乙酰谷氨酸(NAG)是内源性Arg合成过程中的限制酶激活剂,具有广泛的生物学功能,NCG是NAG的类似物。研究表明,NCG可以作为代谢激活剂参与二氢吡咯-5-羧酸合成酶和氨甲酰磷酸合成酶I的激活,促进Gln或Pro合成瓜氨酸,进而促进Arg的合成。NCG能有效提高Arg的含量,对维持机体Arg水平及机体正常生理机能十分重要。体内和体外试验证明,NCG促进了14日龄仔猪小肠上皮细胞瓜氨酸和Arg合成[24]。4和9日龄哺乳仔猪灌服NCG 50 mg/kg BW,血浆Arg浓度分别增加了68%和32%[25]

本实验室在21日龄断奶仔猪饲粮中添加0.08%的NCG有效提高了血清中的Arg浓度,也降低了血清Glu浓度[26]。采用颈动脉血插管模型研究发现,饲粮中添加2%的Glu和0.06%的NCG显著提高了生长猪血浆Arg浓度[27];进一步研究发现,仔猪肠道N-乙酰谷氨酸合成酶随着日龄的增加而降低[28]。最新的研究发现,7日龄断奶仔猪饲粮中添加1%~4%的谷氨酸钠提高了其生长性能、肠道绒毛高度和机体抗氧化能力[29]。由这些研究推断,妊娠后期胎儿早期NAG合成酶的表达较高可能与利用Glu的能力相关。

研究发现,母猪妊娠后期饲粮中添加0.08%的NCG比空白对照组窝产活仔数提高了11.75%,窝产活仔总质量提高了13.23%,窝产死胎数降低了57.14%[30];然后选用0.08%水平的NCG和1%的Arg进一步研究表明,妊娠后期饲粮中添加Arg或者NCG都提高了血浆Arg浓度[31]。NCG可通过影响脐带miRNA调控内皮血管生长因子的表达,在妊娠后期母猪饲粮中添加NCG可提高胎盘内重要基因内皮一氧化氮合酶(eNOS)、血管内皮生长因子-A(VEGF-A)和胎盘生长因子1(PIGF1)等的表达[32]。在妊娠后期饲粮中添加不同水平NCG,结果显著降低了血浆Glu和Pro浓度[30]。而Zeng等[33]发现,饲粮中添加0.05%和0.10%的NCG均显著提高了大鼠的产仔数,NCG不仅提高了母体血清Arg、鸟氨酸和Pro浓度,也提高了子宫的Gln、Glu、Arg和Pro浓度。这可能与动物模型的不同相关。

5 小 结

综上所述,Glu-Gln和相关氨基酸的转运及其代谢以及胎盘胎儿内Glu代谢的调控等对胎盘胎儿复合体的生长发育具有重要的科学意义,Glu和Gln在机体内的代谢可以直接或间接地被NCG调控,从而调控妊娠母猪或大鼠的繁殖性能。然而,Glu在胎盘表面区域(包括微绒毛)是如何有效地变化进而影响胎盘氨基酸转运效率,NCG如何影响妊娠母猪机体Glu家族相关的氨基酸特别是胎盘胎儿复合体中Glu-Gln和相关氨基酸的转运及其代谢等需要进一步研究。这将有助于进一步理解Glu在胎盘胎儿复合体的代谢机制,从而可能为通过营养调控方式增强胎盘的功能和胎儿的存活及生长规律提供依据。

参考文献
[1]王镜岩,朱圣庚,徐长法.生物化学[M]. 3版.北京:高等教育出版社,2007. (1)
[2]CETIN I,ALVINO G.Intrauterine growth restriction:implications for placental metabolism and transport.A review[J]. Placenta,2009,30(Suppl.A):S77-S82. (1)
[3]JANSSON T.Amino acid transporters in the human placenta[J]. Pediatr Research,2001,49(2):141-147. (1)
[4]LEWIS R M,BROOKS S,CROCKER I P,et al.Review:modelling placental amino acid transfer-from transporters to placental function[J]. Placenta,2013,34(S1):S46-S51. (1)
[5]AVAGLIANO L,GARÒ C,MARCONI A M.Placental amino acids transport in intrauterine growth restriction[J]. Journal of Pregnancy,2012,doi:10.1155/2012/972562. (1)
[6]CAMELO J S,JORGE S M,MARTINEZ F E.Amino acid composition of parturient plasma,the intervillous space of the placenta and the umbilical vein of term newborn infants[J]. Brazilian Journal of Medical and Biological Research,2004,37(5):711-717. (1)
[7]MANSO FILHO H C,COSTA H E,WU G Y,et al.Equine placenta expresses glutamine synthetase[J]. Veterinary Research Communications,2009,33(2):175-182. (1)
[8]SELF J T,SPENCER T E,JOHNSON G A,et al.Glutamine synthesis in the developing porcine placenta[J]. Biology of Reproduction,2004,70(5):1444-1451. (1)
[9]BATTAGLIA F C.Glutamine and glutamate exchange between the fetal liver and the placenta[J]. The Journal of Nutrition,2000,130(4S):974S-977S. (1)
[10]VAUGHN P R,LOBO C,BATTAGLIA F C,et al.Glutamine-glutamate exchange between placenta and fetal liver[J]. The American Journal of Physiology,1995,268(4Pt1):705-711. (1)
[11]MOORES R R Jr,VAUGHN P R,BATTAGLIA F C,et al.Glutamate metabolism in fetus and placenta of late-gestation sheep[J]. The American Journal of Physiology,1994,267(1Pt 2):R89-R96. (1)
[12]MAKAREWICZ W,SWIERCZYNSKI J.Phosphate-dependent glutaminase in the human term placental mitochondria[J]. Biochemical Medicine and Metabolic Biology,1988,39(3):273-278. (1)
[13]SATHISHKUMAR K,ELKINS R,CHINNATHAMBI V,et al.Prenatal testosterone-induced fetal growth restriction is associated with down-regulation of rat placental amino acid transport[J]. Reproductive Biology and Endocrinology,2011,9:110. (1)
[14]VAN DER LINDEN D S,SCIASCIA Q,SALES F,et al.Placental nutrient transport is affected by pregnancy rank in sheep[J]. Journal of Animal Science,2013,91(2):644-53. (2)
[15]REGNAULT T R,DE VRIJER B,GALAN H L,et al.Umbilical uptakes and transplacental concentration ratios of amino acids in severe fetal growth restriction in ovines[J]. Pediatric Research,2013,73(5):602-611. (1)
[16]JOZWIK M,PIETRZYCKI B,JOZWIK M,et al.Expression of enzymes regulating placental ammonia homeostasis in human fetal growth restricted pregnancies[J]. Placenta,2009,30(7):607-612. (1)
[17]LIU C,LIN G,WANG X,et al.Intrauterine growth restriction alters the hepatic proteome in fetal pigs[J]. The Journal of Nutritional Biochemistry,2013,24(6):954-959. (1)
[18]TIMMERMAN M,TENG C,WILKENING R B,et al.Effect of dexamethasone on fetal hepatic glutamine-glutamate exchange[J]. American Journal of Physiology Endocrinology and Metabolism,2000,278(5):E839-E845. (1)
[19]BRADFORD H F,YOUNG A M,CROWDER J M.Continuous glutamate leakage from brain cells is balanced by compensatory high-affinity reuptake transport[J]. Neuroscience Letters,1987,81(3):296-302. (1)
[20]YU T,ZHAO Y,SHI W,et al.Effects of maternal oral administration of monosodium glutamate at a late stage of pregnancy on developing mouse fetal brain[J]. Brain Research,1997,747(2):195-206. (1)
[21]AFIFI M M,ABBAS A M.Monosodium glutamate versus diet induced obesity in pregnant rats and their offspring[J]. Acta Physiologica Hungarica,2011,98(2):177-188. (1)
[22]MATEO R D,WU G,MOON H K,et al.Effects of dietary arginine supplementation during gestation and lactation on the performance of lactating primiparous sows and nursing piglets[J]. Journal of Animal Science,2008,86(4):827-835. (1)
[23]MATEO R D,WU G,BAZER F W,et al.Dietary L-arginine supplementation enhances the reproductive performance of gilts[J]. The Journal of Nutrition,2007,137(3):652-656. (1)
[24]WU G,KNABE D A,KIM S W.Arginine nutrition in neonatal pigs[J]. The Journal of Nutrition,2004,134(10S):2783S-2790S. (1)
[25]FRANK J W,ESCOBAR J,NGUYEN H V,et al.Oral N-carbamylglutamate supplementation increases protein synthesis in skeletal muscle of piglets[J]. The Journal of Nutrition,2007,137(2):315-319. (1)
[26]WU X,RUAN Z,GAO Y,et al.Dietary supplementation with L-arginine and N-carbamylglutamate enhances intestinal growth and heat shock protein 70 expression in weanling pigs fed a corn-and soybean meal-based diet[J]. Amino Acids,2010,39(3):831-839. (1)
[27]吴信,黎俊,谢春燕,等.谷氨酸和NCG对猪静动脉血浆生理生化和氨基酸的影响 //中国畜牧兽医学会动物营养学分会第十一次全国动物营养学术研讨会论文集,长沙:中国农业科学技术出版社,2012:33. (1)
[28]GENG M,LI T,KONG X,et al.Reduced expression of intestinal N-acetylglutamate synthase in suckling piglets:a novel molecular mechanism for arginine as a nutritionally essential amino acid for neonates[J]. Amino Acids,2011,40(5):1513-1522. (1)
[29]REZAEI R,KNABE D A,TEKWE C D,et al.Dietary supplementation with monosodium glutamate is safe and improves growth performance in postweaning pigs[J]. Amino Acids,2013,44(3):911-923. (1)
[30]刘星达,吴信,印遇龙,等.妊娠后期日粮中添加不同水平N-氨甲酰谷氨酸对母猪繁殖性能的影响[J]. 畜牧兽医学报,2011,42(11):1550-1555. (2)
[31]LIU X D,WU X,YIN Y L,et al.Effects of dietary L-arginine or N-carbamylglutamate supplementation during late gestation of sows on the miR-15b/16,miR-221/222,VEGFA and eNOS expression in umbilical vein[J]. Amino Acids,2012,42(6):2111-2119. (1)
[32]WU X,YIN Y L,LIU Y Q,et al.Effect of dietary arginine and N-carbamoylglutamate supplementation on reproduction and gene expression of eNOS,VEGFA and PlGF1 in placenta in late pregnancy of sows[J]. Animal Reproduction Science,2012,132(3/4):187-192. (1)
[33]ZENG X,HUANG Z,MAO X,et al.N-carbamylglutamate enhances pregnancy outcome in rats through activation of the PI3K/PKB/mTOR signaling pathway[J]. PLoS One,2012,7(7):e41192. (1)