近年来,我国畜牧行业快速发展,豆粕等主要蛋白质饲料原料供不应求,价格不断上涨,蛋白质资源不足逐渐成为限制我国饲料行业发展的屏障。菜籽饼在我国产量大,价格较低,蛋白质含量较高,被广泛用于猪和禽饲料中[1,2,3]。但是,菜籽饼抗营养因子和纤维物质含量较高,降低了其适口性和消化利用率,影响肝脏和甲状腺功能,在猪和家禽饲料中添加量超过10%便会产生不良影响[4,5,6,7],极大地限制了其作为饲料原料的有效利用。为了降低菜籽饼的不利因素,提高其营养价值,通过微生物发酵来改善菜籽饼营养价值成为研究热点。研究报道,微生物发酵可以降低菜籽饼纤维物质含量,有效去除硫苷及其代谢产物[8,9,10],改善蛋白质品质[11]。目前,发酵菜籽饼在动物上的应用有了一些零星报道,认为发酵菜籽饼可以提高肉鸡的生长性能[12,13]。但是,发酵菜籽饼在动物体内的消化利用率还未见报道。因此,本试验旨在对混菌固态发酵菜籽饼在生长猪上的营养价值进行评定,为饲料原料数据库提供基础数据。
1 材料与方法 1.1 试验材料菜籽饼:购于四川雅安,生产工艺是高温压榨;固态发酵菜籽饼:采用白地霉、黑曲霉和枯草芽孢杆菌,按照本实验室的优化工艺参数对菜籽饼进行4 d固态发酵,得到发酵菜籽饼,两者营养成分见表1。
![]() | 表1 菜籽饼和发酵菜籽饼的营养成分(干物质基础) Table 1 Nutrient composition of rapeseed cake and fermented rapeseed cake (DM basis) % |
24头健康“杜×长×大”生长公猪,随机分配到4个处理,每个处理6个重复,分别饲喂无氮饲粮、玉米-豆粕型基础饲粮、菜籽饼或发酵菜籽饼等氮替代饲粮。试验猪预试4 d后,进行4 d的消化代谢试验,收集全部粪尿,试验结束当天麻醉屠宰,采集回肠食糜。
试验在四川农业大学动物营养研究所试验场进行,所有试验猪单笼饲养,试验期平均舍温21 ℃,湿度55%~65%。粉料饲喂,每天饲喂3次(08:30、13:30、18:30),自由饮水,每头猪试验期采食量为预试期的平均采食量。其他日常管理按常规饲养管理进行。
1.3 试验饲粮试验饲粮参照NRC(1998)20~50 kg生长猪营养需要配制。无氮饲粮主要由玉米淀粉配制,基础饲粮是玉米-豆粕型饲粮,2种替代饲粮是用菜籽饼和发酵菜籽饼分别等氮替代35%基础饲粮中的氮,外源指示剂三氧化二铬(Cr2O3)的添加量为0.4%。通过顶替法测定菜籽饼和发酵菜籽饼的养分消化率和利用率。试验饲粮组成及营养水平见表2。
![]() | 表2 试验饲粮组成及营养水平(饲喂基础) Table 2 Composition and nutrient levels of experimental diets (as-fed basis) % |
正式试验期间,收集全部粪尿,每天08:00结算前1天的粪样量。粪样称重后,按照粪样重量的5%加入10%浓硫酸,并加入2滴甲苯防腐,置于-20 ℃冰箱保存。将每头仔猪4 d的粪样混匀,取样30%,在65 ℃恒温箱中烘干,回潮24 h称重,粉碎过40目筛。按照尿样的5%加入10%浓硫酸,置于-20 ℃冰箱保存,将每头猪4 d的尿样混匀,待测粗蛋白质含量。
1.4.2 食糜采集与处理试验结束当天早上每头猪每隔15 min饲喂1次,采食1.5 h后,用盐酸氯丙嗪麻醉后屠宰,打开腹腔,分离出回肠末端,在回盲瓣向回肠方向20~25 cm区段内取回肠食糜,置于干净的样品袋中,-20 ℃冰箱保存,测定氨基酸和Cr2O3含量[14]。
1.5 测定指标及计算方法 1.5.1 测定指标及方法粗蛋白质:凯氏定氮法;干物质:烘箱干燥法;粗脂肪:索氏抽提法;粗纤维、中性洗涤纤维、酸性洗涤纤维及酸性洗涤木质素:采用ANKOM2000型纤维分析仪测定;能量:采用PARR-1281型氧弹式热量计测定;氨基酸(除色氨酸外):参照GB/T 18246—2000方法进行测定,即将绝干样品在110 ℃下用6 mol/L盐酸水解24 h后,通过氨基酸自动分析仪(日立L-8900,日本)测定;色氨酸:参照GB/T 18246—2000方法进行测定,即样品经4 mol/L氢氧化锂水解24 h后使用高效液相色谱仪(岛津LC-10A,日本)测定;铬:参照GB/T 13088—2006方法进行测试,将待测样品经湿法消解处理后使用紫外分光光度计(日立Z-5000,日本)测定[15]。
1.5.2 待测养分消化率计算公式[16]饲粮养分消化率参照全收粪法计算,公式如下:
养分表观消化率(%)=[(食入养分-粪中养分)/食入养分]×100; 氮真消化率(%)={[食入氮-(粪氮-代谢粪氮)]/食入氮}×100; 氮表观利用率(%)=[(食入氮-粪氮-尿氮)/食入氮]×100; 氮真利用率(%)={[食入氮-(粪氮-代谢粪氮)-(尿氮-内源尿氮)]/食入氮}×100。回肠食糜氨基酸消化率计算公式如下:
氨基酸表观回肠消化率(%)=[1-(食糜中氨基酸含量×待测饲粮中铬含量)/(待测饲粮中氨基酸含量×食糜中铬含量)]×100。无氮饲粮用于估测内源氨基酸损失,氨基酸标准回肠消化率计算公式如下:
氨基酸标准回肠消化率(%)=氨基酸表观回肠消化率+(回肠基础内源氨基酸损失量/待测饲粮中氨基酸含量×100)。菜籽饼和发酵菜籽饼养分消化率通过套算法计算,公式如下:
D=[100×(A-B)/F] +B。式中:D为待测原料中某养分的表观消化率(%);A为待测饲粮中某养分的表观消化率(%);B为基础饲粮中某养分的表观消化率(%);F为待测饲粮某养分占混合饲粮该养分的比例。
1.6 数据统计与分析试验结果采用SPSS 18.0统计软件进行独立样本t检验,所有试验结果用平均值±标准差表示,以P<0.05作为差异显著性标准,P<0.10作为有差异显著性趋势。
2 结 果 2.1 菜籽饼和发酵菜籽饼的养分表观消化率由表3可知,发酵菜籽饼的粗蛋白质、干物质、总能、粗纤维、中性洗涤纤维、酸性洗涤纤维表观消化率显著高于菜籽饼(P<0.05),分别提高了47.84%、58.57%、28.06%、89.64%、61.53%、57.88%。
![]() | 表3 菜籽饼和发酵菜籽饼的养分表观消化率 (干物质基础) Table 3 Nutrient apparent digestibility of rapeseed cake and fermented rapeseed cake (DM basis) % |
由表4可知,发酵菜籽饼的消化能、氮表观消化率、氮真消化率、氮表观利用率、氮真利用率显著高于菜籽饼(P<0.05),分别提高了23.97%、47.84%、32.73%、40.62%、37.05%。
![]() | 表4 菜籽饼和发酵菜籽饼的氮消化率、利用率及消化能(干物质基础) Table 4 Nitrogen digestibility and availability,and digestive energy of rapeseed cake and fermented rapeseed cake (DM basis) |
由表5可知,发酵菜籽饼的粗蛋白质表观回肠消化率显著高于菜籽饼(P<0.05)。菜籽饼、发酵菜籽饼的蛋氨酸表观回肠消化率差异不显著(P>0.05)。发酵菜籽饼的必需氨基酸中缬氨酸、苏氨酸、赖氨酸、组氨酸和总必需氨基酸表观回肠消化率显著高于菜籽饼(P<0.05),且有提高精氨酸和色氨酸表观回肠消化率的趋势(P<0.10),而异亮氨酸、苯丙氨酸表观回肠消化率差异不显著(P>0.05);非必需氨基酸中半胱氨酸、脯氨酸、丝氨酸、甘氨酸、丙氨酸、天冬氨酸和总非必需氨基酸表观回肠消化率显著高于菜籽饼(P<0.05),而酪氨酸、谷氨酸表观回肠消化率差异不显著(P>0.05)。
![]() | 表5 菜籽饼和发酵菜籽饼的粗蛋白质和氨基酸表观回肠消化率和标准回肠消化率(干物质基础) Table 5 Apparent ileal digestibility and standardized ileal digestibility of crude protein and amino acids of rapeseed cake and fermented rapeseed cake (DM basis) % |
发酵菜籽饼的粗蛋白质标准回肠消化率显著高于菜籽饼(P<0.05);发酵菜籽饼的必需氨基酸中缬氨酸、苏氨酸、赖氨酸、组氨酸、亮氨酸和总必需氨基酸标准回肠消化率显著高于菜籽饼(P<0.05),有提高精氨酸标准回肠消化率的趋势(P<0.10),而蛋氨酸、异亮氨酸、苯丙氨酸、色氨酸标准回肠消化率差异不显著(P>0.05);非必需氨基酸中脯氨酸、半胱氨酸、丝氨酸、甘氨酸、丙氨酸、天冬氨酸和总非必需氨基酸标准回肠消化率显著高于菜籽饼(P<0.05),且有提高酪氨酸标准回肠消化率的趋势(P<0.10),但是谷氨酸标准回肠消化率差异不显著(P>0.05)。
3 讨 论菜籽饼是油菜籽榨油后的副产物,在我国分布广、产量大,是一种很有潜力的饲料蛋白质源,但由于其抗营养因子含量高,以及受加工工艺的影响,动物对其营养物质的消化利用率显著低于豆粕[17,18]。李波等[19]研究表明,菜籽饼的粗蛋白质表观消化率不到70%,且干物质和粗纤维表观消化率均较低,本试验结果与此报道一致,且本试验中菜籽饼的消化能为10.47 MJ/kg,低于李波等[19]和《中国饲料成分及营养价值表(2010年)》测定值。为了改善菜籽饼营养价值,消除抗营养因子,微生物发酵成为研究热点,但是发酵菜籽饼在动物体内的消化利用率参数报道较少,给动物饲料的配制带来了盲目性。本研究中,发酵菜籽饼是菜籽饼通过枯草芽孢杆菌、白地霉、黑曲霉混合固态发酵生产的,与未发酵菜籽饼相比,其硫苷等抗营养因子基本消除,蛋白质、小肽和游离氨基酸含量较高。本研究结果发现,发酵菜籽饼的粗蛋白质、干物质、总能和粗纤维表观消化率以及消化能均显著高于菜籽饼,这与Chiang等[13]在鸡上的研究和Chang等[20]在生长猪上的研究报道一致。研究表明,饲料中纤维物质含量过高会降低猪对养分的消化率[21,22],同时饲料中抗营养因子硫苷也会降低动物对蛋白质、氨基酸的利用率[23],菜籽饼纤维物质和硫苷含量较高,从而其粗蛋白质、干物质、总能的表观消化率较低。而菜籽饼发酵过程中纤维、抗营养因子含量和物质结构发生变化,降低了不溶性纤维和抗营养因子对养分表观消化率的负面影响,蛋白质分子质量降低,小肽和游离氨基酸的含量增加,提高了蛋白质和碳水化合物的消化率。胡永娜等[12]研究发现发酵菜籽粕显著提高了鸡十二指肠消化酶的活性,表明发酵能够提高猪对养分的消化率,且Chang等[20]和Anthony等[24]也有相似的研究报道。
发酵菜籽饼的氨基酸表观回肠消化率的变化显示,除蛋氨酸外,发酵菜籽饼氨基酸表观回肠消化率高于菜籽饼,发酵菜籽饼必需氨基酸和非必需氨基酸标准回肠消化率高于菜籽饼。氨基酸表观回肠消化率和标准回肠消化率的差异,主要与饲粮中纤维物质和抗营养因子含量有关[25,26]。研究表明菜籽饼中纤维含量较高,加快了食糜经过小肠的速度,干扰了消化酶与底物的接触时间,进一步增加消化酶的分泌,内源氮的损失增加,从而降低菜籽饼的氨基酸表观回肠消化率和标准回肠消化率,纤维和抗营养因子的含量还会影响特异性内源氮的损失[27]。菜籽饼中的单宁和硫苷等抗营养因子通过降低胃蛋白酶、胰蛋白酶、胰凝乳蛋白酶和小肠刷状缘肽酶的活性,改变肠黏膜形态,影响养分的跨膜吸收,增加内源氮的损失,从而降低氨基酸标准回肠消化率[28,29]。菜籽饼的氨基酸表观回肠消化率较低,其中赖氨酸表观回肠消化率仅48.47%,可能是由于加工时高温导致菜籽饼蛋白质发生美拉德反应,减少了可利用氨基酸的含量,特别是赖氨酸。发酵菜籽饼提高了氨基酸表观回肠消化率,主要原因可能是发酵降低了纤维和抗营养因子的含量;大分子的球蛋白质降解,小肽和游离氨基酸含量增加;另外一些研究表明,用发酵饲粮饲喂动物,其十二指肠和空肠食糜中胰蛋白酶、胰淀粉酶和胰脂肪酶活性均高于未发酵组[12, 30, 31]。本试验结果显示,发酵菜籽饼的粗蛋白质表观回肠消化率和标准回肠消化率均显著高于菜籽饼,分别达到了82.72%和91.26%。分析可能原因与菜籽饼替代饲粮氨基酸的不平衡有关,另外,发酵菜籽饼的粗蛋白质组成包括菜籽饼蛋白质、发酵产生的菌体蛋白质、小肽、游离氨基酸和尿素等,小肽、游离氨基酸和少量非蛋白氮容易被动物吸收利用,而传统测定水解氨基酸的方法测定的氨基酸总量仅包括真蛋白质的含量,从而导致氨基酸低于粗蛋白质的表观回肠消化率和标准回肠消化率。
4 结 论本试验比较评定了菜籽饼和发酵菜籽饼的养分消化率和利用率,结果表明,混菌固态发酵提高了菜籽饼在生长猪上的养分消化率和利用率。
[1] | MCDONNELL P,O'SHEA C,FIGAT S,et al.Influence of incrementally substituting dietary soya bean meal for rapeseed meal on nutrient digestibility,nitrogen excretion,growth performance and ammonia emissions from growing-finishing pigs[J]. Archives of Animal Nutrition,2010,64(5):412-424. (![]() |
[2] | MCNEILL L,BERNARD K,MACLEOD M G.Food intake,growth rate,food conversion and food choice in broilers fed on diets high in rapeseed meal and pea meal,with observations on sensory evaluation of the resulting poultry meat[J]. British Poultry Science,2004,45(4):519-523. (![]() |
[3] | PALANDER S,NSI M,ALA-FOSSI I.Rapeseed and soybean products as protein sources for growing turkeys of different ages[J]. British Poultry Science,2004,45(5):664-671. (![]() |
[4] | SCHNE F,TISCHENDORF F,LEITERER M,et al.Effects of rapeseed-press cake glucosinolates and iodine on the performance,the thyroid gland and the liver vitamin A status of pigs[J]. Archives of Animal Nutrition,2001,55(4):333-350. (![]() |
[5] | TRIPATHI M K,MISHRA A S.Glucosinolates in animal nutrition:a review[J]. Animal Feed Science and Technology,2007,132(1/2):1-27. (![]() |
[6] | BHME H,KAMPF D,LEBZIEN P,et al.Feeding value of crambe press cake and extracted meal as well as production responses of growing-finishing pigs and dairy cows fed these by-products[J]. Archives of Animal Nutrition,2005,59(2):111-122. (![]() |
[7] | SCHNE F,RUDOLPH B,KIRCHHEIM U,et al.Counteracting the negative effects of rapeseed and rapeseed press cake in pig diets[J]. British Journal of Nutrition,1997,78(6):947-962. (![]() |
[8] | BANSAL N,TEWARI R,SONI R,et al.Production of cellulases from Aspergillus niger NS-2 in solid state fermentation on agricultural and kitchen waste residues[J]. Waste Management,2012,32(7):1341-1346. (![]() |
[9] | KIM S,KIM C H.Production of cellulase enzymes during the solid-state fermentation of empty palm fruit bunch fiber[J]. Bioprocess and Biosystems Engineering,2012,35(1/2):61-67. (![]() |
[10] | WANG X S,JIN Q Z,WANG T,et al.Screening of glucosinolate-degrading strains and its application in improving the quality of rapeseed meal[J]. Annals of Microbiology,2012,62(3):1013-1020. (![]() |
[11] | ARO S.Improvement in the nutritive quality of cassava and its by-products through microbial fermentation[J]. African Journal of Biotechnology,2008,7(25):4789-4797. (![]() |
[12] | 胡永娜,王之盛,李爱科.固态发酵菜籽粕对肉仔鸡生长性能、免疫功能及消化酶活性的影响[J]. 动物营养学报,2012,24(7):1293-1301. (![]() |
[13] | CHIANG G,LU W Q,PIAO X S,et al.Effects of feeding solid-state fermented rapeseed meal on performance,nutrient digestibility,intestinal ecology and intestinal morphology of broiler chickens[J]. Asian-Australasian Journal of Animal Sciences,2010,23(2):263-271. (![]() |
[14] | 张克英,陈代文,王建明.不同基因型生长肥育猪可消化赖、蛋+胱、苏、色氨酸平衡模式研究[J]. 动物营养学报,2001,13(1):31-35. (![]() |
[15] | 李波.不同来源菜籽饼粕对生长猪的消化能值及氨基酸回肠消化率的测定 .硕士学位论文.雅安:四川农业大学,2011. (![]() |
[16] | 杨凤.动物营养学[M]. 北京:中国农业出版社,1993. (![]() |
[17] | EKLUND M,CAINE W R,SAUER W C,et al.True and standardized ileal digestibilities and specific ileal endogenous recoveries of crude protein and amino acid in soybean meal,rapeseed meal and peas fed to growing pigs[J]. Livestock Science,2012,145(1):174-182. (![]() |
[18] | KIM E J,UTTERBACK P L,PARSONS C M.Comparison of amino acid digestibility coefficients for soybean meal,canola meal,fish meal,and meat and bone meal among 3 different bioassays[J]. Poultry Science,2012,91(6):1350-1355. (![]() |
[19] | 李波,陈代文,毛湘冰,等.不同加工工艺对菜籽饼粕化学组成及猪养分消化率的影响[J]. 中国畜牧杂志,2012,48(5):50-54. (![]() |
[20] | CHANG J,YIN Q Q,WANG P P,et al.Effect of fermented protein feedstuffs on pig production performance,nutrient digestibility,and fecal microbes[J].Turkish Journal of Veterinary and Animal Sciences,2012,36(2):143-151. (![]() |
[21] | 王诚,蔺海朝,王彦平,等.日粮纤维水平对猪营养物质表观消化率的影响[J]. 中国畜牧兽医,2011,38(4):23-29. (![]() |
[22] | ZHOU X,ORYSCHAK M A,ZIJLSTRA R T,et al.Effects of feeding high-and low-fibre fractions of air-classified,solvent-extracted canola meal on diet nutrient digestibility and growth performance of weaned pigs[J]. Animal Feed Science and Technology,2013,179(1):112-120. (![]() |
[23] | GILANI G S,XIAO C W,COCKELL K A.Impact of antinutritional factors in food proteins on the digestibility of protein and the bioavailability of amino acids and on protein quality[J]. British Journal of Nutrition,2012,108(Suppl.2):S315-S332. (![]() |
[24] | ANTHONY O O,WEI Y M.Effect of fermentation on chemical composition and nutritional quality of extruded and fermented soya products[J]. International Journal of Food Engineering,2011,7(4):1556-3758. (![]() |
[25] | CAINE W R,SAUER W C,HUANG G S,et al.Influence of guanidination on apparent ileal digestibility of amino acids in pigs fed diets with soybean meal,rapeseed meal or peas as a protein source[J]. Livestock Science,2008,116(1/2/3):300-308. (![]() |
[26] | MARISCAL-LANDÍN G,REIS DE SOUZA T C,PARRA S J E,et al.Ileal digestibility of protein and amino acids from canola meal in weaned piglets and growing pigs[J]. Livestock Science,2008,116(1):53-62. (![]() |
[27] | YIN Y L,LI T J,HUANG R L,et al.Evaluating standardized ileal digestibility of amino acids in growing pigs[J].Animal Feed Science and Technology,2008,140(3):385-401. (![]() |
[28] | GILANI G S,COCKELL K A,SEPEHR E.Effects of antinutritional factors on protein digestibility and amino acid availability in foods[J]. Journal of AOAC International,2005,88(3):967-987. (![]() |
[29] | MARISCAL-LANDÍN G,AVELLANEDA J H,REIS DE SOUZA T C,et al.Effect of tannins in sorghum on amino acid ileal digestibility and on trypsin (EC 2.4.21.4) and chymotrypsin (EC 2.4.21.1) activity of growing pigs[J]. Animal Feed Science and Technology,2004,117(3):245-264. (![]() |
[30] | 司马博锋,陈代文,黄志清,等.固态发酵复合蛋白质对猪肠道消化生理及养分消化率的影响研究[J]. 动物营养学报,2011,23(1):86-93. (![]() |
[31] | FENG J,LIU X,XU Z R,et al.The effect of Aspergillus oryzae fermented soybean meal on growth performance,digestibility of dietary components and activities of intestinal enzymes in weaned piglets[J].Animal Feed Science and Technology,2007,134(3/4):295-303. (![]() |