近年来,大量研究表明,亮氨酸可以调节哺乳动物骨骼肌蛋白质的代谢[1,2,3,4,5,6,7,8,9,10]。此外,已有的研究结果也表明,亮氨酸可以加速体内脂肪氧化分解[11,12,13,14,15,16,17,18,19],并已开始作为一种膳食补充剂辅助减肥在临床上进行推广应用。但亮氨酸对于脂肪代谢的影响及其作用机制在国内的报道较为少见。因此,本文旨在通过总结近年来国内外关于亮氨酸调节哺乳动物的脂肪代谢及其作用机制,为亮氨酸营养的深入研究与亮氨酸在临床(如控制代谢病)和畜牧业生产(如调控肉质)上的科学利用提供参考。
1 亮氨酸概述亮氨酸,又称白氨酸,化学名称为α-氨基异己酸,是1819年Proust首先从奶酪中分离得到的,后来Braconnot从肌肉与羊毛的酸水解物中得到其结晶,并定名为亮氨酸[11]。亮氨酸是支链氨基酸(branched-chain amino acid,BCAA)之一,哺乳动物自身不能合成,必须由饲粮提供,其为饲粮必需氨基酸中所需数量最大的氨基酸。亮氨酸的主要生理功能包括调节蛋白质代谢,促进肌肉蛋白质合成从而达到修复肌肉的目的;氧化供能,在特殊生理时期(饥饿、泌乳、应激和运动等)能作为能量来源;调节机体免疫功能;调节脂肪代谢。
2 亮氨酸对脂肪代谢的影响近年来,大量体内外试验结果表明,亮氨酸可以影响脂肪代谢,主要是抑制脂肪合成,促进脂肪分解,同时增加能量的消耗。而亮氨酸缺乏也会对脂肪代谢产生类似的影响。
2.1 补充亮氨酸López等[12]给泌乳大鼠饲喂补充2%亮氨酸的饲粮发现,与饲喂对照饲粮的大鼠相比,饲粮添加亮氨酸有提高瘦肉/脂肪比例、降低脂肪含量的趋势,从而在一定程度上改变了大鼠体组成。Freudenberg等[13]在雄性C57BL/6小鼠低蛋白质饲粮中补充亮氨酸,发现显著降低了体脂的积累。Zhang等[14]研究表明,在雄性C57BL/6J小鼠的饮水中补充质量体积比1.5%的亮氨酸后,显著降低了体重、脂肪含量以及成熟脂肪细胞中三酰甘油(triacylglycerol,TAG)的含量。而对衰老的雄性Sprague-Dawley大鼠研究也表明,饲粮中补充4%的亮氨酸可使其体增重及体脂肪的积累有所降低[15]。而对于人的相关研究也得到了类似的结果。一个多种族的包括来自中国、日本、英国和美国的4 429人的国际性研究表明,摄入包括亮氨酸在内的支链氨基酸与普遍的超重和肥胖呈显著负相关[16]。还有研究发现,人类消耗高蛋白质膳食加剧了体脂丢失,显著降低了瘦肉组织的的损失[17],显著增加了体脂肪的损失[18],显著降低了血清中TAG的含量[19],而这可能主要源于亮氨酸发挥了相应的作用。Zemel等[20]以0.25或0.50 mmol/L的亮氨酸处理小鼠脂肪细胞3T3-L1,结果发现添加这2个剂量的亮氨酸都显著降低了脂肪细胞中TAG的含量。Sun等[21,22]研究发现,0.25或者0.50 mmol/L的亮氨酸可显著增加小鼠C2C12肌肉细胞的脂肪酸氧化,显著降低3T3-L1脂肪细胞中的脂肪含量。Chen等[23]以人结肠癌细胞NCI-H716为对象,研究发现,经质量体积比为0.5%、1.0%、1.5%和2.0%的亮氨酸处理后,细胞的脂肪合成减少,能量的消耗增加。由以上研究可知,补充亮氨酸可以抑制脂肪合成并促进脂肪分解。
但是,也有一些相关研究得到了不同的研究结果。Zeanandin等[24]研究发现,长期饲喂补充超量(4.5%)亮氨酸的饲粮可促进老年Wistar大鼠脂肪组织的肥大和增生,并表现出肾周脂肪沉积增加。Noatsch等[25]给C57BL/6小鼠饲喂补充含4.5%亮氨酸的低脂肪饲粮发现,饲喂补充亮氨酸的低脂肪饲粮未显著影响体重和体脂肪。Nairizi等[26]在饲喂高脂饲粮的C57BL/6J雌性小鼠的饮水中添加150 mmol/L亮氨酸的研究也得到了类似的结果,即发现补充亮氨酸后小鼠的体重、总胆固醇和TAG的含量没有显著变化。分析以上研究的差异可知,补充亮氨酸对于脂肪代谢的影响可能受到亮氨酸补充的剂量、给予的方式和饲粮的组成及研究对象等方面的影响。因此,可促进脂肪分解的最适亮氨酸添加剂量应该在1.5%~4.0%。
2.2 亮氨酸缺乏如果补充亮氨酸可以减少脂肪合成,促进脂肪分解代谢,那么亮氨酸缺乏应该会引起相反的效果。但有趣的是,上海生科院营养所郭非凡研究组的研究发现,饲喂亮氨酸缺乏的饲粮后,野生型C57BL/6J小鼠的采食量和体重都有所下降,同时能量的消耗增加[27,28];进一步的研究表明,其主要是由于缺乏亮氨酸引起腹部脂肪的损失[27],促进了外周脂质和能量的代谢[28];而在饲喂缺乏亮氨酸饲粮的小鼠脑室内注射亮氨酸后,可显著缓解腹部脂肪的损失[29]。
3 亮氨酸调节脂肪代谢的机制 3.1 补充亮氨酸据近年的研究结果分析,补充亮氨酸对脂肪代谢的调节可能源于以下4种机制。
1)可降低脂肪酸转运与合成相关蛋白的合成或其活性,抑制脂肪酸的合成。补充亮氨酸降低了小鼠3T3-L1脂肪细胞中脂肪酸合酶(fatty acid synthase,FAS)基因的表达,降低了FAS的活性,导致脂肪细胞TAG含量的降低;增加了肌肉细胞脂肪酸的利用[20,21]。而在人结肠癌细胞NCI-H716补充亮氨酸,可下调与肠道脂肪酸转运与合成有关的基因的表达,如Niemann-Pick C-1-like-1 protein(NPC1L1)、乙酰辅酶A羧化酶(acetyl-coenzyme A carboxylase,ACC)、FAS、固醇调节元件结合蛋白2(sterol regulatory element-binding protein-2,SREBP-2)、3-羟基-3-甲基戊二酰辅酶还原酶(3-hydroxy-3-methylglutaryl-CoA reductase,HMGCR)、脂肪酸转运蛋白4(fatty acid transport protein 4,FATP4),从而降低脂肪的合成[23]。
2)可调控沉默信号调控因子(silent information regulator 1,Sirt1)表达,进而促进脂肪的分解。补充亮氨酸可增加C2C12成肌细胞和3T3-L1脂肪细胞的线粒体含量以及Sirt1和过氧化物酶体增殖物激活受体γ辅激活因子1α(peroxisome proliferator-activated receptor γ coactivator-1α,PGC-1α)的表达[22]。一方面,Sirt1通过调节其下游的PGC-1α,使线粒体含量增加,进而促使脂联素合成增加[30],提高脂肪的氧化[31];另一方面,Sirt1可通过抑制白色脂肪组织(white adipose tissue,WAT)中的过氧化物酶增殖物激活受体γ(peroxisome proliferator-activated receptor γ,PPARγ)来下调脂肪储存相关基因的转录,抑制前体脂肪细胞分化,促进脂肪氧化分解[32,33]。
3)通过刺激胰高血糖素样肽1(glucagon-like peptide-1,GLP-1)的分泌促进脂肪的分解。Chen等[23]以人结肠癌细胞NCI-H716为对象,研究发现补充亮氨酸促进了GLP-1分泌和释放。而GLP-1会刺激前阿片黑素细胞皮质激素(pro-opiomelanocortin,POMC)的增加,POMC信号被传送到脂肪组织,通过激素敏感性脂肪酶(hormone sensitive lipase,HSL)的激活转换信号,将TAG降解成游离脂肪酸[34]。
4)通过刺激解偶联蛋白(uncoupling protein,UCP)基因的表达,增加脂肪的分解。Zhang等[14]研究发现,补充亮氨酸可显著降低成熟脂肪细胞TAG含量,增加小鼠的能量消耗,而这一过程可能源于在褐色脂肪组织(brown adipose tissue,BAT)和WAT中UCP-3含量的增加。
3.2 亮氨酸缺乏Cheng等[27]研究表明,亮氨酸缺乏显著增加了HSL的活性,显著降低了WAT的FAS活性,显著增加了BAT的UCP-1基因的表达,UCP-1会产生明显的生热作用,进而降低脂肪的合成,增加能量消耗;且WAT中脂类分解和β氧化有关基因过氧化物酶增殖物激活受体α(PPARα)、肉碱棕榈酰基转移酶1(carnitine palmitoyltransferase 1,CPT1)、酰基辅酶A氧化酶(acyl-CoA oxidase,ACO)基因的表达增加,脂肪合成相关基因ACC-1、FAS和硬脂酰辅酶A去饱和酶1(stearoyl CoA desaturase 1,SCD-1)的表达及FAS活性降低。而对饲喂缺乏亮氨酸饲粮的小鼠进行脑室内注射亮氨酸,可对其腹部脂肪的损失以及WAT的HSL活性和BAT的UCP-1基因表达的增加有显著缓解作用[29]。而进一步研究表明,中枢神经系统(central nervous system,CNS)也参与了亮氨酸缺乏产生的效应。饲喂缺乏亮氨酸饲粮小鼠的下丘脑核糖体蛋白S6K激酶1(ribosomal protein S6 kinase,polypeptide 1,S6K1)活性降低,黑素皮质素受体4(melanocortin-4 receptor,MC4R)基因的表达提高,继而促进了促肾上腺皮质激素释放激素(corticotropin releasing hormone,CRH)基因的表达,刺激了交感神经系统,进一步活化刺激性G蛋白/cAMP/蛋白激酶A/cAMP效应元件结合蛋白通路,引起采食量下降和腹部脂肪快速丢失[28,29]。此外,Zhang等[35]以小鼠为对象的研究表明,亮氨酸缺乏会激活瘦素信号,进而增加了能量消耗,导致了脂肪的分解;而通过阻断瘦素信号Tyr1138后,可显著降低亮氨酸缺乏对脂肪分解产生的影响,进而推测亮氨酸缺乏引起的脂肪代谢增加可能与瘦素信号密切相关。
4 小 结综上所述,饲粮中补充亮氨酸可降低脂肪合成,促进脂肪分解,而饲粮中缺乏亮氨酸也产生类似的效果,但是它们的作用机制却不相同。此外,对于亮氨酸对脂肪代谢的研究还存在诸多问题,有待于进一步进行探讨。首先,关于亮氨酸补充对脂肪代谢调节的结果及其相关机制的研究仍不完善,需要进一步探讨;其次,根据本文中列举的以实验动物为研究对象的结果,推测其在畜禽(如猪、鸡、牛、羊)上会有类似的结果,并可用于改善动物机体健康和畜产品品质,但相关的研究还未见报道,需要进一步研究证明;最后,亮氨酸缺乏对脂肪代谢影响的研究非常少,得出的结果比较单一,也需要进一步研究证明。因此,更好地了解亮氨酸调节脂肪代谢及其机制,将会为亮氨酸在临床上的科学应用和畜牧业生产上提供一些思路和借鉴的基础。
[1] | CROZIER S J,KIMBALL S R,EMMERT S W,et al.Oral leucine administration stimulates protein synthesis in rat skeletal muscle[J]. The Journal of Nutrition,2005,135(3):376-382. (![]() |
[2] | DU M,SHEN Q W,ZHU M J,et al.Leucine stimulates mammalian target of rapamycin signaling in C2C12 myoblasts in part through inhibition of adenosine monophosphate-activated protein kinase[J]. Journal of Animal Science,2007,85(4):919-927. (![]() |
[3] | SURYAWAN A,JEYAPALAN A S,ORELLANA R A,et al.Leucine stimulates protein synthesis in skeletal muscle of neonatal pigs by enhancing mTORC1 activation[J]. American Journal of Physiology-Endocrinology and Metabolism,2008,295(4):E868-E875. (![]() |
[4] | HAN B,TONG J,ZHU M J,et al.Insulin-like growth factor-1 (IGF-1) and leucine activate pig myogenic satellite cells through mammalian target of rapamycin (mTOR) pathway[J]. Molecular Reproduction and Development,2008,75(5):810-817. (![]() |
[5] | NORTON L E,LAYMAN D K,BUNPO P,et al.The leucine content of a complete meal directs peak activation but not duration of skeletal muscle protein synthesis and mammalian target of rapamycin signaling in rats[J]. The Journal of Nutrition,2009,139(6):1103-1109. (![]() |
[6] | MITCHELL J C,EVENSON A R,TAWA N E,Jr.Leucine inhibits proteolysis by the mTOR kinase signaling pathway in skeletal muscle[J]. Journal of Surgical Research,2004,121(2):311. (![]() |
[7] | VENTRUCCI G,MELLO M A R,GOMES-MARCONDES M C C.Proteasome activity is altered in skeletal muscle tissue of tumour-bearing rats a leucine-rich diet[J]. Endocrine-related Cancer,2004,11(4):887-895. (![]() |
[8] | NAKASHIMA K,ISHIDA A,YAMAZAKI M,et al.Leucine suppresses myofibrillar proteolysis by down-regulating ubiquitin-proteasome pathway in chick skeletal muscles[J]. Biochemical and Biophysical Research Communications,2005,336(2):660-666. (![]() |
[9] | SUGAWARA T,ITO Y,NISHIZAWA N,et al.Supplementation with dietary leucine to a protein-deficient diet suppresses myofibrillar protein degradation in rats[J]. Journal of Nutritional Science and Vitaminology,2007,53(6):552-555. (![]() |
[10] | SUGAWARA T,ITO Y,NISHIZAWA N,et al.Regulation of muscle protein degradation,not synthesis,by dietary leucine in rats fed a protein-deficient diet[J]. Amino Acids,2009,37(4):609-616. (![]() |
[11] | 毛湘冰,黄志清,陈小玲,等.亮氨酸调节哺乳动物骨骼肌蛋白质合成的研究进展[J]. 动物营养学报,2011,23(5):709-714. (![]() |
[12] | LÓPEZ N,SÁNCHEZ J,PICÓ C,et al.Dietary L-leucine supplementation of lactating rats results in a tendency to increase lean/fat ratio associated to lower orexigenic neuropeptide expression in hypothalamus[J]. Peptides,2010,31(7):1361-1367. (![]() |
[13] | FREUDENBERG A,PETZKE K J,KLAUS S.Dietary l-leucine and l-alanine supplementation have similar acute effects in the prevention of high-fat diet-induced obesity[J]. Amino Acids,2013,44(2):519-528. (![]() |
[14] | ZHANG Y,GUO K,LEBLANC R E,et al.Increasing dietary leucine intake reduces diet-induced obesity and improves glucose and cholesterol metabolism in mice via multimechanisms[J]. Diabetes,2007,56(6):1647-1654. (![]() |
[15] | VIANNA D,RESENDE G F T,TORRES-LEAL F L,et al.Long-term leucine supplementation reduces fat mass gain without changing body protein status of aging rats[J]. Nutrition,2012,28(2):182-189. (![]() |
[16] | QIN L Q,XUN P,BUJNOWSKI D,et al.Higher branched-chain amino acid intake is associated with a lower prevalence of being overweight or obese in middle-aged East Asian and Western adults[J]. The Journal of Nutrition,2011,141(2):249-254. (![]() |
[17] | LAYMAN D K,WALKER D A.Potential importance of leucine in treatment of obesity and the metabolic syndrome[J]. The Journal of Nutrition,2006,136(1S1):319S-323S. (![]() |
[18] | PARKER B,NOAKES M,LUSCOMBE N,et al.Effect of a high-protein,high-monounsaturated fat weight loss diet on glycemic control and lipid levels in type 2 diabetes[J]. Diabetes Care,2002,25(3):425-430. (![]() |
[19] | LAYMAN D K,EVANS E,BAUM J I,et al.Dietary protein and exercise have additive effects on body composition during weight loss in adult women[J]. The Journal of Nutrition,2005,135(8):1903-1910. (![]() |
[20] | ZEMEL M B,BRUCKBAUER A.Effects of a leucine and pyridoxine-containing nutraceutical on fat oxidation,and oxidative and inflammatory stress in overweight and obese subjects[J]. Nutrients,2012,4(6):529-541. (![]() |
[21] | SUN X,ZEMEL M B.Leucine and calcium regulate fat metabolism and energy partitioning in murine adipocytes and muscle cells[J]. Lipids,2007,42(4):297-305. (![]() |
[22] | SUN X,ZEMEL M B.Leucine modulation of mitochondrial mass and oxygen consumption in skeletal muscle cells and adipocytes[J]. Nutrition & Metabolism,2009,6:26. (![]() |
[23] | CHEN Q,REIMER R A.Dairy protein and leucine alter GLP-1 release and mRNA of genes involved in intestinal lipid metabolism in vitro[J]. Nutrition,2009,25(3):340-349. (![]() |
[24] | ZEANANDIN G,BALAGE M,SCHNEIDER S M,et al.Differential effect of long-term leucine supplementation on skeletal muscle and adipose tissue in old rats:an insulin signaling pathway approach[J]. Age,2012,34(2):371-387. (![]() |
[25] | NOATSCH A,PETZKE K J,MILLROSE M K,et al.Body weight and energy homeostasis was not affected in C57BL/6 mice fed high whey protein or leucine-supplemented low-fat diets[J]. European Journal of Nutrition,2011,50(6):479-488. (![]() |
[26] | NAIRIZI A,SHE P,VARY T C,et al.Leucine supplementation of drinking water does not alter susceptibility to diet-induced obesity in mice[J]. The Journal of Nutrition,2009,139(4):715-719. (![]() |
[27] | CHENG Y,MENG Q,WANG C,et al.Leucine deprivation decreases fat mass by stimulation of lipolysis in white adipose tissue and upregulation of uncoupling protein 1 (UCP1) in brown adipose tissue[J]. Diabetes,2010,59(1):17-25. (![]() |
[28] | XIA T,CHENG Y,ZHANG Q,et al.S6K1 in the central nervous system regulates energy expenditure via MC4R/CRH pathways in response to deprivation of an essential amino acid[J]. Diabetes,2012,61(10):2461-2471. (![]() |
[29] | CHENG Y,ZHANG Q,MENG Q,et al.Leucine deprivation stimulates fat loss via increasing CRH expression in the hypothalamus and activating the sympathetic nervous system[J]. Molecular Endocrinology,2011,25(9):1624-1635. (![]() |
[30] | KOH E H,PARK J Y,PARK H S,et al.Essential role of mitochondrial function in adiponectin synthesis in adipocytes[J]. Diabetes,2007,56(12):2973-2981. (![]() |
[31] | OTABE S,YUAN X,FUKUTANI T,et al.Overexpression of human adiponectin in transgenic mice results in suppression of fat accumulation and prevention of premature death by high-calorie diet[J]. American Journal of Physiology:Endocrinology and Metabolism,2007,293(1):E210-E218. (![]() |
[32] | PICARD F,KURTEV M,CHUNG N,et al.Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-γ[J]. Nature,2004,429(6993):771-776. (![]() |
[33] | PICARD F,GUARENTE L.Molecular links between aging and adipose tissue[J]. International Journal of Obesity,2005,29(S1):S36-S39. (![]() |
[34] | MCALLAN L,COTTER P D,ROCHE H M,et al.Impact of leucine on energy balance[J]. Journal of Physiology and Biochemistry,2013,69(1):155-163. (![]() |
[35] | ZHANG Q,LIU B,CHENG Y,et al.Leptin signaling is required for leucine deprivation-enhanced energy expenditure[J]. Journal of Biological Chemistry,2014,289(3):1779-1787. (![]() |