动物营养学报  2014, Vol. 26 Issue (9): 2445-2450   PDF (1151 KB)    
胆碱缺乏对家禽健康和生长的影响及其机理
闻治国1,2, 唐静1,2, 谢明1, 黄苇1, 侯水生1     
1. 中国农业科学院北京畜牧兽医研究所, 动物营养学国家重点实验室, 北京 100193;
2. 中国农业大学动物科技学院, 北京 100193
摘要:胆碱是家禽保持健康、生长发育必需的营养素,它在细胞膜磷脂合成、甲基组代谢、神经递质传递和肝脏脂质转运等方面发挥重要作用。饲粮中胆碱缺乏导致家禽生长发育迟缓和采食量下降。本文综述了家禽胆碱缺乏的临床特点、造成胆碱缺乏的主要因素以及胆碱缺乏对家禽健康和生长的影响及可能的机理,并且展望了胆碱在家禽生产上的应用。
关键词胆碱     家禽     缺乏症     影响因素     机理    
Effects of Choline Deficiency on Health and Growth of Poultry and Its Mechanisms
WEN Zhiguo1,2, TANG Jing1,2, XIE Ming1, HUANG Wei1, HOU Shuisheng1     
1. Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, State Key Laboratory of Animal Nutrition, Beijing 100193, China;
2. College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
Abstract: Choline is an essential nutrient for health, growth and development of poultry and it plays important roles in the synthesis of the membrane phospholipids, methyl-group metabolism, neurotransmission, and liver lipid transport. Dietary choline deficiency in poultry causes a significant decrease on growth and development rate and feed intake. This review provided the clinical characteristics of choline deficiency in poultry, the main factors affecting choline deficiency, and the effects of choline deficiency on health, growth and development of poultry. In addition, the mechanisms of choline deficiency were summarized, and the perspectives of choline applications in poultry husbandry were also discussed.
Key words: choline     poultry     deficiency symptom     affecting factors     mechanism    

胆碱是一种水溶性维生素,动物对胆碱的需要量远远超出其他营养素。胆碱可通过体内生物合成,主要是通过磷脂酰乙醇胺(phosphatidyl ethanolamine,PE)甲基化作用生成卵磷脂(phosphatidylcholine,PC),再进一步生成胆碱。但是胆碱从头合成途径根本无法满足动物机体对胆碱的需要量[1],机体必须通过肠道中胆碱转运蛋白来吸收饲粮中胆碱[2]。被吸收的胆碱主要通过氧化、磷酸化和乙酰化等途径参与体内代谢:1)氧化生成甜菜碱作为甲基供体,为同型半胱氨酸(homocysteine,HCY)提供甲基形成蛋氨酸发挥重要作用[3];2)磷酸化生成PC在细胞膜信号转导(磷脂)[4]和肝脏脂肪转运(脂蛋白)[5]等方面至关重要;3)乙酰化生成乙酰胆碱(acetylcholine,ACH)参与神经递质合成,促进动物大脑发育和降低神经管缺损(neural tube defects,NTDs)风险[6, 7]。虽然常规饲料原料中胆碱含量很高,但家禽对饲粮中胆碱的利用率都很低,例如肉鸡对玉米和豆粕中胆碱利用率仅为57.47%和45.97%[8],因此在养殖生产中,饲粮中会额外添加胆碱以保证家禽对胆碱的需要。同时,不同生长阶段的畜禽对胆碱的需要量也不尽相同。一般来说,幼禽合成胆碱能力较弱,对饲粮中胆碱的需要量最大。产蛋期的家禽由于产蛋会流失大量PC而对胆碱需要量增加[9]。实际生产中,由于胆碱添加量没有统一的标准,极易造成家禽胆碱缺乏,家禽胆碱缺乏主要表现在腿骨发育不良[如滑腱症(perosis)]、肝脏脂肪转运障碍导致脂肪肝、肾出血以及大脑发育受损等。了解胆碱缺乏病的症状和致病机理对缓解养殖生产中胆碱缺乏病的危害具有重要的意义。

1 家禽胆碱缺乏的临床特征

胆碱缺乏症首次被Juckes[10]在火鸡上发现,其症状和已经发现的滑腱症相似,主要以跗关节肿大、骨短粗、弓形腿和跟键滑脱为主要特征。陈季春[11]认为,禽类滑腱症是一个不断变化的病理过程,应该从动态发展的观点评述这一病症。滑腱症最初特点是附关节点状出血和轻微肿胀,随后由于附骨扭转,致使胫跗关节显著肿起。跗骨继续扭曲并呈弯形,以至与胫骨不成直线。由于腿不能支持禽的重量,关节软骨错位,跟键从踝骨头滑脱。一些处于中期阶段,跟腱不完全滑落而表现为胫骨短粗、扭曲和关节肿大的病症也属于滑腱症的范畴。这种腿骨发育不良的症状并非胆碱缺乏所特有的症状,研究表明它在其他营养素缺乏时也可出现,比如锰[12]、烟酸[13]和生物素[14]等。此外饲粮中添加福美双后,肉鸡会出现骨短粗等发育不良症状[15]

胆碱缺乏症的另一个明显症状是动物易患脂肪肝和肾出血。徐之勇等[16]对饲粮胆碱缺乏的蛋鸡进行剖检发现,肝脏肿大、颜色发黄,同时肾脏有出血点或出血斑。肿大肝脏用苏木精-伊红(HE)染色后,电子显微镜观察发现,肝细胞胞浆中充满大小不等的脂肪滴。

2 影响家禽胆碱缺乏的因素

胆碱是动物体内重要的营养物质,参与体内多种代谢途径。动物体内胆碱需要量受生长阶段、饲粮营养水平及其他营养素(如蛋氨酸、甜菜碱、叶酸和维生素B12)所影响,这些营养素不足或过量极易造成胆碱缺乏。

动物生长阶段不同,对胆碱需要量影响很大。产蛋期的家禽和产奶期的哺乳动物,产蛋或产奶会流失大量PC,极易导致胆碱缺乏。幼龄动物基本没有合成胆碱的能力,可能需要更多的胆碱完成细胞的增殖和分化,因此NRC(1994)推荐1~21日龄肉鸡胆碱需要量为1 300 mg/kg,而21~42日龄肉鸡需要量降低为1 000 mg/kg。Fritz等[17]认为肉鸡饲粮中脂肪含量升高,胆碱需要量会增加。原因可能是肉鸡饲粮中能量升高减少了采食量,同时胆碱的有效采食量就会减少,这样易使肉鸡体内胆碱缺乏。而Ketola等[18]发现,饲粮蛋白质(蛋氨酸除外)水平也是影响胆碱需要量的一个因素。肉鸡采食蛋白质水平为64%的饲粮所需胆碱量是采食蛋白质水平为13%饲粮的3倍。胆碱在蛋氨酸代谢中起重要作用,它被氧化生成甜菜碱,可为HCY转化为蛋氨酸提供甲基,饲粮中蛋氨酸或甜菜碱不足,会增加火鸡或蛋鸡胆碱需要量[19, 20]。此外,叶酸和维生素B12不足也会造成胆碱缺乏[21]

3 胆碱缺乏对家禽的影响及机理 3.1 骨骼发育

一方面,与锰缺乏一样,胆碱缺乏也是导致家禽滑键症的因素之一。从过去发现胆碱缺乏症以来,大部分试验报道了胆碱缺乏致使火鸡等腿骨发育不良的临床特点,对这一缺乏症的致病机理报道甚少。Fritz等[17]认为胆碱是保证家禽软骨基质的正常成熟、防止鸡和火鸡胫骨短粗症和滑健症所必需的物质。因为胆碱是构成PC这种重要生理活性物质的组成部分,而PC是动物细胞膜的结构成分,同样也是软骨组织磷脂的构成成分。当磷脂酰胆碱、磷脂酰乙醇胺和神经鞘磷脂发生变化时,细胞膜通透性和完整性会随着发生改变,最终影响整个细胞的新陈代谢。所以,胆碱在构成和维持细胞的结构和保证正常的软骨基质成熟必不可少,并能阻止家禽腿骨滑键症和短粗症的发生。

另一方面,动物体内胆碱摄入量与体内HCY浓度有直接关系,当胆碱缺乏时,体内HCY浓度明显升高[22, 23]。HCY是一种含硫的非必需氨基酸,是蛋氨酸代谢的中间产物,对动物产生毒性[24]。医学上已经证明,血浆高浓度HCY影响骨代谢,与骨折密切相关,是骨质疏松性骨折的危险信号[25, 26]。肉鸡饲粮中蛋氨酸过量而又缺乏胆碱和甜菜碱,大量的HCY会在体内蓄积,同时肉鸡会产生胫骨软骨发育不良症状[27]。Orth等[28]研究也发现,玉米-豆粕饲粮中添加0.5%的HCY或0.75%的半胱氨酸后,肉鸡均有胫骨发育不良的症状。因此我们推断,胆碱缺乏造成的动物腿骨发育不良症状可能是由于体内高浓度的HCY所造成。HCY引起动物骨骼发育不良的机理可能有以下几点:1)HCY是赖氨酸氧化酶的抑制剂,而赖氨酸氧化酶修饰骨胶原蛋白翻译后的赖氨酸残基,同时骨胶原交联肽又是构成骨胶原纤维的成分,在胶原纤维中起稳定胶原链的作用,维持骨骼的弹性和韧性[29]。2)高浓度HCY促使动物体内铜缺乏。研究表明,当铜缺乏时,会诱导肉鸡胫骨发育不良。饲粮中添加一定量的铜能够缓减肉鸡因HCY中毒导致的胫骨发育不良[28]。赖氨酸氧化酶是一种依赖铜的酶,因此HCY影响铜的状态进一步影响了赖氨酸氧化酶。3)血浆中HCY浓度升高抑制了骨骼血流量,诱导了氧化应激,改变了骨骼生物学特性[30]。HCY会降低关键抗氧化酶的基因表达,或增加了超氧化物阴离子的产生,这些超氧化物阴离子与一氧化氮(NO)反应生成过氧亚硝酸盐,影响NO生物有效利用率,诱导了氧化应激,进一步破坏了成骨细胞和破骨细胞的平衡,影响了骨骼的重建。4)HCY通过增加骨髓质细胞内活性氧的产生和刺激p38丝裂原活化蛋白激酶(p38 MAPK)的活性来促使破骨细胞形成[31]

3.2 脂肪代谢

胆碱缺乏在鸡和火鸡上不仅表现为胫骨短粗症和滑键症,同时还有脂肪肝症状。徐之勇等[16]在雏鸡上发现,胆碱缺乏组雏鸡肝脏肿大,呈黄褐色,质软且脆,表面有血凝块或出血斑点,切面外翻,触之有油腻感,甚至可见脂肪滴。显微镜下观察,肝脏细胞中有大小不等的脂肪空泡。Schexnailder等[32]报道,产蛋鸡缺乏胆碱,产蛋量下降,肝脂肪增多,死亡率增加。28周龄来航蛋鸡饲喂缺乏胆碱饲粮20周,肝脂率升高23.5%~28.2%[33]。此外,胆碱对蛋鸡脂肪肝出血综合征(FLHS)的预防起重要作用。

目前研究认为,胆碱对肝脏脂肪代谢的调控机理可能通过磷酸化和氧化2条途径来完成。一方面,胆碱在胆碱激酶(choline kinase,Chk)的催化下发生磷酸化,在镁离子(Mg2+)、三磷酸腺苷(ATP)存在时通过胞二磷胆碱(CDP-choline)途径可合成PC,而PC是合成极低密度脂蛋白(very low density lipoprotein,VLDL)的必需组分。胆碱在脂肪代谢过程中可促进脂肪酸以PC的形式被运输,提高肝脏利用脂肪酸的能力。饲粮中胆碱缺乏,导致磷脂中PC缺乏,减少VLDL的组装与分泌,增加肝脏中甘油三酯的沉积[34]。另一方面,胆碱通过氧化反应间接生成蛋氨酸,蛋氨酸和赖氨酸在肝脏内各种酶的参与下合成L-肉碱,而肉碱是长链脂肪酸进入细胞线粒体内进行脂肪酸氧化的重要跨膜转运载体,在脂肪酸氧化中起关键作用。研究表明,动物肝脏内胆碱含量与脂肪酸含量呈负相关[35],与肉碱含量呈正相关[36]。鹅或鸭在填饲胆碱缺乏的饲粮后,可能导致体内肉碱的合成减少,继而降低线粒体内脂酰辅酶A的浓度,减少机体内脂肪酸氧化,增加肝脏脂肪的沉积,诱使肝脏脂肪变性。胆碱缺乏不仅造成肝脏脂肪变性,还伴有肝脏红肿发炎和纤维症[37],而其他情况所致的肝脏脂肪变性没有肝脏红肿发炎以及纤维症[38]

3.3 大脑发育

胆碱作为神经递质ACH的组成成分,在大脑发育和神经功能方面起着重要作用,但相关报道未见在家禽上报道。生长期小鼠缺乏胆碱会造成大脑结构和功能永久性损伤[39]。除叶酸外,胆碱缺乏也是导致动物NTDs的因素[40]。大鼠上的研究表明,胚胎时期胆碱吸收和代谢被抑制后,会导致NTDs[41]。Shaw等[42]研究发现,摄食低胆碱食物的妇女生出的小孩患NTDs疾病的概率是摄食富含胆碱食物妇女的4倍。此外,胆碱缺乏也会引起动物大脑记忆力缺失等问题。怀孕的大鼠采食高剂量的胆碱饲粮后,会改变大鼠体内与记忆和学习相关基因的表达[43]。同时,在老年痴呆症、帕金森病和癫痫病的研究中发现,胆碱能够提高记忆缺失、注意力缺陷、神经肌肉障碍和躁狂失调等问题[44, 45, 46]

胆碱影响动物大脑神经发育最直接的原因可能与神经递质ACH有关:1)胆碱能够增加大脑中胆碱和神经递质的释放,激活交感神经α7的烟碱受体,通过血管舒张增加大脑血流量[47];2)胆碱缺乏导致动物DNA甲基化、基因表达以及干细胞增殖和分化方面的改变,进一步引起记忆方面的神经元在结构、生物化学和生理上的改变[41, 48];3)早期大脑发育过程中,细胞形态结构对神经元长期兴奋性有影响,胆碱能够降低这种增强效应的阈值,增加海马CA1区神经元对这种增强效应的敏感性[49];4)胆碱是PC和神经鞘磷脂的结构成分,维持神经元细胞结构和功能完整性[50];5)供应胆碱致使HCY减少,这样对心血管疾病和脑神经失调起保护作用。

3.4 肌肉损伤

肌肉营养不良(muscular dystrophy)是以动物肌肉细胞萎缩、变性和功能缺失为主要特征。胆碱缺乏会造成动物腿肌发育不良并萎缩,这已在兔子和小鼠试验上证明[51, 52],但未见在家禽上的报道。Sher等[53]研究表明,胆碱激酶β基因(choline kinase β,Chkb)上1.6 kb基因的缺失,会造成Chk活性下降,由胆碱生成的磷脂酰胆碱减少,肌肉细胞膜融合丧失引起肌肉营养不良,进而发生肌肉萎缩。Wu等[51]也认为Chkb-/-小鼠前肢肌肉磷脂酰胆碱合成减少和分解加强是胆碱缺乏造成肌肉损伤的主要原因。此外,胆碱缺乏致使神经递质ACH缺乏,神经冲动向肌肉细胞传递中断,肌肉收缩障碍,这也是胆碱缺乏导致肌肉损伤的可能原因。

4 小 结

胆碱是家禽生长发育必需的营养素,其需要量远远超过其他维生素。实际生产中往往容易造成动物胆碱缺乏,这样会造成动物生长发育迟缓和采食量下降等诸多问题。大量文献表明,胆碱缺乏造成家禽胫骨发育不良、胫跖骨关节肿大、弓形腿和滑键症等问题;胆碱促进甘油三酯合成VLDL,减少肝脏脂肪沉积是家禽避免脂肪肝发生必不可少的;动物大脑神经发育所需的ACH也是理解胆碱调控大脑发育的机理的条件;动物肌肉萎缩可能与由胆碱合成的PC有明显关系。探讨胆碱缺乏的症状、影响因素以及胆碱缺乏对动物健康和生长发育的影响,将有助于我们了解胆碱缺乏病的临床特点,进一步提高养殖生产中的经济效益。

参考文献
[1]BUCHMAN A L.The addition of choline to parenteral nutrition[J]. Gastroenterology,2009,137(Suppl.5):S119-S128. (1)
[2]LI Z Y,VANCE D E.Thematic review series:glycerolipids.Phosphatidylcholine and choline homeostasis[J]. Journal of Lipid Research,2008,49(6):1187-1194. (1)
[3]ZEISEL S H,BLUSZTAJN J K.Choline and human nutrition[J]. Annual Review of Nutrition,1994,14(1):269-296. (1)
[4]HOLLENBECK C B.The importance of being choline[J]. Journal of the American Dietetic Association,2010,110(8):1162-1165. (1)
[5]LEE G S,YAN J S,NG R K,et al.Polyunsaturated fat in the methionine-choline-deficient diet influences hepatic inflammation but not hepatocellular injury[J]. Journal of Lipid Research,2007,48(8):1885-1896. (1)
[6]PACELLI C,COLUCCIA A,GRATTAGLIANO I,et al.Dietary choline deprivation impairs rat brain mitochondrial function and behavioral phenotype[J]. The Journal of Nutrition 2010,140(6):1072-1079. (1)
[7]ZEISEL S H,DA COSTA K A,FRANKLIN P D,et al.Choline,an essential nutrient for humans[J]. The FASEB Journal,1991,5(7):2093-2098. (1)
[8]王吉峰,霍启光,王宏,等.玉米、豆粕中胆碱生物学效价的研究[J]. 动物营养学报,2001,13(2):58-64. (1)
[9]RINGROSE R,DAVIS H.Choline in the nutrition of laying hens[J]. Poultry Science,1946,25(6):646-647. (1)
[10]JUKES T H.Prevention of perosis by choline[J]. Journal of Biological Chemistry,1940,134:789-790. (1)
[11]陈季春.禽类滑腱症的研究进展[J]. 中国兽医杂志,1986,12(2):44-47. (1)
[12]WANG Z J,WANG Z L,WANG Z Y,et al.Effects of manganese deficiency on serum hormones and biochemical markers of bone metabolism in chicks[J]. Journal of Bone and Mineral Metabolism,2013,31(3):285-292. (1)
[13]XIE M,HAN X F,HUANG W,et al.Effects of niacin status on tryptophan requirements of starter white Pekin ducks[J]. Livestock Science,2014,159:75-78. (1)
[14]HOCKING P,STEVENSON E,BEARD P.Supplementary biotin decreases tibial bone weight,density and strength in riboflavin deficient starter diets for turkey poults[J]. British Poultry Science,2013,54(6):801-809. (1)
[15]田文霞,李家奎,毕丁仁,等.福美双诱发肉鸡胫骨软骨发育不良的组织病理学变化[J]. 中国兽医学报,2008,27(6):899-902. (1)
[16]徐之勇,余燕,赵恒章,等.日粮中添加胆碱对雏鸡脂肪肝的防治效果[J]. 河南农业科学,2010(6):128-131. (2)
[17]FRITZ J C,ROBERTS T,BOEHNE J W.The chick's response to choline and its application to an assay for choline in feedstuffs[J]. Poultry Science,1967,46(6):1447-1454. (2)
[18]KETOLA H,NESHEIM M C.Influence of dietary protein and methionine levels on the requirement for choline by chickens[J]. The Journal of Nutrition,1974,104(11):1484-1489. (1)
[19]HARMS R,RUSSELL G.Betaine does not improve performance of laying hens when the diet contains adequate choline[J]. Poultry Science,2002,81(1):99-101. (1)
[20]HARMS R H,MILES R D.Effects of supplemental methionine and potassium sulfate on the choline requirement of the turkey poult[J]. Poultry Science,1984,63(7):1464-1466. (1)
[21]JACOB R A,JENDEN D J,ALLMAN-FARINELLI M A,et al.Folate nutriture alters choline status of women and men fed low choline diets[J]. The Journal of Nutrition,1999,129(3):712-717. (1)
[22]LEE J E,JACQUES P F,DOUGHERTY L,et al.Are dietary choline and betaine intakes determinants of total homocysteine concentration?[J]. The American Journal of Clinical Nutrition,2010,91(5):1303-1310. (1)
[23]SETOUE M,OHUCHI S,MORITA T,et al.Choline deprivation induces hyperhomocysteinemia in rats fed low methionine diets[J]. Journal of Nutritional Science and Vitaminology,2008,54(6):483-490. (1)
[24]KRUMDIECK C L,PRINCE C W.Mechanisms of homocysteine toxicity on connective tissues:implications for the morbidity of aging[J]. The Journal of Nutrition,2000,130(Suppl.2):365S-368S. (1)
[25]HERRMANN M,TAMI A,WILDMANN B,et al.Hyperhomocysteinemia induces a tissue specific accumulation of homocysteine in bone by collagen binding and adversely affects bone[J]. Bone,2009,44(3):467-475. (1)
[26]VACEK T P,KALANI A,VOOR M J,et al.The role of homocysteine in bone remodeling[J]. Clinical Chemistry and Laboratory Medicine,2013,51(3):579-590. (1)
[27]COOK M E,BAI Y,ORTH M W.Factors influencing growth plate cartilage turnover[J]. Poultry Science,1994,73(6):889-896. (1)
[28]ORTH M,BAI Y,ZEYTUN I H,et al.Excess levels of cysteine and homocysteine induce tibial dyschondroplasia in broiler chicks[J]. The Journal of Nutrition,1992,122:482-487. (2)
[29]赖欧杰,沈彬.同型半胱氨酸与骨质疏松症的关系[J]. 中国骨质疏松杂志,2009,15(8):625-628. (1)
[30]TYAGI N,VACEK T P,FLEMING J T,et al.Hyperhomocysteinemia decreases bone blood flow[J]. Vascular Health and Risk Management,2011,7:31-35. (1)
[31]KOH J M,LEE Y S,KIM Y S,et al.Homocysteine enhances bone resorption by stimulation of osteoclast formation and activity through increased intracellular ROS generation[J]. Journal of Bone and Mineral Research,2006,21(7):1003-1011. (1)
[32]SCHEXNAILDER R,GRIFFITH M.Liver fat and egg production of laying hens as influenced by choline and other nutrients[J]. Poultry Science,1973,52(3):1188-1194. (1)
[33]MARCH B.Choline supplementation of layer diets containing soybean meal or rapeseed meal as protein supplement[J]. Poultry Science,1981,60(4):818-823. (1)
[34]KULINSKI A,VANCE D E,VANCE J E.A choline-deficient diet in mice inhibits neither the CDP-choline pathway for phosphatidylcholine synthesis in hepatocytes nor apolipoprotein B secretion[J]. Journal of Biological Chemistry,2004,279(23):23916-23924. (1)
[35]GABARROU J F,SALICHON M R,GUY G,et al.Hybrid ducks overfed with boiled corn develop an acute hepatic steatosis with decreased choline and polyunsaturated fatty acid level in phospholipids[J]. Reproduction Nutrition Development,1996,36(5):473-484. (1)
[36]SHEARD N F,KRASIN B.Restricting food intake does not exacerbate the effects of a choline-deficient diet on tissue carnitine concentrations in rats[J]. The Journal of Nutrition,1994,124(5):738-743. (1)
[37]LECLERCQ I A,FARRELL G C,FIELD J,et al.CYP2E1 and CYP4A as microsomal catalysts of lipid peroxides in murine nonalcoholic steatohepatitis[J]. Journal of Clinical Investigation,2000,105(8):1067-1075. (1)
[38]BAFFY G,ZHANF C Y,GLICKMAN J N,et al.Obesity-related fatty liver is unchanged in mice deficient for mitochondrial uncoupling protein[J]. Hepatology,2002,35(4):753-761. (1)
[39]ZEISEL S H,NICULESCU M D.Perinatal choline influences brain structure and function[J]. Nutrition Reviews,2006,64(4):197-203. (1)
[40]REES W D,WILSON F A,MALONEY C A.Sulfur amino acid metabolism in pregnancy:the impact of methionine in the maternal diet[J]. The Journal of Nutrition,2006,136(Suppl.6):1701S-1705S. (1)
[41]FISHER M C,ZEISEL S H,MAR M H,et al.Inhibitors of choline uptake and metabolism cause developmental abnormalities in neurulating mouse embryos[J]. Teratology,2001,64(2):114-122. (2)
[42]SHAW G M,CARMICHAEL S L,YANG W,et al.Periconceptional dietary intake of choline and betaine and neural tube defects in offspring[J]. American Journal of Epidemiology,2004,160(2):102-109. (1)
[43]MELLOTT T J,FOLLETTIE M T,DIESL V,et al.Prenatal choline availability modulates hippocampal and cerebral cortical gene expression[J]. The FASEB Journal,2007,21(7):1311-1323. (1)
[44]BJELLAND I,TELL G S,VOLLSET S E,et al.Choline in anxiety and depression:the hordaland health study[J]. The American Journal of Clinical Nutrition,2009,90(4):1056-1060. (1)
[45]CHAN K C,SO K F,WU E X.Proton magnetic resonance spectroscopy revealed choline reduction in the visual cortex in an experimental model of chronic glaucoma[J]. Experimental Eye Research,2009,88(1):65-70. (1)
[46]MIZUMORI S J Y,PATTERSON T A,STERNBERG H,et al.Effects of dietary choline on memory and brain chemistry in aged mice[J]. Neurobiology of Aging,1985,6(1):51-56. (1)
[47]VAN BEEK A H E A,CLAASSEN J A.The cerebrovascular role of the cholinergic neural system in Alzheimer's disease[J]. Behavioural Brain Research,2011,221(2):537-542. (1)
[48]TEES R C.The influences of sex,rearing environment,and neonatal choline dietary supplementation on spatial and nonspatial learning and memory in adult rats[J]. Developmental Psychobiology,1999,35(4):328-342. (1)
[49]RICCERI L,BERGER-SWEENEY J.Postnatal choline supplementation in preweanling mice:sexually dimorphic behavioral and neurochemical effects[J]. Behavioral Neuroscience,1998,112(6):1387-1392. (1)
[50]YEN C L,MAR MH,ZEISEL S H.Choline deficiency-induced apoptosis in PC12 cells is associated with diminished membrane phosphatidylcholine and sphingomyelin,accumulation of ceramide and diacylglycerol,and activation of a caspase[J]. The FASEB Journal,1999,13(1):135-142. (1)
[51]WU G,SHER R B,COX G A,et al.Differential expression of choline kinase isoforms in skeletal muscle explains the phenotypic variability in the rostrocaudal muscular dystrophy mouse[J]. Biochimica et Biophysica Acta:Molecular and Cell Biology of Lipids,2010,1801(4):446-454. (2)
[52]HOVE E,COPELAND D.Progressive muscular dystrophy in rabbits as a result of chronic choline deficiency six figures[J]. The Journal of Nutrition,1954,53(3):391-405. (1)
[53]SHER R B,AOYAMA C,HUEBSCH K A,et al.A rostrocaudal muscular dystrophy caused by a defect in choline kinase beta,the first enzyme in phosphatidylcholine biosynthesis[J]. Journal of Biological Chemistry,2006,281(8):4938-4948. (1)