动物营养学报  2014, Vol. 26 Issue (10): 2979-2985   PDF (1105KB)    
猪肉质形成的分子机制与营养调控
尹靖东, 李德发     
中国农业大学动物营养学国家重点实验室, 北京 100193
摘要:我国已连续多年成为世界第一猪肉生产大国和消费大国,但是我国猪肉品质的国际竞争力却不能与此相提并论。优良的猪肉品质所蕴含的经济价值毋庸置疑,而且生产优质猪肉也是养猪业的终极目标,因此提高猪肉生产的科技水平、改善猪肉品质,是增强我国养猪业科技含量,保证我国养猪业可持续发展的重要环节。优良的猪肉品质是建立在健康、安全、生态和注重动物福利的养猪基础上的高端畜产品的特性,畜牧科技工作者对它的追求和研究,已经从最初的劣质猪肉的发生或成因深入到了如何改善猪肉肉色、风味、嫩度、多汁性和系水力等富有人文色彩的猪肉品质方面。本文从影响猪肉品质的肌肉生物学特性的2个方面,即肌纤维发育和肌内脂肪沉积,探讨了优质猪肉形成的分子机制和营养调节,综述和回顾了近年国际上该领域的最新进展和发展方向,提出了我国学者应在继承前人研究成果的同时,挖掘我国地方猪优质基因资源,利用营养基因组学和整合生理学的概念,促进我国优质猪肉研究、生产和发展的建议。
关键词猪肉     肉品质     肌纤维类型     肌内脂肪     营养调控    
Molecular Mechanism Underlying Meat Quality Formation and Its Nutritional Regulation in Pigs
YIN Jingdong, LI Defa     
State Key Laboratory of Animal Nutrition, China University of Agriculture, Beijing 100193, China
Abstract: China has become the largest pork production country in the world for a few years in succession. However, Chinese pork international competitiveness hardly matches its status of pork production. Considering good pork quality embraces a great deal of market value and high quality pork is the ultimate aim for pig industry, it is essential that advancing technologies of improving the pork quality to guarantee the sustainable development of the pig industry in China. High quality pork should be produced by a healthy, safe and ecological pig industry. Originally, a study on pork quality focused on identification of the genetic and environmental causes which lead to low quality pork. Now, it has extended how to improve pork qualities, including fresh meat color, favor, tenderness, water hold capacity, and animal welfare. In this paper, we discussed advancing in molecular mechanism and nutrient metabolism underlying high quality pork formation through two major aspects of muscle biological characteristics, i.e. myofiber development and intramuscular fat deposition. Furthermore, we also reviewed the progress of nutritional regulation of pork quality, and proposed that genetic resources of Chinese indigenous pig breeds should be put more attention on based on predecessors’ achievements, and the approaches of nutrigenomics and integrative physiology should be applied to accelerate the setting up of strategies of high quality pork production in China.
Key words: pork     meat quality     myofiber type     intramuscular fat     nutritional regulation    

2013年我国猪肉产量5 493万t,占我国肉类总产量的64%,是全球猪肉产量的50%以上,但是我国猪肉的国际竞争力却与此不相匹配。长期以来,由于养猪业对猪的生长速度、饲料转化率和瘦肉率的过度追求,导致了猪肉品质下降,这一现象与我国消费者的消费预期有很大差距,特别是猪肉系水力下降,严重影响了冷鲜肉的货架期以及肉的加工性能,造成了巨大的经济损失。提高我国猪肉生产的科技水平、增强猪肉的国际竞争力是确保我国养猪业可持续发展的必由之路。

最早发现的劣质猪肉是由猪应激综合征(porcine stress syndrome,PSS)导致的PSE(pale、soft、exudative)肉引起的,随后又发现了DFD(dark、firm、dry)肉、RSE(red、soft、exudative)肉和酸肉等,目前已基本阐明劣质猪肉形成或发生的分子机制,而且该领域的研究已延伸到改善肉的嫩度、风味、肉色等食用和感官品质方面来。在总结前人和自己的研究的基础上,我们提出猪肉的感官品质和加工品质,包括肉色、风味、嫩度、多汁性和系水力等,主要取决于肌肉生长过程中的2个相互联系的生物学过程,即肌纤维的发育和肌内脂肪(IMF)的沉积。以下作者将围绕肌纤维类型和肌内脂肪对肉质的影响讨论猪肉质研究的现状和发展方向。

1 猪肉质形成的分子机制 1.1 肌纤维类型及其转化对肉品质的影响

肌纤维根据形态、功能和生理生化特性可以分为2类:Ⅰ型(红肌)和Ⅱ型(白肌)肌纤维。Ⅱ型肌纤维又分为Ⅱa、Ⅱb和Ⅱx。肌纤维类型是决定肉品质的一个重要因素[1, 2, 3],它与肉品的pH、风味和颜色密切相关。猪肌纤维增殖在妊娠期就已完成,肌纤维数目在出生时已经稳定,但肌纤维类型转化却伴随动物整个发育时期。出生前肌球蛋白重链(MyHC)异构体一般以胚胎期→胎儿期→初生期→成熟期(慢Ⅰ型和快Ⅱ型)顺序表达,而成熟期的MyHC异构体则按ⅠⅡaⅡxⅡb顺序进行相互转化。近年的研究多集中于钙调神经磷酸酶(calcineurin)、过氧化物酶体增殖物激活受体β/δ(PPAR β/δ)、过氧化物酶体增殖物激活受体γ辅激活子1α/β(PGC-1α/β)等信号分子在肌纤维类型转化中的作用[4, 5, 6, 7, 8, 9],一些信号分子,如CFL2b[10]、六同源蛋白Six1和Six4[11]及TEA域转录因子1(TEAD1)[12]参与了肌纤维多样化的形成过程。但肌纤维类型转化中的分子机制和调控途径目前并不清楚。

胚胎期营养(或母体营养)和出生后营养均可影响肌纤维的生长发育及类型转化。研究表明,出生后营养不良导致的骨骼肌肌肉量减少主要与肌纤维大小有关,限制饲喂可降低肌纤维直径[13],且该作用与肌纤维类型和肌肉部位有关[14]。此外,营养还可调控出生后肌纤维MyHC异构体的表达,进而影响肌纤维类型的转化,但目前这方面的研究资料比较缺乏且结果不一致,这可能与动物体重或年龄、肌肉部位和营养缺乏程度有关[14, 15, 16]。目前有关营养调控猪肌纤维生长及类型转化的研究资料仍比较有限。

1.2 肌内脂肪的发生、沉积与肉品质

肌内脂肪包括肌纤维内的脂滴,以及沉积在肌纤维之间和肌束之间肌细胞膜、肌内膜和肌束膜上的脂肪。肌纤维内部的脂肪含量与细胞内脂滴的形成和分解有关,而肌纤维间脂肪是间充质干细胞先分化为脂肪前体细胞,再形成充满脂质或脂肪的脂肪细胞的过程[17]。研究发现某些生物活性物质(如共轭亚油酸)在提高肌内脂肪含量的同时,却降低或维持了皮下脂肪的沉积[18, 19],由此可以推测,肌内脂肪可能具有不同于皮下脂肪的生物学功能以及分子调控机制。大量研究表明,肌内脂肪是影响肉质嫩度、风味以及多汁性的重要因素。出于对猪肉口感和对消费者健康的考虑,一般认为,肌内脂肪含量在2%~3%较为理想。因此,如何在不改变或者降低皮下脂肪厚度的同时提高肌内脂肪含量已成为改善肉品质的关键问题。

1.3 肌纤维类型与肌内脂肪的关系

肌纤维类型与肌内脂肪的含量有关。一般来说,红肌富含脂类,如横隔肌(红肌型)的脂肪含量要比背最长肌(白肌型)和腰大肌(中间型)多2~3倍,股四头肌(红肌型)比背最长肌(白肌型)含有更多的脂类。由此可以看出,肌纤维类型与肌内脂肪沉积之间可能存在内在联系。研究发现,肌纤维、肌内脂肪分泌的因子间可能存在调节能量和营养物质在其间的分配的信号通路[20]

2 肌肉生物学特性形成的分子机制与营养调控

猪肉品质主要由猪的肌肉生物学特性决定。肌肉生物学特性主要包括肌纤维类型、肌内脂肪含量和肌肉糖脂代谢特点等。基因背景和由此决定的肌肉代谢调控网络是肌肉生物学特性发育形成的内因,而在这一过程中,又受到猪饲养环境等外因的深刻影响。

近年来,许多与肌肉生物学特性相关的功能基因被分离和鉴定,这些功能基因包括:1)参与成肌细胞增殖、分化和肌纤维类型转化的基因,如MSTN、钙调神经磷酸酶、PPARβ/δPGC-1α/β基因;2)参与脂肪细胞增殖、分化和脂类代谢调控的基因,如过氧化物酶体增殖物激活受体γ(PPARγ)、CCAAT增强子结合蛋白(C/EBPs)、脂肪细胞定向和分化决定因子1(ADD1/SREBP1)、脂肪酸结合蛋白(FABP)、脂肪酸合成酶(FAS)以及激素敏感脂酶(HSL)基因;3)肌糖原代谢的功能基因,如糖原磷酸化酶、腺苷酸活化蛋白激酶(AMPK)途径相关的基因等。然而,这些功能基因是如何被精细表达调控呢?研究发现,microRNA(miRNA)在基因表达调控中发挥了重要的作用[21]。miR-1、miR-206和miR-133在成肌细胞增殖分化中起作用,而miR-143在脂肪细胞分化中起作用[22, 23, 24]。miRNA在猪肉质方面的研究起步较晚,目前发现肌肉中表达的miRNA参与了猪骨骼肌中重要功能基因的表达调控,另外还发现胚胎期肌肉发育过程中控制脂肪沉积表达的基因也受miRNA抑制。已有研究表明,营养因素可以通过对基因的甲基化修饰或调控miRNA表达来影响肌肉生长与脂肪沉积。大量啮齿类动物试验结果表明,胚胎期和新生期环境及营养因素均可改变基因启动子的甲基化和组蛋白乙酰化修饰,并影响该基因的表达和功能。因此,研究营养因素调节肌肉的表观遗传为揭示猪肉生长、品质和风味形成的机理提供了全新的认识视角,对控制猪肌肉生长、肌内脂肪沉积的营养与遗传及其互作调控的研究对于解析猪优良肉质性状的形成机制十分重要。

孕期和哺乳期母体所处的环境和营养状况能够对子宫内胎儿和出生后婴儿的发育产生长期的重要影响,这一现象被称为代谢程序化[25]。在生命早期关键阶段,许多因素可以干预甚至修改执行的程序,主要表现为重要功能基因表达模式的改变,报道最多的是一些重要的神经内分泌调控途径,如下丘脑—垂体—肾上腺轴(HPA)[26]、中枢食欲和能量平衡调控途径[27]以及胰岛素轴[28, 29]功能的改变。这些功能的改变与某些敏感基因表观遗传修饰(如DNA的甲基化和组蛋白的乙酰化等)的变化有关[30, 31, 32]。此外,母体(血液或乳中)的内分泌激素可能是介导胎儿程序化作用的重要信号分子[33, 34, 35]。程序化作用对猪肌肉生物学特性影响的研究尚未见报道。

3 肌肉能量代谢和蛋白质降解对肉质的影响

肌肉能量代谢对猪肉品质具有重要的影响。猪AMPK的γ亚基PRKAG3的点突变,导致了猪肌肉中葡萄糖代谢包括糖原储备的紊乱,进而引起酸肉的发生[36]。影响猪肌肉糖原含量的分子机制已基本阐明,PRKAG3的点突变不仅影响肌肉糖代谢,也影响着肌肉脂质代谢[37]。肌肉的蛋白质合成是肌肉生长的重要方面,决定着肌肉的重量;在肌肉宰后成熟嫩化过程中,肌肉蛋白质降解则与肉品嫩度密切相关。研究证实,肌原纤维结构蛋白和相关蛋白质的降解是肉品成熟嫩化的主要原因。这些蛋白质的降解引起肌原纤维的弱化,进而使肌肉嫩化。肌肉嫩化机制可能与钙激活蛋白酶(calpains)和组织蛋白酶(cathepsins)的作用有关。蛋白质降解主要是肌细胞内的蛋白质降解,该降解过程主要涉及溶酶体-吞噬(lysosomal-autophagic)系统、泛素-蛋白酶体(ubiquitin-proteasome)系统以及钙蛋白酶-钙蛋白酶抑制蛋白(calpain-calpastatin)系统。溶酶体-吞噬系统的关键酶组织蛋白酶 在机体内蛋白质被最大程度降解时发挥重要作用,钙蛋白酶-钙蛋白酶抑制蛋白系统主要在钙激活的蛋白质降解途径中起作用,而泛素-蛋白酶体在体内广泛分布并发挥作用。

4 应激影响肉品质的细胞和分子机制

猪在生长、肥育和屠宰期间受到应激因素的影响,会引起机体营养物质分配和自由基代谢的变化。应激引起的机体营养物质的重新分配,会改变胴体组成的变化,这一过程受到机体内分泌的调控;同时,应激会打破机体氧化与抗氧化的平衡,导致体内自由基急剧增加、细胞结构和功能的破坏。氧化应激可以通过影响乳酸含量、能量水平(三磷酸腺苷的损失)、僵直开始时间来影响猪肉系水力,还可使肌内脂肪、风味物质降解等。关于机体氧化与抗氧化状态对肉品质影响的研究目前还不够深入。

5 猪肉品质的营养调控

在动物生长发育过程中,饲粮中的可消化营养物质通过吸收转化,主要以肌肉和脂肪沉积在体内。进入体内的养分,其代谢和流转过程必然改变机体的能量和蛋白质代谢,并最终影响动物肉品质。研究发现,提高妊娠中期(45~85 d)母猪的采食量(1.5~2.0 kg/d)反而减少了初级肌纤维、次级肌纤维和总肌纤维数,并降低了IIb型肌纤维数[38];饲粮中添加共轭亚油酸能减少皮下脂肪沉积而增加肌内脂肪沉积从而改善肉品质等。当然更多的报道是通过调整饲粮中原料的组成和供给水平来改善肉品质的应用研究上。近年来,在营养调控猪肉品质方面开展了大量的研究,主要包括:1)能量对猪肉品质的影响。短期禁饲和宰前给猪饲喂高纤维、高脂肪、低可消化碳水化合物的饲粮均可有效防止PSE肉的产生[39, 40]。2)饲粮中可溶性碳水化合物、脂肪水平会影响肌肉中糖原的储备并对宰后猪肉糖原酵解和pH产生影响[40, 41]。3)维生素对猪肉品质的影响。维生素E主要在抗氧化和改善肉色方面起作用,维生素D3主要影响猪肉的肉色和嫩度,维生素C主要影响猪肉的pH和抗氧化性能。4)矿物质对猪肉品质的影响。饲粮添加镁可以减少滴水损失,改善肉色评分和pH。5)氨基酸及其代谢产物对猪肉品质的影响[42, 43]。宰前在饲粮添加肌酸具有缓解屠宰应激、降低猪肉pH和增加滴水损失等不良作用,从而改善猪肉品质[44]。6)外源抗氧化剂(如生物活性因子LF)可强化内源抗氧化系统,从而改善猪肉品质。综上可以看出,营养在改善猪肉品质方面可以发挥重要作用。

6 小 结

我国学者在国家973计划和国家自然科学基金等项目的资助下,立足于我国丰富的猪遗传资源优势,从肉质形成的基因、营养和环境3个方面,研究了国外引进品种与我国地方品种在营养物质代谢、肠道结构和微生物菌群、对环境应激响应等方面的差异以及这些差异与肉质的关系,特别是揭示了我国地方猪肉风味前体物组成的特点[45],发现了营养物质,如共轭亚油酸、精氨酸对猪皮下和肌肉中脂肪生成的差异性调控[19,42]和肌纤维发育的myostatin信号通路[46];揭示了我国地方猪肉质优良性状形成的分子基础[47];探索了母体和新生期营养对猪肉品质的作用机制[48, 49],这些研究都在国际上取得了一定的影响。我国学者在猪肉质方面的研究已经成为国际该领域研究的重要组成,在国际学术刊物上所发表的论文不论是从数量还是质量方面,都达到了较高水准。

猪肉品质形成的原因极复杂,在经历了单纯从营养调控或遗传选育途径改善肉品质的研究后,我们应该更加重视将猪遗传特性与营养调节相结合,应用营养基因组学和整合生理学等理论与技术手段,揭示肉质形成的分子机理,在转录或蛋白质水平上进一步揭示猪肉品质形成的分子基础和代谢调控网络。同时,我国猪肉质的研究还处在摸索中,如何根据我国养猪业的特点,走出一条富有创新性的研究路子,是国内学者当前应该思考的问题。

参考文献
[1]KLONT R E,BROCKS L,EIKELNBOOM G.Muscle fibre type and meat quality[J]. Meat Science,1998,49(1):S219-S229. (1)
[2]KARLSSON A H,KLONT R E,FERNANDEZ X.Skeletal muscle fibres as factors for pork quality[J]. Livestock Production Science,1999,60(2/3):255-269. (1)
[3]CHANG K C,DA COSTA N,BLACKLEY R,et al.Relationships of myosin heavy chain fibre types to meat quality traits in traditional and modern pigs[J]. Meat Science,2003,64(1):93-103. (1)
[4]ARANY Z,LEBRASSEUR N,MORRIS C,et al.The transcriptional coactivator PGC-1β drives the formation of oxidative type IIX fibers in skeletal muscle[J]. Cell Metabolism,2007,5(1):35-46. (1)
[5]LIN J D,WU H,TARR P T,et al.Transcriptional co-activator PGC-1α drives the formation of slow-twitch muscle fibres[J]. Nature,2002,418(6899):797-801. (1)
[6]RUSSELL A P,FEILCHENFELDT J,SCHREIBER S,et al.Endurance training in humans leads to fiber type-specific increases in levels of peroxisome proliferator-activated receptor-gamma coactivator-1 and peroxisome proliferator-activated receptor-alpha in skeletal muscle[J]. Diabetes,2003,52(12):2874-2881. (1)
[7]SCHULER M,ALI F,CHAMBON C,et al.PGC1 alpha expression is controlled in skeletal muscles by PPARbeta,whose ablation results in fiber-type switching,obesity,and type 2 diabetes[J]. Cell Metabolism,2006,4(5):407-414. (1)
[8]TALMADGE R J,OTIS J S,RITTLER M R,et al.Calcineurin activation influences muscle phenotype in a muscle-specific fashion[J]. BMC Cell Biology,2004,5:28. (1)
[9]WANG Y X,ZHANG C L,YU R T,et al.Regulation of muscle fiber type and running endurance by PPARdelta[J]. PLoS Biology,2004,2(10):e294. (1)
[10]ZHAO W,SU Y H,SU R J,et al.The full length cloning of a novel porcine gene CFL2b and its influence on the MyHC expression[J]. Molecular Biology Reports,2009,36(8):2191-2199. (1)
[11]NIRO C,DEMIGNON J,VINCENT S,et al.Six1 and Six4 gene expression is necessary to activate the fast-type muscle gene program in the mouse primary myotome[J]. Developmental Biology,2010,338(2):168-182. (1)
[12]TSIKA R W,SCHRAMM C,SIMMER G,et al.Overexpression of TEAD-1 in transgenic mouse striated muscles produces a slower skeletal muscle contractile phenotype[J]. The Journal of Biological Chemistry,2008,283:36154-36167. (1)
[13]REHFELDT C,STICKLAND N C,FIEDLER I,et al.Environmental and genetic factors as sources of variation in skeletal muscle fibre number[J]. Basic and Applied Myology,1999,9(5):235-253. (1)
[14]LEFAUCHEUR L,ECOLAN P,BARZIC Y M,et al.Early postnatal food intake alters myofiber maturation in pig skeletal muscle[J]. The Journal of Nutrition,2003,133(1):140-147. (2)
[15]HARRISON A P,ROWLERSON A M,DAUNCEY M J.Selective regulation of myofiber differentiation by energy status during postnatal development[J]. The American Journal of Physiology,1996,270:R667-R674. (1)
[16]WHITE P,CATTANEO D,DAUNCEY M J.Postnatal regulation of myosin heavy chain isoform expression and metabolic enzyme activity by nutrition[J]. The British Journal of Nutrition,2000,84(2):185-194. (1)
[17]VETTOR R,MILAN G,FRANZIN C,et al.The Origin of intermuscularadipose tissue and its pathophysiological implications[J]. American Journal of Physiology: Endocrinology and Metabolism,2009,297(5):E987-E998. (1)
[18]TISCHENDORF F,SCHONE F,KIRCHHEIM U,et al.Influence of a conjugated linoleic acid mixture on growth,organ weights,carcass traits and meat quality in growing pigs[J]. Journal of Animal Physiology and Animal Nutrition,2002,86(3/4):117-128. (1)
[19]ZHOU X,LI D F,YIN J D,et al.CLA differently regulates adipogenesis in stromal vascular cells from porcine subcutaneous adipose and skeletal muscle[J]. The Journal of Lipid Resarch,2007,48:1701-1709. (1)
[20]LIN J,ARNOLD H B,DELLA-FERA M A,et al.Myostatin knockout in mice increases myogenesis and decreases adipogenesis[J]. Biochemical and Biophysical Research Communications,2002,291(3):701-706. (1)
[21]HOBERT O.MiRNAs play a tune[J]. Cell,2007,131(1):22-24. (1)
[22]BOSTJANCIC E,ZIDAR N,STAJER D,et al.MicroRNAs miR-1,miR-133a,miR-133b and miR-208 are dysregulated in human myocardial infarction[J]. Cardiology,2010,115(3):163-169. (1)
[23]KIM H K,LEE Y S,SIVAPRASAD U,et al.Muscle-specific microRNA miR-206 promotes muscle differentiation[J]. The Journal of Cell Biology,2006,174(5):677-687. (1)
[24]XU C Q,LU Y J,PAN Z W,et al.The muscle-specific microRNAs miR-1 and miR-133 produce opposing effects on apoptosis by targeting HSP60,HSP70 and caspase-9 in cardiomyocytes[J]. Journal of Cell Science,2007,120:3045-3052. (1)
[25]STOCKER C J,ARCH J R S,CAWTHORNE M A.Fetal origins of insulin resistance and obesity[J]. Proceedings of the Nutrition Society,2005,64(2):143-151. (1)
[26]LANGLEY-EVANS S C.Developmental programming of health and disease[J]. Proceedings of the Nutrition Society,2006,65(1):97-105. (1)
[27]KAPOOR A,DUNN E,KOSTAKI A,et al.Fetal programming of hypothalamo-pituitary-adrenal function:prenatal stress and glucocorticoids[J]. The Journal of Physiology,2006,572:31-44. (1)
[28]BELLINGER L,LANGLEY-EVANS S C.Fetal programming of appetite by exposure to a maternal low-protein diet in the rat[J]. Clinical Science (London),2005,109:413-420. (1)
[29]LANGLEY-EVANS S C,BELLINGER L,MCMULLEN S.Animal models of programming:early life influences on appetite and feeding behaviour[J]. Maternal & Child Nutrition,2005,1(3):142-148. (1)
[30]GARDNER D S,TINGEY K,VAN BON B W M,et al.Programming of glucose-insulin metabolism in adult sheep after maternal undernutrition[J]. American Journal of Physiology:Regulatory,Integrative and Comparative Physiology,2005,289(4):R947-R954. (1)
[31]SZYF M,WEAVER I C,CHAMPAGNE F A,et al.Maternal programming of steroid receptor expression and phenotype through DNA methylation in the rat[J]. Frontiers in Neuroendocrinology,2005,26(3/4):139-162. (1)
[32]REES W D,HAY S M,CRUICKSHANK M,et al.Maternal protein intake in the pregnant rat programs the insulin axis and body composition in the offspring[J]. Metabolism,2006,55(5):642-649. (1)
[33]DRAKE A J,WALKER B R,SECKL J R.Intergenerational consequences of fetal programming by in utero exposure to glucocorticoids in rats[J]. American Journal of Physiology:Regulatory,Integrative and Comparative Physiology,2005,288(1):R34-R38. (1)
[34]MOSTYN A,SEBERT S,LITTEN J C,et al.Influence of porcine genotype on the abundance of thyroid hormones and leptin in sow milk and its impact on growth,metabolism and expression of key adipose tissue genes in offspring[J]. Journal of Endocrinology,2006,190:631-639. (1)
[35]SRINIVASAN M,AALINKEEL R,SONG F,et al.Maternal hyperinsulinemia predisposes rat fetuses for hyperinsulinemia,and adult-onset obesity and maternal mild food restriction reverses this phenotype[J]. American Journal of Physiology: Endocrinology and Metabolism,2006,290(1):E129-E134. (1)
[36]MILAN D,JEON J T,LOOFT C,et al.A mutation in PRKAG3 associated with excess glycogen content in pig skeletal muscle[J]. Science,2000,288(5469):1248-1251. (1)
[37]BARNES B R,MARKLUND S,STEILER T L,et al.The 5'-AMP-activated protein kinase γ3 isoform has a key role in carbohydrate and lipid metabolism in glycolytic skeletal muscle[J]. The Journal of Biological Chemistry,2004,279:38441-38447. (1)
[38]CERISUELO A,BAUCELLS M D,GASA J,et al.Increased sow nutrition during midgestation affects muscle fiber development and meat quality,with no consequences on growth performance[J]. Journal of Animal Science,2009,87(2):729-739. (1)
[39]ROSENVOLD K,PETERSEN J S,LWERKE H N,et al.Muscle glycogen stores and meat quality as affected by strategic finishing feeding of slaughter pigs[J]. Journal of Animal Science,2001,79(2):382-391. (1)
[40]ROSENVOLD K,ANDERSSN H J.Factors of significance for pork quality—a review[J]. Meat Science,2003,64(3):219-237. (1)
[41]BEE G,BIOLLEY C,GUEX G,et al.Effects of available dietary carbohydrate and preslaughter treatment on glycolytic potential,protein degradation,and quality traits of pig muscles[J]. Journal of Animal Science,2006,84(1):191-203. (1)
[42]TAN B,YIN Y L,LIU Z Q,et al.Dietary L-arginine supplementation increases muscle gain and reduces body fat mass in growing-finishing pigs[J]. Amino Acids,2009,37(1):169-175. (1)
[43]LIU Y,LV W,YU B,et al.S-adenosylmethionine-induced adipogenesis is accompanied by suppression of Wnt/β-catenin and Hedgehog signaling pathways[J]. Molecular and Cellular Biochemistry,2013,382(1/2):59-73. (1)
[44]MADDOCK R J,BIDNER B S,CARR S N,et al.Creatine monohydrate supplementation and the quality of fresh pork in normal and halothane carrier pigs[J]. Journal of Animal Science,2002,80(4):997-1004. (1)
[45]LU P,LI D F,YIN J D,et al.Flavour differences of cooked longissimus muscle from Chinese indigenous pig breeds and hybrid pig breed(Duroc× Landrace× Large White)[J]. Food Chemistry,2008,107 (4):1529-1537. (1)
[46]HUANG Z Q,CHEN D W,ZHANG K Y,et al.Regulation of myostatin signaling by c-Jun N-terminal kinase in C2C12 cells[J]. Cellular Signalling,2007,19(11):2286-2295. (1)
[47]SHAN T Z,REN Y,WU T,et al.Regulatoryrole of sirt1 on the gene expression of fatty acid-binding protein 3 in cultured porcine adipocytes[J]. Journal of Cellular Biochemistry,2009,107(5):984-991. (1)
[48]CHEN J,YANG X J,XIA D,et al.Expression and polymorphism of SREBP-1 in the longissimus muscle associated with intramuscular fat deposition in Erhualian and Sutai pigs[J]. Journal of Animal Science,2008,86(1):57-63. (1)
[49]LI X,YANG X,SHAN B,et al.Meat quality is associated with muscle metabolic status but not contractile myofiber type composition in premature pigs[J]. Meat Science,2009,81(1):218-223. (1)