动物营养学报  2014, Vol. 26 Issue (9): 2470-2475   PDF (1162 KB)    
蛋白质营养对动物卵泡发育的影响及其作用机制
宋洁, 徐盛玉, 吴德     
四川农业大学动物营养研究所, 雅安 625014
摘要:卵泡的发育对于雌性动物繁殖性能具有重要影响。蛋白质是机体酶、激素合成以及组织器官构建的原料,对于卵泡发育必不可少。蛋白质营养状态能通过肝脏雌激素受体(ER)影响胰岛素样生长因子Ⅰ(IGF-Ⅰ)、瘦素(leptin)、胰岛素(insulin)等代谢信号,进而传递至下丘脑-垂体-性腺(HPG)轴,对卵泡发育进行调控。本文综述了蛋白质营养对卵泡发育的影响及其作用机制。
关键词蛋白质     动物     卵泡发育     作用机制    
Effects of Protein Nutrition on Follicular Development in Animals and Its Mechanism
SONG Jie, XU Shengyu, WU De     
Institute of Animal Nutrition, Sichuan Agricultural University, Ya'an 625014, China
Abstract: Follicular development has important implications for female reproduction. Protein is indispensable for the normal development of follicles, the synthesis of enzymes and hormones, as well as the construction of tissues and organs. Protein nutritional status of animals can affect metabolic regulators such as insulin-like growth factor Ⅰ, leptin, insulin levels through liver estrogen receptor, finally to fulfil the regulation of hypothalamus-pituitary-gonadal axis and follicular development. This paper reviewed the effects of protein nutrition on follicular development and its mechanism.
Key words: protein     animals     follicular development     mechanism    

雌性哺乳动物不同生理阶段的营养需要不同,其繁殖性能很容易受到营养条件变化的影响,如果营养缺乏,机体将首先保证生存而非繁殖以适应不利环境[1]。卵泡是营养影响雌性繁殖性能的关键作用点,因为卵泡发育的好坏直接决定发情周期循环、卵母细胞质量以及胚胎存活率[2]。在众多营养物质中蛋白质的适宜供给是繁殖过程正常运行所必需的,但关于蛋白质营养对卵泡发育的影响及其作用机制的报道较少。近年来相关研究逐渐兴起,因此本文就蛋白质营养对卵泡发育的影响及其作用机制作一综述。

1 下丘脑-垂体-性腺(HPG)轴对卵泡发育的调控

卵泡发育受HPG轴调控[3]。下丘脑KiSS-1基因编码产物kisspeptin和其受体G蛋白偶联受体54(G-protein-coupled receptor 54,GPR54)在调节促性腺激素释放激素(gonadotropin-releasing hormone,GnRH)神经元活性方面至关重要,能接收如性激素、代谢因子等信号,成为调控雌性发情和排卵等繁殖过程的核心[4]。大脑腹内侧视周核(anteroventral periventricular nucleus,AVPV)和弓状核(arcuate nucleus,ARC)中的KiSS-1神经元发散神经纤维到GnRH神经元富集的视前区,在大鼠上研究发现高于75%的GnRH神经元表达GPR54 mRNA[5]。kisspeptin能直接作用于GnRH神经元促进GnRH以及垂体卵泡刺激素(FSH)和黄体生成素(LH)的释放。FSH与分布于卵泡颗粒细胞上的卵泡刺激素受体(FSHR)结合后促进卵泡发育、颗粒细胞功能以及雌二醇(E2)的生成。LH与位于卵泡内膜细胞、排卵前卵泡颗粒细胞和黄体细胞上的黄体生成素受体(LHR)结合,对于卵泡从有腔阶段发育至排卵必不可少[6, 7]。此外,卵泡发育产生的E2又能正负反馈作用于下丘脑kisspeptin神经元调控卵泡发育进程,因而形成一条密切相关的反馈调节系统[4]

2 蛋白质营养对卵泡发育的影响

动物繁殖性能对高蛋白质饲粮具有耐受性,但对低蛋白质饲粮较为敏感[8]。蛋白质营养缺乏导致氨基酸代谢失衡,内源蛋白质分解以补充摄入氨基酸的不足,用于合成更重要的体蛋白质,而在营养分配上不占优势的繁殖性能将受限制。因此在多种氨基酸转运系统活跃的卵泡生长发育时期,氨基酸不平衡会阻碍卵泡发育、卵母细胞成熟、排卵和发情周期等一系列过程的正常进行[1]。Griffith等[9]指出,女性摄食蛋白质缺乏会导致月经周期延长、闭经、排卵障碍和生育力降低。Faria等[10]发现,如果泌乳期蛋白质缺乏,子代大鼠初情启动时卵巢上腔前卵泡数量显著升高,原始卵泡、排卵前大卵泡以及黄体数量显著降低,其中原始卵泡的损耗意味着繁殖性能的提前老化。Clowes等[11]在泌乳母猪上试验表明,低蛋白质组母猪泌乳期体蛋白质损失(16%)显著高于中蛋白质组(9%)和高蛋白质组(7%);断奶时低蛋白质组母猪卵巢功能受抑制,其卵巢上大卵泡(>4 mm)数量减少,卵泡液含量仅达到中蛋白质组和高蛋白质组的50%;用低蛋白质组母猪卵泡液体外培养卵母细胞,导致更多卵母细胞核分裂停滞在减数第1次分裂中期,卵丘扩散能力降低。Narita等[1]给大鼠饲喂必需氨基酸缺乏饲粮引起卵巢重量降低,发情周期和排卵停止,血液和卵巢中必需氨基酸含量均显著降低。

蛋白质营养对卵泡生长发育的调控与HPG轴受影响相关。Quesnel等[12]发现,泌乳期蛋白质限饲组母猪断奶到发情间隔在8 d以内的比例显著低于对照组,黄体数量和排卵率也显著降低,这与蛋白质限饲引起血液氨基酸代谢改变并通过GnRH降低LH分泌有关。Polkowska等[13]给青春期前羔羊分别喂以高蛋白质水平(18%)和低蛋白质水平(8%)饲粮,低蛋白质水平组血清LH含量、脉冲频率和振幅均显著低于高蛋白质水平组,但蛋白质水平对血清FSH含量影响不显著。Guzmán等[14]研究证明,子代雌性大鼠妊娠期和泌乳期蛋白质缺乏导致初情启动延迟,卵巢重量降低,血清LH、E2含量均不同程度下降。Murry等[15]证明,高蛋白质饲粮组后备母猪平均发情周期长度比对照组缩短了2 d,第3个发情周期卵巢重量、卵泡液重量及排卵率显著提高,血清中FSH和LH含量显著提高。

3 蛋白质营养调控卵泡发育的机制

蛋白质营养能通过肝脏雌激素受体(ER)引起体内代谢激素的变化进而影响动物的繁殖性能。代谢激素如胰岛素样生长因子Ⅰ(IGF-Ⅰ)、瘦素(leptin)、胰岛素(insulin)等能感应蛋白质营养变化,同时又能通过改变HPG轴活性或直接作用于卵巢影响卵泡发育。因此,肝脏ER以及代谢信号可能参与到蛋白质营养调控雌性卵泡发育的机制中。

3.1 IGF-Ⅰ介导蛋白质对卵泡发育的影响

IGF-Ⅰ能促进细胞增殖分化,是卵泡完成正常发育过程所必需的生长因子之一。血液中的IGF-Ⅰ主要由肝脏产生,此外体内其他组织如大脑、卵巢颗粒细胞也能合成。IGF-Ⅰ通过激活胰岛素样生长因子Ⅰ受体(IGF-ⅠR)发挥作用,依赖于胰岛素样生长因子结合蛋白(insulin-like growth factor-binding proteins,IGFBPs)的调节[16]。猪和鼠上的研究均表明,IGF-Ⅰ是机体蛋白质营养状况的重要指示物,蛋白质限饲时血清IGF-Ⅰ含量下降,导致排卵率降低或不排卵[17, 18]。Filho等[19]发现蛋白质限饲时大鼠血液IGF-Ⅰ含量显著下降,而抑制IGF-Ⅰ活性的胰岛素样生长因子结合蛋白Ⅰ(IGFBP-Ⅰ)含量显著提高,这与体蛋白质发生分解代谢引起血液中必需氨基酸含量降低而非必需氨基酸含量升高相关。

肝脏分泌的IGF-Ⅰ穿过血脑屏障,与分布于下丘脑的IGF-ⅠR结合并作用于kisspeptin神经元调控卵泡发育。肝脏中IGF-Ⅰ mRNA表达量以及血液中IGF-Ⅰ含量随发情周期波动,在排卵前达到峰值,与KiSS-1神经元诱导的GnRH/LH脉冲在排卵最大现象相似[20, 21]。Hiney等[22]给初情期前大鼠第3脑室内注射IGF-Ⅰ,下丘脑AVPV区KiSS-1 mRNA表达量以及血液LH含量显著提高。血液循环中的IGF-Ⅰ与卵泡液中的IGF-Ⅰ含量相关,肝脏分泌到血液中的IGF-Ⅰ也能直接补充卵泡液中的IGF-Ⅰ并与卵巢上IGF-ⅠR结合发挥作用[23]。众多研究表明,IGF-Ⅰ对于原始卵泡的募集以及腔前卵泡的生长必不可少[24]。由于FSHR和LHR在腔前卵泡阶段的表达有利于腔前卵泡感应FSH和LH变化而快速发育,而IGF-Ⅰ能促进FSH诱导早期卵泡颗粒细胞LHR的产生[25]IGF-Ⅰ基因敲除导致卵泡颗粒细胞FSHR mRNA表达量降低,E2无法大量合成,卵泡发育停滞在腔前或早期腔状小卵泡阶段而没有成熟的大卵泡,无法形成排卵前LH峰和正常排卵[26]。由此可知,蛋白质营养缺乏造成肝脏IGF-Ⅰ分泌不足,将抑制下丘脑KiSS-1神经元或卵巢活性,导致卵泡无法发育至成熟和排卵进程减慢,但IGF-Ⅰ途径是否优先于其他信号感应蛋白质营养状态进而调控卵泡发育还有待研究。

3.2 瘦素介导蛋白质对卵泡发育的影响

瘦素是肥胖基因(obese gene,ob)编码、白色脂肪分泌产生的蛋白质类激素,不仅调节采食、脂肪沉积、机体代谢,对繁殖性能也有重要影响。Mejia-Guadarrama等[17]在初产泌乳母猪上研究发现,蛋白质限饲导致其断奶后血清瘦素含量显著升高,但卵巢重量和排卵率却显著降低。Du等[27]发现,蛋白质限饲组大鼠采食量增加,体脂肪沉积和血清瘦素含量显著提高,机体能量分配和体成分发生改变,更多能量用于沉积脂肪而非体蛋白质,当饲粮蛋白质水平进一步降低时,体脂重量和瘦素含量显著降低,表明蛋白质对于瘦素的调节可能不是蛋白质直接引发的效应,而是通过体脂肪的间接作用,蛋白质限饲引起能量分配偏向非繁殖组织可能是繁殖功能下降的原因之一。

早期研究认为瘦素对于HPG轴的作用始于GnRH神经元,但GnRH神经元并不表达瘦素受体(leptin receptor,ob-R),说明还存在中间神经回路和信号。Smith等[28]发现瘦素缺乏ob/ob大鼠下丘脑ARC区KiSS-1 mRNA表达量显著下降,ARC区近40%的KiSS-1神经元表达ob-R mRNA。Yu等[29]通过体外试验证明,适宜的瘦素含量能促进下丘脑GnRH和垂体FSH及LH的分泌,但当瘦素含量继续升高时则表现出抑制作用。卵巢中的ob-R分布于卵泡内膜细胞、颗粒细胞和卵母细胞中[30]。瘦素缺乏不仅影响卵泡形成,还会导致卵泡闭锁。Hamm等[31]指出瘦素缺乏ob/ob大鼠初情启动延迟,卵巢上原始卵泡数量显著下降,腔前卵泡和腔状卵泡颗粒细胞凋亡数量显著提高。Barash等[32]表明瘦素缺乏ob/ob小鼠表现出病态肥胖、不育、闭锁卵泡数量增加,当注射瘦素后其卵巢重量、排卵卵泡数量和血液LH含量均显著提高。可见,适宜的瘦素含量能激活HPG轴,防止卵泡闭锁,但蛋白质限饲引起的营养分配改变及瘦素含量升高是否会对卵泡发育起抑制作用还有待进一步研究。

3.3 胰岛素介导蛋白质对卵泡发育的影响

胰岛素由胰腺分泌,有助于细胞摄取葡萄糖和氨基酸用于蛋白质等物质的合成,对于卵泡细胞分裂和类固醇激素产生有重要作用。胰岛素能介导蛋白质对卵泡发育的调节。Meza-Herrera等[33]指出,补充瘤胃非降解蛋白质组山羊与未补充组相比,血清胰岛素含量更高,卵巢上的排卵前卵泡和黄体数量增加。蛋白质缺乏时,血清胰岛素含量降低,但机体对胰岛素的敏感性将显著提高,其中胰岛素受体(insulin receptor,IR)的表达和胰岛素受体底物(insulin receptor substrate-1,IRS-1)酪氨酸磷酸化程度显著提高,以维持能量和葡萄糖稳态,尽量满足生存和繁殖需要[34]

GnRH神经元上有IR表达,胰岛素刺激显著提高了体外培养下丘脑细胞中GnRH mRNA的表达量,胰岛素也能促进LH分泌及LH峰的形成[35, 36]。在卵泡颗粒细胞、内膜细胞、基质细胞中均有IR表达[37]。Kezele等[38]发现胰岛素参与了卵泡发育的启动,大鼠卵巢体外培养液中添加不同含量的胰岛素,当其含量大于等于5 ng/mL时,原始卵泡向初级卵泡转化比率超过对照组约30%。Spicer等[39]收集了牛卵泡颗粒细胞进行体外培养,添加100 ng/mL的胰岛素显著提高了颗粒细胞数量和芳香化酶活性,胰岛素能与FSH协同作用促进E2的生成,而该现象在来自大卵泡的颗粒细胞中更为明显。武秀峰等[40]通过免疫组化试验表明,胰岛素处理能显著提高猪卵泡内膜细胞LHR的表达。因此,只有充足的蛋白质营养供应才能保证胰岛素含量能够满足生殖激素的合成和卵泡的生长发育需要。

3.4 肝脏ER调控蛋白质营养代谢

肝脏是感知机体营养代谢状况的首要器官,当机体营养不良时,肝脏会调控骨骼肌和脂肪组织优先利用养分用以维持生存,限制繁殖功能[41];而机体处于合成代谢时,肝脏会分泌胰岛素样生长因子(IGFs)等生长因子,有利于动物的繁殖活动[42],表明肝脏能调控机体代谢与繁殖间的营养转化。ER在雌性繁殖过程中发挥着重要作用,肝脏中大量表达雌激素受体α(ERα)[43]。Villa等[44]在小鼠上发现,发情周期不同阶段肝脏中ERα活性呈现波动性变化;特异性敲除肝脏ERα后,小鼠的发情出现紊乱,表明肝脏中ERα与动物的繁殖机能密切相关。

研究发现,肝脏ER是连接机体蛋白质代谢和繁殖功能的关键介导者。Della等[42]在试验中证实,相对于碳水化合物和脂肪,补充蛋白质(氨基酸)能够逆转限饲引起的大鼠肝脏ERα转录活性降低现象,并使限饲引起的周期性排卵紊乱出现时间推迟,表明在雌性繁殖调控过程中肝脏ERα对于蛋白质(氨基酸)营养更为敏感。饲粮氨基酸能通过哺乳动物雷帕霉素靶蛋白(mTOR)途径调控肝脏ERα的转录活性,而ERα激活后也会提升肝脏IGF-Ⅰ mRNA表达量和血液IGF-Ⅰ含量。相反,肝脏ERα敲除后,血液IGF-Ⅰ含量显著降低,直接导致子宫内膜细胞的增殖以及周期性排卵的终止。此外,肝脏ERα信号不仅能调控葡萄糖的稳恒,增加葡萄糖的耐受力,提高胰岛素敏感性,也能调控生脂基因的表达,进而影响脂肪代谢和瘦素的生成[45, 46]。上述结果表明蛋白质营养能通过肝脏ER调节机体代谢激素变化,从而将机体蛋白质代谢状态传递至繁殖轴。

4 小 结

蛋白质的充足供应是维护动物正常繁殖性能的保障。通过现有研究证明,蛋白质营养不良抑制雌性卵泡发育,其机制与肝脏感应机体蛋白质营养状态后改变营养分配,通过肝脏ER影响IGF-Ⅰ、瘦素、胰岛素等代谢信号进而调控HPG轴活性,影响卵泡发育相关,但蛋白质经过机体代谢后,如何通过特定代谢产物及信号通路调控卵泡发育尚不清楚,还有很大研究空间。因此,蛋白质营养影响卵泡发育及其机制方面进一步的深入研究对于提高畜牧生产中动物繁殖性能具有重要意义和参考价值。

参考文献
[1]NARITA K,NAGAO K,BANNAI M,et al.Dietary deficiency of essential amino acids rapidly induces cessation of the rat estrous cycle[J]. PLoS One,2011,6(11):e28136. (3)
[2]DISKIN M G,MACKEY D R,ROCHE J F,et al.Effects of nutrition and metabolic status on circulating hormones and ovarian follicle development in cattle[J]. Animal Reproduction Science,2003,78(3/4):345-370. (1)
[3]MCGEE E A,HSUEH A J.Initial and cyclic recruitment of ovarian follicles[J]. Endocrine Reviews,2000,21(2):200-214. (1)
[4]ROA J,AGUILAR E,DIEGUEZ C,et al.New frontiers in kisspeptin/GPR54 physiology as fundamental gatekeepers of reproductive function[J]. Frontiers in Neuroendocrinology,2008,29(1):48-69. (2)
[5]SMITH J T,CLIFTON D K,STEINER R A.Regulation of the neuroendocrine reproductive axis by kisspeptin-GPR54 signaling[J]. Reproduction,2006,131(4):623-630. (1)
[6]PATSOULA E,LOUTRADIS D,DRAKAKIS P,et al.Messenger RNA expression for the follicle-stimulating hormone receptor and luteinizing hormone receptor in human oocytes and preimplantation-stage embryos[J]. Fertility and Sterility,2003,79(5):1187-1193. (1)
[7]MAGOFFIN D A.Ovarian theca cell[J]. The International Journal of Biochemistry & Cell Biology,2005,37(7):1344-1349. (1)
[8]李秋风,高艳霞,曹玉凤,等.日粮能量和蛋白质水平对奶牛繁殖性能影响的研究进展[J]. 动物营养学报,2010,22(2):259-266. (1)
[9]GRIFFITH J,OMAR H.Association between vegetarian diet and menstrual problems in young women:a case presentation and brief review[J]. Journal of Pediatric and Adolescent Gynecology,2003,16(5):319-323. (1)
[10]FARIA T S,DE BRASIL F B,SAMPAIO F J,et al.Maternal malnutrition during lactation alters the folliculogenesis and gonadotropins and estrogen isoforms ovarian receptors in the offspring at puberty[J]. Journal of Endocrinology,2008,198(3):625-634. (1)
[11]CLOWES E J,AHERNE F X,FOXCROFT G R,et al.Selective protein loss in lactating sows is associated with reduced litter growth and ovarian function[J]. Journal of Animal Science,2003,81(3):753-764. (1)
[12]QUESNEL H,MEJIA-GUADARRAMA C A,PASQUIER A,et al.Dietary protein restriction during lactation in primiparous sows with different live weights at farrowing:Ⅱ.Consequences on reproductive performance and interactions with metabolic status[J]. Reproduction Nutrition Development,2005,45(1):57-68. (1)
[13]POLKOWSKA J,LERRANT Y,WANKOWSKA M,et al.The effect of dietary protein restriction on the secretion of LH and FSH in pre-pubertal female lambs[J]. Animal Reproduction Science,2003,76(1/2):53-66. (1)
[14]GUZMÁN C,CABRERA R,CÁRDENAS M,et al.Protein restriction during fetal and neonatal development alters reproductive function and accelerates reproductive aging in female progeny[J]. The Journal of Physiology,2006,572(Pt1):97-108. (1)
[15]MURRY A C,JESSE G W,VEUM T L,et al.Nitrogen retention,ovulation rate,and hormonal profiles in gilts fed a high-protein diet[J]. The Professional Animal Scientist,1998,14(2):95-101. (1)
[16]WANG H S,CHARD T.IGFs and IGF-binding proteins in the regulation of human ovarian and endometrial function[J]. Journal of Endocrinology,1999,161(1):1-13. (1)
[17]MEJIA-GUADARRAMA C A,PASQUIER A,DOURMAD J Y,et al.Protein (lysine) restriction in primiparous lactating sows:effects on metabolic state,somatotropic axis,and reproductive performance after weaning[J]. Journal of Animal Science,2002,80(12):3286-3300. (2)
[18]AMMANN P,BOURRIN S,BONJOUR J P,et al.Protein undernutrition-induced bone loss is associated with decreased IGF-Ⅰ levels and estrogen deficiency[J]. Journal of Bone and Mineral Research,2000,15(4):683-690. (1)
[19]FILHO J C D,HAZEL S J,ANDERSTAM B,et al.Effect of protein intake on plasma and erythrocyte free amino acids and serum IGF-Ⅰ and IGFBP-1 levels in rats[J]. American Journal of Physiology:Endocrinology and Metabolism,1999,277(1):E693-E701. (1)
[20]HINEY J K,SRIVASTAVA V,NYBERG C L,et al.Insulin-like growth factor Ⅰ of peripheral origin acts centrally to accelerate the initiation of female puberty[J]. Endocrinology,1996,137(9):3717-3728. (1)
[21]ROA J,VIGO E,CASTELLANO J M,et al.Hypothalamic expression of KiSS-1 system and gonadotropin-releasing effects of kisspeptin in different reproductive states of the female rat[J]. Endocrinology,2006,147(6):2864-2878. (1)
[22]HINEY J K,SRIVASTAVA V K,PINE M D,et al.Insulin-like growth factor-Ⅰ activates KiSS-1 gene expression in the brain of the prepubertal female rat[J]. Endocrinology,2009,150(1):376-384. (1)
[23]LUCY M C.Regulation of ovarian follicular growth by somatotropin and insulin-like growth factors in cattle[J]. Journal of Dairy Science,2000,83(7):1635-1647. (1)
[24]BAKER J,HARDY M P,ZHOU J,et al.Effects of an IGF-1 gene null mutation on mouse reproduction[J]. Molecular Endocrinology,1996,10(7):903-918. (1)
[25]TSUCHIYA M,MINEGISHI T,KISHI H,et al.Control of the expression of luteinizing hormone receptor by local factors in rat granulosa cells[J]. Archives of Biochemistry and Biophysics,1999,367(2):185-192. (1)
[26]ZHOU J,KUMAR T R,MATZUK M M,et al.Insulin-like growth factor Ⅰ regulates gonadotropin responsiveness in the murine ovary[J]. Molecular Endocrinology,1997,11(13):1924-1933. (1)
[27]DU F Y,HIGGINBOTHAM D A,WHITE B D.Food intake,energy balance and serum leptin concentrations in rats fed low-protein diets[J]. The Journal of Nutrition,2000,130(3):514-521. (1)
[28]SMITH J T,ACOHIDO B V,CLIFTON D K,et al.KiSS-1 neurones are direct targets for leptin in the ob/ob mouse[J]. Journal of Neuroendocrinology,2006,18(4):298-303. (1)
[29]YU W H,KIMURA M,WALCZEWSKA A,et al.Role of leptin in hypothalamic-pituitary function[J]. Proceedings of the National Academy of Sciences of the United States of America,1997,94(3):1023-1028. (1)
[30]SWAIN J E,DUNN R L,MCCONNELL D,et al.Direct effects of leptin on mouse reproductive function:regulation of follicular,oocyte,and embryo development[J]. Biology of Reproduction,2004,71(5):1446-1452. (1)
[31]HAMM M L,BHAT G K,THOMPSON W E,et al.Folliculogenesis is impaired and granulosa cell apoptosis is increased in leptin-deficient mice[J]. Biology of Reproduction,2004,71(1):66-72. (1)
[32]BARASH I A,CHEUNG C C,WEIGLE D S,et al.Leptin is a metabolic signal to the reproductive system[J]. Endocrinology,1996,137(7):3144-3147. (1)
[33]MEZA-HERRERA C A,HALLFORD D M,ORTIZ J A,et al.Body condition and protein supplementation positively affect periovulatory ovarian activity by non LH-mediated pathways in goats[J]. Animal Reproduction Science,2008,106(3/4):412-420. (1)
[34]LATORRACA M Q,REIS M A,CARNEIRO E M,et al.Protein deficiency and nutritional recovery modulate insulin secretion and the early steps of insulin action in rats[J]. The Journal of Nutrition,1998,128(10):1643-1649. (1)
[35]SALVI R,CASTILLO E,VOIROL M,et al.Gonadotropin-releasing hormone-expressing neurons immortalized conditionally are activated by insulin:implication of the mitogen-activated protein kinase pathway[J]. Endocrinology,2006,147(2):816-826. (1)
[36]BUCHOLTZ D C,CHIESA A,PAPPANO W N,et al.Regulation of pulsatile luteinizing hormone secretion by insulin in the diabetic male lamb[J]. Biology of Reproduction,2000,62(5):1248-1255. (1)
[37]EL-ROEIY A,CHEN X,ROBERTS V J,et al.Expression of the genes encoding the insulin-like growth factors (IGF-Ⅰ and Ⅱ),the IGF and insulin receptors,and IGF-binding proteins-1-6 and the localization of their gene products in normal and polycystic ovary syndrome ovaries[J]. Journal of Clinical Endocrinology and Metabolism,1994,78(6):1488-1496. (1)
[38]KEZELE P R,NILSSON E E,SKINNER M K.Insulin but not insulin-like growth factor-1 promotes the primordial to primary follicle transition[J]. Molecular and Cellular Endocrinology,2002,192(1/2):37-43. (1)
[39]SPICER L J,CHAMBERLAIN C S,MACIEL S M.Influence of gonadotropins on insulin- and insulin-like growth factor-Ⅰ (IGF-Ⅰ)-induced steroid production by bovine granulosa cells[J]. Domestic Animal Endocrinology,2002,22(4):237-254. (1)
[40]武秀峰,郑淑蓉,范正红,等.胰岛素对卵巢卵泡膜细胞黄体生成素/人绒毛膜促性腺激素受体表达的影响[J]. 北京医科大学学报,2000,32(6):512-514. (1)
[41]OWEN C,LEES E K,GRANT L,et al.Inducible liver-specific knockdown of protein tyrosine phosphatase 1B improves glucose and lipid homeostasis in adult mice[J]. Diabetologia,2013,56(10):2286-2296. (1)
[42]DELLA TORRE S,RANDO G,MEDA C,et al.Amino acid-dependent activation of liver estrogen receptor alpha integrates metabolic and reproductive functions via IGF-Ⅰ[J]. Cell Metabolism,2011,13(2):205-214. (2)
[43]ALVARO D,ALPINI G,ONORI P,et al.Estrogens stimulate proliferation of intrahepatic biliary epithelium in rats[J]. Gastroenterology,2000,119(6):1681-1691. (1)
[44]VILLA A,DELLA T S,STELL A,et al.Tetradian oscillation of estrogen receptor alpha is necessary to prevent liver lipid deposition[J]. Proceedings of the National Academy of Sciences of the United States of America,2012,109(29):11806-11811. (1)
[45]GOWRI P M,SENGUPTA S,BERTERA S,et al.Lipin1 regulation by estrogen in uterus and liver:implications for diabetes and fertility[J]. Endcrinology,2007,148(8):3685-3693. (1)
[46]SIMPSON E R,MISSO M,HEWITT K N,et al.Estrogen-the good,the bad,and the unexpected[J]. Endocrine Reviews,2005,26(3):322-330. (1)