2. 中国农业科学院饲料研究所, 北京 100081
2. Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
家禽是热应激敏感动物,过高温度会引起家禽一系列症状,如采食量下降、生长减缓、抵抗力变弱。Burkholder等[ 1 ]报道,热应激影响肉鸡肠道微生物、肠形态和沙门氏菌定植。Quinteiro等[ 2 ]报道,热应激导致肉鸡肠道损伤,降低了巨噬细胞活性。改善热应激条件下家禽的肠道功能可为缓解其热应激提供一种途径。Sohail等[ 3 ]研究表明,益生菌(probiotics,PRO)可维持肉鸡热应激时肠道菌群平衡。Deng等[ 4 ]报道,地衣芽孢杆菌(Bacillus licheniformis)可明显改善热应激条件下蛋鸡肠黏膜结构,维持黏膜免疫反应,缓解蛋鸡采食量和产蛋率的下降。纤维寡糖(cello-oligosaccharide,COS)是一种新型的功能性寡糖,由2~7个吡喃型葡萄糖单元通过β-1,4糖苷键连接。纤维寡糖可由纤维素降解而制备,农业废弃物如秸秆、甘蔗渣和苜蓿残渣等均是丰富的纤维素来源,利用其生产纤维寡糖,具有较高的环境效益和经济效益[ 5 ]。纤维寡糖作为功能性寡糖家族中的新成员,对肉鸡应用效果的报道很少。根据益生菌和功能性寡糖的生理作用,推测它们可能能缓解热应激对肉鸡肠道的不良影响。本试验拟研究益生菌和纤维寡糖对热应激肉鸡肠屏障功能的影响,旨在探讨益生菌和纤维寡糖抗热应激的效果及作用机理。
1 材料与方法 1.1 试验材料益生菌:由中国农业科学院饲料研究所提供,其成分包括地衣芽孢杆菌(Bacillus licheniformis,1.0×107 CFU/g)、枯草芽孢杆菌(Bacillus subtilis,1.0×107 CFU/g)、植物乳杆菌(Lactobacillus plantarum,1.0×108 CFU/g)。
纤维寡糖:由中国农业科学院饲料研究所提供,其中纤维寡糖含量在80%以上。
1.2 试验动物及饲粮试验动物选用罗斯(Ross)308肉鸡。参照NRC(1994)肉鸡营养需要配合成粉状全价料,基础饲粮组成及营养水平见表1。
![]() | 表1 基础饲粮组成及营养水平(干物质基础) Table 1 Composition and nutrient levels of the basal diet (DM basis) |
将900羽21日龄的Ross 308肉鸡分为5个组,空白对照(Con)组、热应激(heat stress,HS)组、益生菌(HS+PRO)组、纤维寡糖(HS+COS)组、合生素(HS+SYN,SYN=PRO+COS)组,每个组设6个重复,每个重复30羽。试验设计见表2。每组单舍饲养,鸡舍面积30 m2,每个鸡舍隔成6个重复,饲养密度10只/m2,饲养方式为平养。鸡舍温控设备控制鸡舍温度。饲养试验期为21 d。Con组鸡舍温度为22 ℃。热应激模型参照Sohail等[ 3 ]和李文立等[ 6 ]的模型:每天08:00—18:00鸡舍温度为33 ℃,18:00至次日08:00鸡舍温度为22 ℃。鸡舍相对湿度在70%~80%。鸡自由采食、饮水。
![]() | 表2 试验设计 Table 2 Experimental design |
饲养试验结束后,每组选取体重相似的试验鸡12羽,自由饮水,禁食12 h后,静脉采血,离心制备血清于-80 ℃保存备用;屠宰后取空肠1 cm,置于10%福尔马林溶液中固定,待光镜分析其形态;无菌采集盲肠内容物,待分析肠道菌群数量;取空肠于预先充混合气(95%氧气和5%二氧化碳)的4 ℃ Ringer溶液中,用于空肠屏障功能分析。 1.4.2 指标测定 1.4.2.1 生长性能
试验开始前记录鸡初始体重,试验期内每天以重复为单位记录试验鸡采食量,计算平均日采食量(average daily feed intake,ADFI),平均日增重(average daily gain,ADG)和料重比(feed to gain ratio,F/G)。
1.4.2.2 肠道菌群数量菌群分析参考Hu等[ 7 ]和徐露蓉等[ 8 ]的方法。乳酸杆菌、双歧杆菌、大肠杆菌和梭菌分别采用MRS琼脂、TPY琼脂、伊红美蓝琼脂和亚硫酸盐-多练菌素牛奶(sulphite-polymyxin milk)琼脂培养。37 ℃下,乳酸杆菌和梭菌厌氧培养48 h,双歧杆菌厌氧培养72 h,大肠杆菌培养24 h。计算出每克干物质内容物的细菌数,并以其对数值表示。 1.4.2.3 肠黏膜形态
将空肠肠段样品经固定、修整、冲洗、脱水、切片和常规苏木精-伊红(HE)染色制成切片,用Leica Qwin图像测量绒毛高度、隐窝深度,并计算绒毛高度/隐窝深度(V/C)。
1.4.2.4 肠屏障功能根据Hu等[ 7 ]和徐露蓉等[ 8 ]方法,采用尤斯灌流(Ussing chamber)技术检测肠上皮细胞跨膜电阻(transepithelial electrical resistance,TER)值和肠上皮对荧光素异硫氰酸酯-葡聚糖(4 kDa-FITC dextran,FD4)的通透性,以此反映肠上皮屏障功能。
1.5 数据统计与分析数据以“平均值±标准差”表示,采用SPSS 17.0统计软件进行单因素方差分析,各组间平均值采用LSD多重比较,P<0.05表示差异显著。
2 结 果 2.1 益生菌和纤维寡糖对热应激肉鸡生长性能的影响由表3可知,与Con组相比,HS组肉鸡ADG和ADFI分别显著降低10.65%(P<0.05)和8.04%(P<0.05)。与HS组相比,HS+PRO组和HS+COS组ADG、ADFI和F/G差异不显著(P>0.05);与HS组相比,HS+SYN组F/G显著降低4.21%(P<0.05)。
![]() | 表3 益生菌和纤维寡糖对热应激肉鸡生长性能的影响 Table 3 Effects of PRO and COS on growth performance of broilers under heat stress |
由表4可知,与Con组相比,HS组肉鸡盲肠乳酸杆菌数显著下降(P<0.05),大肠杆菌和梭菌数显著升高(P<0.05)。与HS组相比,HS+PRO组、HS+COS组、HS+SYN组乳酸杆菌数均显著上升(P<0.05),HS+SYN组双歧杆菌数显著上升(P<0.05),HS+COS组和HS+SYN组大肠杆菌和梭菌数均显著下降(P<0.05)。
![]() | 表4 益生菌和纤维寡糖对热应激肉鸡盲肠菌群的影响 Table 4 Effects of PRO and COS on intestinal microbiota of broilers under heat stress |
由表5可知,与Con组相比,HS组绒毛高度和绒毛高度/隐窝深度显著降低(P<0.05)。与HS组相比,HS+PRO组、HS+COS组、HS+SYN组绒毛高度和绒毛高度/隐窝深度均显著升高(P<0.05)。肉鸡的隐窝深度各组间均差异不显著(P>0.05)。
![]() | 表5 益生菌和纤维寡糖对热应激肉鸡肠形态的影响 Table 5 Effects of PRO and COS on intestinal morphology of broilers under heat stress |
由表6可知,与Con组相比,HS组肉鸡空肠TER值显著下降(P<0.05),FD4通透性显著升高(P<0.05)。与HS组相比,HS+SYN组TER值显著升高(P<0.05);HS+PRO组、HS+COS组和HS+ SYN组FD4通透性均显著下降(P<0.05)。
![]() | 表6 益生菌和纤维寡糖对热应激肉鸡肠屏障功能的影响
Table 6 Effects of PRO and COS on intestinal barrier function of broilers under heat stress
|
本试验中,热应激降低了肉鸡ADG和ADFI。在热应激状态下,鸡只为减少代谢产热、减慢体温升高率而主动降低采食量。同时,当环境温度升高时,皮肤表面血管扩张,大量血液流向皮肤表面以加快散热,导致胃肠道的血流量不足,影响胃肠道对营养物质的消化吸收,从而降低了动物的采食量,抑制其生长[ 2 ]。本试验发现,热应激肉鸡单独饲喂益生菌、纤维寡糖或合生素可一定程度缓解热应激造成的ADG和ADFI下降的不利影响。HS+SYN组F/G显著下降。本试验结果表明,热应激显著降低了肉鸡盲肠乳酸杆菌数,显著增加了大肠杆菌数和梭菌数。Burkholder等[ 1 ]报道,热应激会增加沙门氏菌在肠道定植。热应激可引起动物肠道热休克蛋白表达升高,热休克蛋白可作为致病菌黏附于肠上皮表面的受体,为致病菌定植提供便利[ 9 ]。本试验发现,饲喂益生菌和纤维寡糖对肉鸡盲肠菌群均有不同程度的调节,且益生菌和纤维寡糖组成的合生素对乳酸杆菌数的上调作用显著优于单独添加。本试验采用的益生菌中含有地衣芽孢杆菌和枯草芽孢杆菌,这2种需氧菌可大量消耗肠腔内的氧气,为肠道内厌氧有益菌(如乳酸杆菌和双歧杆菌)的定植创造一个无氧环境。这些产酸有益菌的定植,创造了偏酸的肠道环境并分泌抗菌物质,从而进一步抑制条件性致病菌的生长。纤维寡糖可为益生菌提供营养基质,以增强有益菌在肠道内竞争的能力[ 8 ]。
本试验中,热应激使肉鸡绒毛高度变短,绒毛高度/隐窝深度下降,说明热应激引起了肉鸡肠黏膜形态的损伤,与Burkholder等[ 1 ]的试验结果一致。在热应激状态下,皮肤表面血管扩张、充血,大量血液流向外表以加快散热,导致肠道的血流量不足,造成上皮细胞脱落而使肠绒毛变短,隐窝加深。本试验中,饲喂益生菌、纤维寡糖和合生素使热应激肉鸡肠绒毛高度和绒毛高度/隐窝深度显著升高,说明肉鸡肠形态的损伤得到缓解。Deng等[ 4 ]报道,地衣芽孢杆菌可缓解热应激引起的蛋鸡肠道损伤。益生菌已被证明可通过排斥病原,诱导肠道保护因子的表达,增强肠道紧密连接等方式保护肠道[ 10 ]。纤维寡糖在肠道内可被水解成短链脂肪酸,可为肠黏膜提供能源并刺激绒毛生长。Otsuka等[ 11 ]发现,纤维寡糖可使猪盲肠内乙酸和异戊酸浓度升高。
肠屏障的结构基础是完整的肠上皮细胞和相邻肠上皮细胞间的紧密连接,两者共同构成肠道的选择性屏障。利用尤斯灌流是通过微电极检测整个细胞膜离子通道变化的电流信号来反映肠道吸收、通透性的变化,被誉为肠黏膜屏障功能研究的金标准[ 12 ]。TER值是评价肠上皮屏障完整性的指标,TER值降低提示肠黏膜屏障受损[ 8 ]。FD4荧光探针主要通过旁细胞途径由肠黏膜侧转移到浆膜侧,浆膜侧FD4含量升高,提示肠道旁细胞通透性升高,肠屏障受损[ 8 ]。本试验结果表明,热应激使TER值显著降低,FD4通透性显著升高,说明热应激引起肉鸡肠黏膜屏障受损。这可能是由于高温引起肠道缺血造成的。Lambert[ 13 ]认为,肠道缺血会引起肠道缺氧,进而导致肠上皮细胞活力降低,通透性升高。Hall等[ 14 ]报道,肠道血流量下降会损伤肠黏膜,使紧密连接打开。本试验中,HS+SYN组TER值较HS组显著升高,且与Con组无显著差异;HS+PRO组、HS+CON组和HS+SYN组FD4通透性均显著降低,且HS+CON组和HS+SYN组与Con组无显著差异,表明益生菌和纤维寡糖对热应激引起的肉鸡肠屏障受损有修复作用。
4 结 论热应激使肉鸡生长性能下降,肠道菌群紊乱,肠形态和肠屏障受损,屏障通透性提高。饲喂益生菌和纤维寡糖可在一定程度上改善上述变化,且益生菌与纤维寡糖合用的效果优于单独添加。
[1] | BURKHOLDER K M, THOMPSON K L, EINSTEIN M E, et al.Influence of stressors on normal intestinal microbiota, intestinal morphology, and susceptibility to Salmonella enteritidis colonization in broilers[J]. Poultry Science, 2008, 87(9):1734-1741. (![]() |
[2] | QUINTEIRO FILHO W M, RIBEIRO A, FERRAZ DE Pet al.Heat stress impairs performance parameters, induces intestinal injury, and decreases macrophage activity in broiler chickens[J]. Poultry Science, 2010, 89(9):1905-1914. (![]() |
[3] | SOHAIL M U, IJAZ A, YOUSAF M S, et al.Alleviation of cyclic heat stress in broilers by dietary supplementation of mannan-oligosaccharide and Lactobacillus-based probiotic:dynamics of cortisol, thyroid hormones, cholesterol, C-reactive protein, and humoral immunity[J]. Poultry Science, 2010, 89(9):1934-1938. (![]() |
[4] | DENG W, DONG X F, TONG J M, et al.The probiotic Bacillus licheniformis ameliorates heat stress-induced impairment of egg production, gut morphology, and intestinal mucosal immunity in laying hens[J]. Poultry Science, 2012, 91(3):575-582. (![]() |
[5] | 刘程程.β-葡聚糖酶水解紫花苜蓿制备纤维寡糖的研究[D]. 硕士学位论文.北京:中国农业科学院, 2011:2-8. (![]() |
[6] | 李文立, 路静, 孙振钧, 等.谷氨酰胺对热应激肉鸡抗氧化性能的影响[J]. 动物营养学报, 2011, 23(4):695-702. (![]() |
[7] | HU C H, QIAN Z C, SONG J, et al.Effects of zinc oxide-montmorillonite hybrid on growth performance, intestinal structure, and function of broiler chicken[J]. Poultry Science, 2013, 92(1):143-150. (![]() |
[8] | 徐露蓉, 栾兆双, 胡彩虹, 等.纤维寡糖对生长猪生长性能、结肠菌群和肠黏膜通透性的影响[J]. 动物营养学报, 2013, 25(6):1293-1298. (![]() |
[9] | WAMPLER J L, KIM K P, JARADA T Z, et al.Heat shock protein 60 acts as a receptor for the Listeria adhesion protein in Caco-2 cells[J]. Infection and Immunity, 2004, 72(2):931-936. (![]() |
[10] | 邓文.地衣芽孢杆菌缓解蛋鸡热应激的效果及机理研究[D]. 硕士学位论文.北京:中国农业科学院, 2011:60-66. (![]() |
[11] | OTSUKA M, ISHIDA A, NAKAYAMA Y, et al.Dietary supplementation with cellooligosaccharide improves growth performance in weanling pigs[J]. Animal Science Journal, 2004, 75(3):225-229. (![]() |
[12] | 孙志洪, 贺志雄, 张庆丽, 等.尤斯灌流系统在动物胃肠道屏障及营养物质转运中的应用[J]. 动物营养学报, 2010, 22(3):511-518. (![]() |
[13] | LAMBERT G P.Stress-induced gastrointestinal barrier dysfunction and its inflammatory effects[J]. Journal of Animal Science, 2009, 87(14 Suppl.):E101-E108. (![]() |
[14] | HALL D M, BUETCONER G R, OBERLEY L W, et al.Mechanisms of circulatory and intestinal barrier dysfunction during whole body hyperthermia[J]. American Journal of Physiology:Heart and Circulatory Physiology, 2001, 280(2):H509-H521. (![]() |