动物营养学报  2014, Vol. 26 Issue (10): 3033-3045   PDF (1248 KB)    
仔猪肠道损伤修复营养调控及其机制和应用
徐子伟    
浙江省农业科学院畜牧兽医研究所, 杭州 310021
摘要:仔猪早期断奶是现代养猪业中的一项重要技术措施,但断奶应激又导致仔猪出现早期断奶综合征,尤其是肠道损伤。肠道正常的功能依赖肠道黏膜上皮屏障、免疫屏障、生物屏障的完整性来维持。断奶应激会导致仔猪肠道黏膜形态结构改变、肠上皮屏障通透性增加、消化吸收功能降低、黏液层厚度下降、肠道pH升高、免疫抑制、肠道微生物菌群失衡等,甚至造成肠道功能的继发性损伤和功能紊乱。因此,肠道损伤修复及其营养调控研究日益受到关注。直接或间接调控因子主要包括:1)多肽类生长因子。主要包括表皮生长因子(EGF)、胰高血糖素样肽-2(GLP-2)、胰岛素样生长因子-Ⅰ(IGF-Ⅰ)和转化生长因子(TGF)等。本文介绍了本团队制备的猪胰高血糖素样肽-2(pGLP-2)长效化产物对降低仔猪肠道炎性反应,提高黏膜屏障功能的作用。2)微生态调控剂。包括益生菌制剂和抗菌肽。猪饲粮中常用益生菌有屎肠球菌、芽孢杆菌、植物乳杆菌、乳球菌、酵母菌等。已报道用于仔猪饲粮的抗菌肽主要有天蚕素、防御素、抗菌肽buforin Ⅱ、抗菌肽P5及复合肽等。3)营养代谢调控剂。报道较多的氨基酸及其衍生物有谷氨酰胺及其替代品α-酮戊二酸、L-精氨酸、N-乙酰半胱氨酸等。研究较多的其他调控剂还有短链脂肪酸、壳聚糖、植物多糖、锌和硒等。本文对上述各类损伤修复调控因子研究进展进行了综述。
关键词断奶仔猪     肠道     损伤修复     多肽类生长因子     微生态调控剂     营养代谢调控剂    
Mechanism and Application for Nutritional Regulations of Intestine Damage Repair in Piglets
XU Ziwei    
Institute of Animal Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
Abstract: Early weaning for piglets is an important model in the modern swine industry. However, weaning stress leads to the early-weaning syndrome of piglets, and specially causes intestinal injury. Intestinal function mainly depends on the integrity of intestinal epithelial barrier, immune barrier and biological barrier. But weaning stress causes serious damages on the function of intestinal barrier of piglets, which are represented adverse effects in mucosal morphology, intestinal epithelial barrier permeability, digestive and absorptive function, the thickness of slime, intestinal pH, immunodepression and intestinal microflora, and so on. Therefore, studys on nutritional regulations of intestine damage repair have been attracted more and more attentions. In this respect, many direct or indirect regulators have been found, including polypeptide growth factors, microecology regulators, regulators of intestinal nutrition and metabolism: 1) polypeptide growth factors. Polypeptide growth factors mainly consist of epidermal growth factor (EGF), glucagon-like peptide-2 (GLP-2), insulin-like growth factor-I (IGF-I) and transforming growth factor (TGF). Our team designed and produced the long-acting forms of porcine GLP-2 (pGLP-2), and verified that two products effectively alleviate intestinal inflammation and improve mucosal barrier function in piglets. 2) Microecology regulators. Regulators for intestinal microbiology include probiotics and antimicrobial peptides. The common probiotics in swine diet include Enterococcus faecalis, Bacillus, Lactobacillus, Lactococcus, and yeast. Reports of antimicrobial peptides in swine diet include cecropin, defensin, antibacterial peptide buforin Ⅱ, antibacterial peptide P5 and composite peptide. 3) Regulators for intestinal nutrition and metabolism. There were many reports for amino acids and its derivatives, such as glutamine (Gln), alpha-ketoglutaric acid (replacement of Gln), L-arginine, N-acetylcysteine, etc. Short chain fatty acids, chitosan, plant polysaccharide, zinc and selenium were also hot topic. We review the research development of above regulation factors for damage and repair in this paper.
Key words: weaning piglet     intestine     repair damage     polypeptide growth factors     microecology regulators     regulators of intestinal nutrition and metabolism    

在现代养猪业中,仔猪早期断奶是提高母猪年生产力和减少母-仔猪疾病传播的技术措施。但断奶应激则又导致仔猪出现早期断奶综合征,首当其冲的是仔猪肠道损伤。因此,肠道损伤修复及其营养调控研究日益受到关注。肠道正常的功能依赖肠道黏膜上皮屏障、免疫屏障、生物屏障这三大屏障的完整性来维持。断奶应激会导致仔猪肠道屏障功能受损,表现为仔猪肠道黏膜形态结构改变、肠上皮屏障通透性增加、免疫抑制、肠道微生物菌群失衡等。直接或间接调控仔猪肠道营养、生长发育与促进肠道损伤修复的因子种类繁多,主要包括多肽类生长因子、微生态调控制剂和营养代谢调节剂等。本文在分析仔猪断奶导致的肠道损伤问题基础上,对相关的各类损伤修复调控因子研究进展进行综述。

1 仔猪断奶导致的肠道损伤 1.1 仔猪肠道屏障及其损伤 1.1.1 肠黏膜上皮屏障损伤

肠道黏膜位于肠道最外层,直接与肠道中的营养物质和微生物接触,是机体阻止肠腔内细菌入侵和毒素吸收的重要屏障。肠黏膜上皮屏障分为物理屏障和化学屏障。物理屏障主要指健康完整的肠道上皮细胞及细胞间的紧密连接[1]。仔猪断奶后,肠道物理屏障发生变化:1)小肠黏膜形态结构改变。表现为黏膜萎缩、绒毛变短、隐窝加深、吸收能力下降[2],多数研究认为这与仔猪断奶后采食量下降有关[3],摄入能量和蛋白质不足影响上皮细胞增殖,该状态下的细胞增殖弥补不了绒毛表面成熟细胞的损伤[4]。2)肠上皮屏障通透性增加。这是一个选择透过性屏障,一方面允许营养物质有序进入,另一方面有效阻止大分子抗原物质、病原微生物、肠道内细菌及其毒素等进入,起到防御作用[5]。断奶仔猪经受多种应激后,肠道通透性增加,肠屏障功能受损,导致腹泻和疾病[6]。3)消化吸收功能降低。小肠刷状缘酶可反映小肠功能,仔猪断奶降低小肠刷状缘乳糖酶活性[7]。有报道断奶后无论补饲与否,乳糖酶和蔗糖酶的活性都显著下降,尤以乳糖酶下降更严重,可能因为其更多分布在绒毛顶端[8]。肠道碱性磷酸酶是肠黏膜上的标志酶,断奶应激显著降低仔猪空肠碱性磷酸酶活性[9]。有研究发现断奶后3 d仔猪小肠黏膜内氨基肽酶-N及二肽氨基肽酶Ⅳ的活性显著降低[10]。化学屏障由胃肠道分泌的胃酸、溶菌酶、胆汁、肠道黏液蛋白和其他抗菌肽等构成的微环境,能够裂解和杀灭细菌,防止毒素等有害物质吸收。早期断奶导致小肠细胞损伤、杯状细胞数量减少、黏液层厚度下降、黏蛋白含量下降、肠道化学屏障受损。此外,断奶前因母乳含有大量乳糖,可在仔猪胃内产生乳酸,弥补胃酸不足。断奶后这一营养源缺乏,胃内pH升高,pH大于4.0时,消化道有害菌会大量繁殖生长[11]。对于早期断奶仔猪,调节肠道pH是维护肠道化学屏障的措施。

1.1.2 肠道免疫屏障损伤

肠道免疫屏障主要由肠黏膜吸收上皮细胞和肠道淋巴组织构成。仔猪主动免疫到2月龄才基本成熟,而早期断奶通常在4周之前。早期断奶会降低仔猪抗体水平,导致机体免疫力下降和腹泻[12]。早期断奶仔猪出现免疫抑制的原因:1)母源有益因子消失。母乳特别是初乳中含有多种生物活性成分,如激素、生长因子、神经肽、抗炎症因子和免疫调节因子,对肠道上皮、肠神经系统和黏膜免疫系统发育起重要作用[13];2)断奶仔猪受到饲粮抗原的挑战。饲粮中大豆蛋白如大豆球蛋白、β-聚球蛋白可引起仔猪肠道过敏反应[14],抗原性大豆蛋白影响小肠组织中T、B淋巴细胞含量和小肠电解质分泌;3)断奶造成仔猪免疫系统发育所需营养不足。断奶后仔猪采食量下降、营养吸收不良而造成的营养缺乏会导致淋巴器官萎缩和对致病菌、病毒感染的敏感度增加。

1.1.3 肠道生物屏障损伤

肠道是动物机体内最大的储菌库,肠道常驻菌群是一个相互依赖又相互作用的微生态系统,这种微生态平衡构成了肠道生物屏障。早期断奶在一定程度上影响肠道菌群的正常发育,造成菌群失调,引起肠道疾病。断奶前仔猪粪便中少见产肠毒素大肠杆菌,而断奶后粪便中大量出现,甚至成为优势菌[6]。断奶可引起有益菌群的数量下降,增加肠道有害菌群寄居,打破正常菌群平衡[15],致病性病原体在肠道中大量繁殖并产生毒素,破坏肠道的黏膜系统,或使脏器血氧供应减少,进一步损伤黏膜屏障。

1.2 仔猪肠道损伤有关机理的新近研究

仔猪断奶应激会引起养分摄入不足,肠道消化吸收率下降,肠道菌群比例失调,免疫功能受抑制,肠道黏膜屏障受损及通透性增加,外界有毒有害物质侵入,肠道炎症和机体疾病发生。受损的肠道黏膜屏障进一步激活多个与肠道功能相关的信号通路,从而造成肠道的继发性损伤。利用基因芯片技术研究21日龄断奶的仔猪在28日龄时与同日龄哺乳仔猪的肠道基因表达差异,结果表明断奶显著改变了仔猪肠道功能基因表达,其中导致氧化应激和免疫激活的21个基因表达上调,营养代谢和细胞增殖有关的18个基因表达下调,显示断奶应激通过能量代谢、氧化应激、肠道细胞增殖和凋亡等通路造成仔猪肠道黏膜屏障损伤[16]

microRNAs(miRNAs)是一类长18~26 nt的内源性单链非编码小分子RNA,作为细胞增殖、分化和凋亡的关键调控因子,影响着机体内部几乎所有的信号通路。本团队研究者Tao等[17]针对断奶应激致仔猪肠道损伤问题,分析了断奶后1、4和7 d仔猪与同日龄哺乳仔猪空肠组织中miRNAs的表达差异,发现断奶应激显著改变仔猪断奶后第1周肠道组织miRNAs的表达谱,特别是断奶后4 d仔猪肠道中发现了98个差异表达的miRNAs,其中92个上调、6个下调,进一步分析发现:1)上调表达的miR-146b呈最大差异倍数,有研究证实miR-146家族(miR-146a和miR-146b)可通过作用于其靶基因白细胞介素-1受体相关激酶1和转化生长因子-β(TGF-β)调控肠黏膜免疫系统和肠上皮细胞的增殖及分化[18];2)在F18大肠杆菌敏感型断奶仔猪肠道中呈上调表达的miR-215,在本研究中呈显著下调且高度表达,提示断奶应激和F18大肠杆菌肠道损伤反应机理可能不同;3)6个miRNAs(miR-155、miR-150-1、miR-204、miR-132、miR-212和miR-218-2)在仔猪断奶后1、4和7 d的其中2个相邻时间点上呈一致性的显著上调表达。这提示上述miRNAs在断奶应激致仔猪肠道损伤中起重要作用。

2 多肽类生长因子的肠道损伤修复调控 2.1 表皮生长因子(EGF)

EGF是1条由53个氨基酸组成的单链多肽,分子内的6个半胱氨酸组成3个二硫键,形成反向平行的β-折叠片段。EGF的特殊空间结构使其耐受酸、热和胰蛋白酶、胃蛋白酶和糜蛋白酶[19]。它具有促进细胞内DNA、RNA和蛋白质合成,刺激多种组织细胞增殖分化,促进肠道生长发育及损伤修复等作用。EGF对仔猪肠道作用效果与递送方式和剂量有关。断奶仔猪饲喂EGF(17.86 μg/d)可提高小肠淀粉酶、脂肪酶、胃蛋白酶、蔗糖酶及鸟氨酸脱羧酶活性,降低热休克蛋白表达量,减轻小肠黏膜损伤程度[20]。饲粮补充0.5 mg/kg EGF可增加仔猪胃蛋白酶活性,补充1.5 mg/kg EGF显著增加空肠中碱性磷酸酶和乳糖酶活性[21]。腹膜内注射EFG可促进肠道上皮细胞增殖,加快流行性腹泻仔猪萎缩性肠炎的损伤恢复[22]

EGF的有限来源制约了其在养猪生产中的应用,基因工程是获得EGF的重要方法。从仔猪肠道损伤修复角度出发,本团队构建了表达猪EGF重组乳酸菌,并通过小鼠葡聚糖硫酸钠(DSS)结肠炎模型进行评价。试验显示,与正常对照组相比,DSS模型组小鼠结肠长度显著降低,结肠紧密连接蛋白occludin、白细胞介素-10(IL-10)和白细胞介素-4(IL-4)浓度显著降低,肿瘤坏死因子-α(TNF-α)浓度显著增加,血清内毒素浓度及二胺氧化酶和髓过氧化物酶活性增加;与模型对照组相比,口服重组乳酸菌组小鼠结肠长度、紧密连接蛋白浓度、IL-10和IL-4浓度显著增加,分别增加34.32%、40.63%、58.87%和27.86%,TNF-α浓度降低14.18%,血清内毒素浓度及二胺氧化酶和髓过氧化物酶活性分别降低22.57%、19.83%和46.19%,说明DSS造成小鼠结肠结构和功能严重损伤,乳酸菌表达的重组猪EGF(pEGF)可修复受损结肠组织,对维持肠道屏障完整性和促进肠道健康有重要意义。

2.2 胰岛素样生长因子-Ⅰ(IGF-Ⅰ)

IGF-Ⅰ为含有70个氨基酸的单链多肽,由3个二硫键交叉连接而成,主要在肝脏合成,也在肠道组织中合成。IGF-Ⅰ是多功能生长因子,具有类胰岛素功能,能促进脂肪、糖原、蛋白质合成,刺激RNA和DNA合成以及细胞增生。IGF-Ⅰ可促进胃肠细胞增殖,提高小肠黏膜质量及绒毛高度(VH),增加养分吸收[23]。低剂量IGF-Ⅰ(0.2 mg/kg)可显著提高新生仔猪小肠刷状缘二糖酶活性,刺激小肠功能成熟[24]。高剂量IGF-Ⅰ(3.5 mg/kg)使小肠的重量、蛋白质和DNA浓度有较大幅度提高,空肠和回肠VH显著增加[25]。肠黏膜损伤试验中,给予外源性IGF-Ⅰ,肠上皮细胞DNA和蛋白质合成增加,肠黏膜结构和功能得到不同程度恢复[26]。IGF-Ⅰ可加快肠切除小鼠的切口修复[27],大幅增加酸性黏液素细胞数量,限制有害细菌入侵[28]。IGF-Ⅰ可提高新生仔猪小肠中Na+、Cl-以及含Na+的葡萄糖、丙氨酸的吸收量,提高肠道表皮对谷氨酸的吸收率[29]。肠道IGF-Ⅰ受体是其功能发挥的必要条件,新生仔猪开始吮乳后,肠道IGF-Ⅰ受体数量会暂时下降,随后又升高,且肠道IGF-Ⅰ受体数量变化与小肠的生长模式一致[30]

2.3 转化生长因子(TGF)

转化生长因子-α(TGF-α)与转化生长因子-β1(TGF-β1)对肠道黏膜损伤修复具有互相平衡调节作用。TGF-α由50个氨基酸组成,结构上与EGF有30%~40%的同源性。它们可与共同受体转化生长因子受体(TGFR)结合,激活酪氨酸蛋白激酶,促使DNA合成和细胞增殖、分化等[31]。在胃肠道,TGF-α参与调节黏膜上皮更新和黏膜损伤后修复,是维持黏膜完整性的重要介质。TGF-α可剂量依赖地促进婴儿小肠细胞FHs 74 Int[32]和人结肠细胞LoVo[33]增殖。TGF-β是一种具有多种功能的多肽,具有抗炎、调节细胞增殖分化、促进上皮修复的作用。其中TGF-β1在哺乳动物细胞体系中比例最高(>90%),产生于整个胃肠道,对多种细胞具有促有丝分裂作用,可作为化学趋化剂趋化炎细胞与组织修复细胞向创面聚集,在胃肠道参与调节黏膜上皮的更新与损伤的修复,是维持黏膜完整性的重要物质[34]。外源性TGF-β1可通过丝裂原活化蛋白激酶(MAKP)、Smad信号通路上调上皮细胞紧密连接蛋白表达,维护跨膜电位平衡,加固肠黏膜屏障功能,阻断肠黏膜炎症及通透性增加[35]

2.4 胰高血糖素样肽-2(GLP-2)

已知对肠黏膜损伤有修复作用的多肽类生长因子,如EGF、IFG-Ⅰ等,其作用缺乏特异性,且会引起机体其他组织副反应。首次报道GLP-2具有特异性地促进肠黏膜生长与损伤后修复作用[36]之后,试验表明其通过特异性促进肠上皮细胞增殖、抑制肠上皮细胞凋亡、抑制胃酸分泌、降低肠道渗透性、增加肠道血供等促进损伤肠黏膜的结构恢复以及吸收功能和屏障功能的改善,且GLP-2的作用效果强于其他非特异的肠生长因子[37]。GLP-2通过作用于GLP-2受体(GLP-2R)来调节肠上皮细胞增殖及抑制其凋亡,从而保护肠道细胞[38]。使用实时荧光定量PCR(qRT-PCR)技术证实猪胰高血糖素样肽-2受体(pGLP-2R) mRNA在绒毛上皮细胞和肌间神经丛表达,免疫组织化学和原位杂交技术证实猪pGLP-2R蛋白分布在肠内分泌细胞和肠神经元细胞上[39]

GLP-2对新生仔猪肠道治疗试验证明持续42 d每天2次注射40 μg/kg的GLP-2,通过促进隐窝细胞增殖和抑制细胞凋亡,增加了小肠的VH/隐窝深度(CD)[40]。啮齿类动物试验[41, 42]证明GLP-2需要每天2次持续注射6~14 d,才能起到肠道损伤修复作用。猪胰高血糖素样肽-2(pGLP-2)与人胰高血糖素样肽-2(hGLP-2)均能显著增加小鼠小肠的重量、长度及回肠横截面积[43]。这些研究为pGLP-2治疗仔猪肠道损伤和功能紊乱提供了依据。但pGLP-2在体内的半衰期很短,极易被血液中二肽酰肽酶Ⅳ快速降解,半衰期只有8.4 min[42],需大剂量频繁用药来维持疗效,如用于仔猪生产,往往得不偿失。

本团队新近开展了pGLP-2长效化研究,包括PEG化pGLP-2和pGLP-2微球化2条途径。使用反相高效液相色谱(RP-HPLC)对单甲氧基聚乙二醇-琥珀酰亚氨基丙酸酯(mPEG5k-SPA)修饰pGLP-2的条件进行优化;使用弱酸性阳离子交换层析对修饰混合产物进行分离纯化;基质辅助激光解析电离化/飞行时间质谱(MALDI-TOF-MS)证明其分子相对质量是8 867,为单修饰产物Lys30-PEG-pGLP-2;体外酶解稳定性证明其半衰期是pGLP-2的16倍[37]。优化出了微球制备工艺,优化后制备微球包封率为74.15%,突释率为20.36%,粒径为31.64 μm,9 d能累计释放47%的多肽[44]。小鼠和仔猪试验证明注射2种长效化产物均可降低肠道炎性反应,提高肠道黏膜屏障功能,显著抑制炎性病变[45]。研究结果为特异性肠道保护因子pGLP-2在仔猪肠道损伤中的治疗提供了可能途径。

3 微生态调控剂的肠道损伤修复调控 3.1 益生菌制剂

常用益生菌主要有屎肠球菌、芽孢杆菌、植物乳杆菌、乳球菌、酵母菌等。饲粮中添加屎肠球菌可增加断奶仔猪后肠乳酸菌数量,降低大肠杆菌数量,起到增强小肠吸收、分泌及肠道屏障完整性作用[46]。饲粮中添加腊样芽孢杆菌可降低断奶仔猪肠道pH,提高小肠VH,降低CD,进而促进小肠形态发育[47],降低肠道上皮CD8+ γδ T细胞数量和比例,提高其感染鼠伤寒沙门氏菌的抵抗力[48],还通过促进肠道微生态平衡降低仔猪腹泻。添加丁酸梭状芽孢杆菌,可提高断奶仔猪肠道内该类菌属和乳酸杆菌的数量,降低大肠杆菌数量[49]。在断奶时灌服植物乳杆菌,可提高仔猪肠道菌群的多样性指数和相似性指数,降低结肠中大肠杆菌与乳酸菌之比,增加大肠杆菌攻毒后仔猪结肠中乳酸菌数量[50]。酵母菌和乳球菌可显著降低断奶仔猪肠道中大肠杆菌数量[51]。饲喂复合微生态发酵制剂同样在断奶仔猪粪便中检测到较多的乳酸菌和较少的大肠杆菌[52]。新生仔猪灌服枯草芽孢杆菌,促进其十二指肠Toll样受体-9(TLR-9)和白细胞介素-6(IL-6)及回肠白细胞介素-1(IL-1)的mRNA表达,并能提高小肠免疫球蛋白A(IgA)分泌细胞的数量[53];与猪源乳酸杆菌联合灌服可促进小肠绒毛发育,提高机体拮抗大肠杆菌K88的能力[54];与唾液乳杆菌联合灌服,可提高小肠β-防御素-2(pBD-2)和Toll样受体-2(TLR-2)的mRNA表达[55]。此类制剂名目繁多,益生菌种类及活性各不相同,又受不同猪群影响,效果差异较大。

3.2 抗菌肽

抗菌肽是广泛存在于生物体内的一类小分子多肽,已报道用于仔猪饲粮的抗菌肽主要有天蚕素、防御素、抗菌肽buforin Ⅱ、抗菌肽P5及复合肽。研究报道在饲粮中添加400 mg/kg天蚕素可替代饲粮中杆菌肽锌,降低断奶仔猪腹泻率[56],还可使大肠杆菌攻毒后仔猪回肠中需氧菌总数量降低,厌氧菌总数量增加,局部小肠VH/CD提高,断奶应激缓解[57]。饲粮中添加防御素也显著降低断奶仔猪腹泻率,但目前还处在重组表达及抗菌活性初步研究阶段[58]。给大肠杆菌攻毒后的断奶仔猪灌服抗菌肽buforin Ⅱ可增加紧密连接蛋白含量,促进肠道保护因子表达,显示出保护肠道黏膜完整性的作用[59]。饲粮中添加60 mg/kg抗菌肽P5,提高了养分表观消化率,降低了断奶仔猪肠道和粪样中大肠杆菌数量[60]。复合抗菌肽可显著提高仔猪肠道中乳酸杆菌数量,降低大肠杆菌数量,促进肠上皮细胞增殖和蛋白质合成,修复由饲粮呕吐毒素导致的肠道损伤[61]。抗菌肽杀菌作用独特且广谱抗菌,又不易产生耐药性。抗菌肽存在种类、来源各异及分子结构不同等问题,应用效果也存在较大差异。

4 营养代谢调控剂的肠道损伤修复调控 4.1 氨基酸及其衍生物 4.1.1 谷氨酰胺(Gln)

Gln通过为肠道黏膜细胞提供能源、参与谷胱甘肽合成等而起到修复肠道损伤作用。早期断奶仔猪饲粮中添加Gln,可修复肠道黏膜损伤,减轻肠道萎缩,促进肠道生长。添加Gln减轻了仔猪肠黏膜细胞因子反应[62],通过激活生长激素轴维持肠道形态和功能[63],降低仔猪局部小肠黏膜γ-谷氨酰转肽酶和核转录因子-κB(NF-κB)活性[64],提高碱性磷酸酶活性,降低过氧化物酶体增生物激活受体-γ(PPAR-γ)和丙酮酸激酶的mRNA表达[65],调控抗菌肽PR-39、脂肪酸结合蛋白和二肽转运载体1的mRNA表达[66],增加了热休克蛋白70(HSP70)mRNA和蛋白表达[67]。Gln对哺乳仔猪肠道黏膜发育和健康同样有效。共同添加Gln和精氨酸 (Arg),可降低仔猪腹泻,提高十二指肠黏膜的蔗糖酶和麦芽糖酶活性及其VH/CD[68]

但由于Gln存在水溶性差、吸收率低、不稳定、易转化为有害的焦谷氨酸和氨等缺陷,限制了其应用。谷氨酰胺二肽的发展弥补了Gln单体的缺陷,二肽主要有丙氨酰-谷氨酰胺(Ala-Gln)和甘氨酰-谷氨酰胺(Gly-Gln)。体外研究表明Ala-Gln可替代Gln,减轻由过氧化氢(H2O2)或脂多糖(LPS)诱导的肠上皮细胞死亡,降低LPS炎症模型仔猪小肠黏膜中TLR-4、caspase-3和NF-κB的表达[69]。补料中添加Ala-Gln,可改善哺乳仔猪早期肠道结构与功能[70]。体外肠道细胞培养表明Gly-Gln可通过提高Gln相关酶活性促进细胞增殖和抑制细胞凋亡[71]。添加0.15%的Gly-Gln可提高早期断奶仔猪十二指肠的VH/CD,减轻由LPS导致的生长和免疫抑制作用[72]。有关报道显示出谷氨酰胺二肽可能更具应用前景。

4.1.2 α-酮戊二酸(AKG)

AKG为Gln的前体物质,且是生物体三羧酸循环的重要中间产物。AKG无毒、稳定、易溶于水,是Gln的理想替代品。饲粮中添加AKG可改善肠道黏膜能量代谢障碍,显著提高断奶仔猪VH/CD,加速小肠上皮细胞更新代谢,提高主动吸收功能,缓解断奶应激造成的肠道黏膜受损[73],显著提高十二指肠黏膜二磷酸腺苷水平,缓解了LPS刺激导致的十二指肠和空肠黏膜三磷酸腺苷和腺苷酸水平降低,提高了小肠黏膜超氧化物歧化酶(SOD)活性,降低丙二醛(MDA)含量[74]。有报道,AKG是通过调节哺乳动物雷帕霉素靶蛋白(mTOR)和腺苷酸活化蛋白激酶(AMPK)信号通路来改善LPS刺激仔猪的肠道能量代谢和缓解肠道损伤[75]

4.1.3 L-精氨酸(L-Arg)

L-Arg属于碱性氨基酸,为幼龄动物的一种必需氨基酸,但在成年动物处于应激、病理等状态下也成为必需氨基酸。L-Arg可促进动物肠道生长和结构改善,增加血管生长因子表达,加速受损黏膜修复,维护肠道屏障功能。饲粮中添加L-Arg可增加断奶仔猪肠道VH和黏膜血管内皮生长因子水平,提高血浆Arg和胰岛素浓度,降低皮质醇、氨(NH3)和尿素浓度,促进肠道发育[76]。给断奶仔猪补充L-Arg可提高肠道HSP70基因表达,增加黏膜杯状细胞数量,提高营养物质利用率[77]。研究显示L-Arg通过调节肠道细胞凋亡、激活蛋白激酶B(AKT)和mTOR信号途径,促进细胞增殖及肠道损伤修复[78]。体内Arg在一氧化氮(NO)合成酶催化下可产生NO,NO有调节肠道血流量及改善微血管循环的作用。饲粮中添加7% L-Arg有利于断奶仔猪肠道微血管发育,增加空肠亚硝酸盐和硝酸盐(NO稳定的氧化产物)水平,增加血浆脯氨酸和Arg浓度,提高肠道黏膜CD34及血管内皮生长因子表达[79]

4.1.4 N-乙酰半胱氨酸(NAC)

NAC是一种含有巯基的化合物,为L-半胱氨酸与还原型谷胱甘肽的前体物质。NAC具有较强的抗氧化作用,可干扰自由基生成、抑制炎症反应、抗细胞凋亡等,对肠道屏障功能具有调节和保护作用。饲粮中添加NAC可缓解LPS刺激导致的仔猪肠黏膜中白细胞介素-2(IL-2)、IL-6和前列腺素2(PGE2)水平升高及HSP70表达量增加[80],降低小肠黏膜caspase-3表达,增加claudin-1和occludin蛋白表达量,缓解肠道黏膜损伤[81]。补充NAC可增加仔猪肠道抗氧化物酶活性,减少活性氧生成量,降低氧化型与还原型谷胱甘肽比值,并通过调节TLR-4和EGF信号通路降低LPS刺激所引起的肠道炎症反应[82]。给乙酸诱发结肠炎的仔猪补充NAC,可降低血浆髓过氧化物酶(MPO)活性,增加血浆和结肠MDA浓度、血浆EGF浓度、黏膜雄激素受体(AR)mRNA和claudin-1蛋白水平,降低结肠黏膜caspase-3表达水平,缓解结肠损伤程度[83]

4.2 短链脂肪酸(SCFAs)

SCFAs由单胃动物结肠中微生物发酵酶不消化糖类后产生,主要包括乙酸、丙酸、丁酸、异丁酸、戊酸和异戊酸。其中乙酸、丙酸和丁酸三者占85%~95%。SCFAs可调节结肠上皮细胞转运功能,促进细胞代谢、增殖和分化,调节肠道菌群结构,减少炎症发生,为肠黏膜细胞主要能量来源,其中丁酸发挥重要作用。给3日龄仔猪补充丁酸钠可增加空肠后段和回肠VH/CD和黏膜厚度,促进肠道发育[84]。饲粮中添加丁酸钠可提高结肠杯状细胞数量,促进肠道消化吸收功能,并可能通过改变肠道菌群生态结构和代谢活性影响肠道微生态区系[85]。王纯刚等[86]报道,饲粮中添加丁酸钠可显著降低感染轮状病毒的仔猪腹泻率,提高空肠VH/CD,增加盲肠乳酸杆菌的数量,提高血清IL-2、IL-4和IL-6浓度,增强仔猪对疾病的抵抗能力。包被SCFAs效果优于未包被的,饲粮中添加包被丁酸可降低感染鼠伤寒沙门菌仔猪肠道和粪中的该致病菌数量,而未包被的则无影响[87]

4.3 壳聚糖(CS)

CS是广泛存在于虾蟹等甲壳类动物外壳中甲壳素的N-脱乙酰基产物,是迄今为止唯一发现的阳离子动物纤维和碱性多糖。CS是一种新型畜禽生长促进剂、免疫增强剂、消化道黏膜保护剂和广谱抗菌剂[88]。饲粮添加300 mg/kg的CS可阻缓肠黏膜通透性升高,增强肠黏膜occludin和紧密连接蛋白ZO-1表达,提高肠黏膜紧密连接性,对大肠杆菌攻毒的早期断奶仔猪小肠黏膜屏障功能损伤有保护作用[89]。饲粮添加100 mg/kg螯合锌(CS-Zn)具有调节断奶仔猪肠道菌群平衡、改善肠黏膜形态、降低血浆D-乳酸和内毒素含量及二胺氧化酶(DAO)活性的作用,进而阻止黏膜完整性遭到破坏[90];添加100 mg/kg螯合铜(CS-Cu)具有改善仔猪肠道黏膜形态、保护其免受损伤的作用[91]。纳米壳聚糖(CNP)由于纳米粒子的特性而表现出较CS本身更高的杀菌活性,饲粮中添加50~100 mg/kg的CNP-Cu能提高断奶仔猪的免疫机能,改善肠道菌群平衡及肠道黏膜形态,提高生长性能[92]。总之,较低剂量的金属螯合CS或CNP,具有调节肠道菌群及黏膜形态的作用。

4.4 植物多糖

植物多糖具有免疫调节、抗肿瘤、抗衰老、降血糖等多种生物活性,且其毒副作用小、无残留、不产生耐药性。黄芪多糖(APS)是黄芪干燥根中的提取物,主要由鼠李糖、阿拉伯糖、木糖、甘露糖和葡萄糖等组成,具有明显的免疫调节作用[93]。饲粮中添加500 mg/kg APS能改善断奶仔猪生长速度,增强细胞免疫功能和Th1类细胞因子(IL-2、IFN-γ)的分泌量,逆转免疫抑制[94]。Yin等[95]认为断奶仔猪饲粮中添加APS可能是通过改善机体消化、吸收功能,增加饲粮氨基酸进入体内的循环系统起促生长作用。牛膝多糖(ABPS)是从牛膝根中提取的水溶性多糖。饲粮添加0.10%和0.15%的ABPS可显著增强断奶仔猪细胞免疫和体液免疫水平[96]。在LPS应激情况下,ABPS改变了促炎性细胞因子的释放,显著缓解了LPS对仔猪肠道黏膜结构的损伤,增加了小肠VH/CD及杯状细胞数量[97]。由于多糖的来源、化学组成及提取纯化工艺不同,其应用效果也不同。

4.5 锌(Zn)和硒(Se)

Zn和Se不仅是维持动物肠道健康的重要营养性微量元素,还可通过结合抗体和细胞因子来调节黏膜免疫应答。饲粮中适宜的Zn水平可促进肠黏膜分泌型免疫球蛋白A(sIgA)和IL-2的分泌,进而维持肠黏膜免疫屏障功能,同时对动物机体抗氧化能力、生产性能以及肠炎症类疾病防治具有较好效果。研究表明添加药理剂量(2 000~4 000 mg/kg)的氧化锌能有效增强机体免疫功能,降低腹泻率,促进仔猪生长[98, 99]。但氧化锌大部分随粪排出,造成锌源浪费和环境污染。目前研究较多的有沸石-氧化锌[100]、蒙脱石-氧化锌[101]、氨基酸螯合锌[102]等。谷胱甘肽过氧化物酶(GPx)是动物机体抗氧化和局部或整体免疫的关键酶,Se作为GPx的重要组成成分,可维持肠黏膜屏障的相对稳定。过量尤其是中毒剂量的Zn、Se水平严重影响胃肠黏膜结构完整性和上皮淋巴细胞数量与结构。饲粮微量元素水平应控制适宜。

4.6 其他

酸化剂可增加仔猪胃内酸度,提高胃蛋白酶活性,有利于肠道内乳酸菌等有益菌生长,抑制大肠杆菌等有害菌繁殖,保持胃肠道微生态平衡。在断奶仔猪饲粮中添加脂肪酸包被的微胶囊型缓释复合酸化剂,可以通过降低肠道pH,优化肠道微生物区系,改善肠组织形态和功能,从而提高断奶仔猪肠道的消化力和适应性,并促进仔猪生长[103]。鱼油富含n-3多不饱和脂肪酸(PUFA),可通过降低肠道黏膜组织中NF-κB蛋白表达而抑制炎性介质[前列腺素E2(PEG2)、TNF-α和HSP70]分泌,缓解LPS刺激造成的仔猪肠道结构和功能损伤。n-3 PUFA对肠道的保护机制可能是二十二碳六烯酸(DHA)抑制了生物膜花生四烯酸(AA)的释放,同时二十碳五烯酸(EPA)与AA竞争环加氧酶和脂氧合酶,产生前列腺素-3和白细胞三烯-5等,减少微血管白细胞黏附及血小板活化因子的释放,抑制IL-1及TNF-α等合成,舒张血管,改善胃肠道血液供给,保护枯否氏细胞正常清除功能[104]。Liu等[105]认为LPS刺激能造成仔猪外周免疫器官产生大量炎性因子激活下丘脑-垂体-肾上腺轴,引起神经内分泌紊乱,鱼油能通过抑制TLR-4和核苷酸结合寡聚化结构域(NOD)信号通路的激活,减少炎性因子的释放,抑制下丘脑-垂体-肾上腺轴的激活。生产实际中使用鱼油时,应注意到PUFA中的不饱和键极易被氧化,可使机体产生大量的活性氧簇,对肠道黏膜免疫系统造成损害。

5 小 结

肠道正常的功能依赖肠道黏膜上皮屏障、免疫屏障、生物屏障的完整性来维持。断奶应激,会导致仔猪肠道屏障功能受损,表现为黏膜形态结构改变、肠上皮屏障通透性增加、消化吸收功能降低、黏液层厚度下降、肠道pH升高、免疫抑制及肠道微生物菌群失衡等,且受损的肠道屏障进一步激活多个与肠道功能相关的信号通路,造成肠道功能的继发性损伤和功能紊乱。肠道损伤修复及其营养调控的意义重要。

多肽类生长因子主要通过刺激肠上皮细胞增殖和分化,促进肠道生长发育,起到肠黏膜上皮屏障损伤的修复作用。包括EGF、GLP-2、IGF-Ⅰ和TGF等。其中关于EGF,通过构建乳酸菌表达的重组pEGF具有修复结肠损伤的调控作用;关于GLP-2,可通过pGLP-2长效化产物[PEG修饰pGLP-2和pGLP-2/聚乳酸-羟基乙酸共聚物(PLGA)微球]解决其在动物体内半衰期短的问题,进而显著提高有效性。

微生态调控剂包括益生菌制剂和抗菌肽。益生菌制剂通过调节肠道菌群的种类和数量,改善肠道微生态平衡和增强肠道免疫功能,发挥肠道生物屏障的损伤修复作用,猪饲粮常用的有屎肠球菌、芽孢杆菌、植物乳杆菌、乳球菌、酵母菌等。动物体自身合成的抗菌肽具有抗细菌、抗真菌、抗寄生虫和抗病毒活性,通过免疫调节起到肠道损伤修复功能,用于仔猪饲粮的主要有天蚕素、防御素、抗菌肽buforin Ⅱ、抗菌肽P5及复合肽等。

关于营养代谢调控剂,氨基酸及其衍生物包括:Gln为肠道黏膜细胞提供能源,参与谷胱甘肽合成等,促进肠道生长,修复肠道黏膜损伤;AKG是Gln的理想替代品;L-Arg是蛋白质合成的重要原料及多种生物活性物质的前体,可促进肠道生长、结构改善和受损黏膜修复;NAC具有较强的抗氧化作用,对肠道屏障功能具有调节和保护作用。其他调控剂:SCFAs可调节肠上皮细胞转运功能,调节肠道菌群结构,是肠黏膜细胞主要能量来源,其中丁酸发挥重要作用;CS是畜禽生长促进剂、免疫增强剂、消化道黏膜保护剂和广谱抗菌剂;植物多糖具有多种生物活性,在降低仔猪腹泻率、提高猪体免疫力、促进仔猪生长方面有重要作用;Zn和Se不仅是维持动物肠道健康的重要营养性微量元素,还可通过结合抗体和细胞因子来调节黏膜免疫应答。

致谢: 本文资料由作者团队成员齐珂珂博士、陶新博士和刘淑杰博士协助收集整理。

参考文献
[1]TURNER J R.Intestinal mucosal barrier function in health and disease[J]. Nature Rreviews Immunology,2009,9(11):799-809. (1)
[2]WU G Y,MEIER S A,KNABE D A.Dietary glutamine supplementation prevents jejunal atrophy in weaned pigs[J]. The Journal of Nutrition,1996,126(10):2578-2584. (1)
[3]PLUSKE J R,THOMPSON M J,ATWOOD C S,et al.Maintenance of villus height and crypt depth,and enhancement of disaccharide digestion and monosaccharide absorption,in piglets fed on cows’ whole milk after weaning[J]. The British Journal of Nutrition,1996,76(3):409-422. (1)
[4]HALL G A,BYRNE T F.Effects of age and diet on small intestinal structure and function in gnotobiotic piglets[J]. Research in Veterinary Science,1989,47(3):387-392. (1)
[5]BRER S.Amino acid transport across mammalian intestinal and renal epithelia[J]. Physiological Reviews,2008,88(1):249-286. (1)
[6]NABUURS M J.Weaning piglets as a model for studying pathophysiology of diarrhea[J]. The Veterinary Quarterly,1998,20(Suppl.3):S42-S45. (2)
[7]MOTOHASHI Y,FUKUSHIMA A,KONDO T,et al.Lactase decline in weaning rats is regulated at the transcriptional level and not caused by termination of milk ingestion[J]. The Journal of Nutriton,1997,127(9):1737-1743. (1)
[8]TSUBOI K K,KWONG L K,D’HARLINGUE A E,et al.The nature of maturational decline of intestinal lactase activity[J]. Biochimica et Biophysica Acta,1985,840(1):69-78. (1)
[9]LACKYRAM D,YANG C B,ARCHBOLD T,et al.Early weaning reduces small intestinal alkaline phosphatase expression in pigs[J]. The Journal of Nutrition,2010,140(3):461-468. (1)
[10]HEDEMANN M S,HJSGAARD S,JENSEN B B.Small intestinal morphology and activity of intestinal peptidases in piglets around weaning[J]. Journal of Animal Physiology and Animal Nutrition,2003,87(1/2):32-41. (1)
[11]GARBAL J I,GONZÁLEZ E A,VÁZQUEZ F,et al.Serogroups of Escherichia coli isolated from piglets in Spain[J]. Veterinary Microbiology,1996,48(1/2):113-123. (1)
[12]NAGY B,HÖGLUND S,MOREIN B.Iscom (immunostimulating complex) vaccines containing mono-or polyvalent pili of enterotoxigenic E. coli;immune response of rabbit and swine[J]. Zentralblatt für Veterinärmedizin Reihe B,1990,37(10):728-738. (1)
[13]GOLDMAN A S.Modulation of the gastrointestinal tract of infants by human milk.Interfaces and interactions.An evolutionary perspective[J]. The Journal of Nutrition,2000,130(Suppl.2):426S-431S. (1)
[14]LI D F,THALER R C,NELSSEN J L,et al.Effect of fat sources and combinations on starter pig performance,nutrient digestibility and intestinal morphology[J]. Journal of Animal Science,1990,68(11):3694-3704. (1)
[15]HOPWOOD D E,HAMPSON D J.Interactions between the intestinal microflora,diet and diarrhoea,and their influences on piglet health in the immediate post-weaning period[M]//PLUSKE J R,LE DIVIDICH J,VERSTEGEN M W A.Weaning the pig:concepts and consequences.Wageningen:Wageningen Academic Publishers,2003:199-218. (1)
[16]WANG J J,CHEN L X,LI P,et al.Gene expression is altered in piglet small intestine by weaning and dietary glutamine supplementation[J]. The Journal of Nutrition,2008,138(6):1025-1032. (1)
[17]TAO X,XU Z W.MicroRNA transcriptome in swine small intestine during weaning stress[J]. PLoS One,2013,8(11):e79343. (1)
[18]LIAO Y L,ZHANG M,LNNERDAL B.Growth factor TGF-β induces intestinal epithelial cell (IEC-6) differentiation:miR-146b as a regulatory component in the negative feedback loop[J]. Genes & Nutrition,2013,8(1):69-78. (1)
[19]ROWLAND K J,CHOI P M,WARNER B W.The role of growth factors in intestinal regeneration and repair in necrotizing enterocolitis[J]. Seminars in Pediatric Surgery,2013,22(2):101-111. (1)
[20]李垚,单安山,李焕江,等.表皮生长因子和胰岛素样生长因子-Ⅰ对21日龄断奶仔猪胃和小肠发育的作用[J]. 动物营养学报,2005,17(3):44-49. (1)
[21]LEE D N,CHUANG Y S,CHIOU H Y,et al.Oral administration recombinant porcine epidermal growth factor enhances the jejunal digestive enzyme genes expression and activity of early-weaned piglets[J]. Journal of Animal Physiology and Animal Nutrition,2008,92(4):463-470. (1)
[22]JUNG K,KANG B K,KIM J Y,et al.Effects of epidermal growth factor on atrophic enteritis in piglets induced by experimental porcine epidemic diarrhoea virus[J]. The Veterinary Journal,2008,177(2):231-235. (1)
[23]XU R J,MELLOR D J,BIRTLES M J,et al.Effects of oral IGF-Ⅰor IGF-Ⅱon digestive organ growth in new born piglets[J]. Biology of the Neonate,1994,66(5):280-287. (1)
[24]HOULE V M,SCHROEDER E A,ODEL J,et al.Small intestinal disaccharidase activity and ileal villus height are increased in piglets consuming formula containing recombinant human insulin-like growth factor-Ⅰ[J]. Pediatric Research,1997,42(1):78-86. (1)
[25]BURRIN D G,WESTER T,DAVIS T A,et al.Oral administered insulin like growth factor Ⅰ increases intestinal mucosal growth in formula-fed neonatal pigs[J]. The American Journal of Physiology,1996,270:1085-1091. (1)
[26]GILLINGHAM M B,DAHLY E M,MURALI S G,et al.IGF-Ⅰ treatment facilitates transition from parenteral to enteral nutrition in rats with short bowel syndrome[J]. American Journal of Physiology:Regulatory,Integrative and Comparative Physiology,2003,284(2):R363-R371. (1)
[27]李旭敏,曹劲松.口饲胰岛素样生长因子的生理功能[J]. 中国饲料,2006(1):27-28. (1)
[28]EGGER D B,INGLIN R,ZEEH J,et al.Insulin-like growth factor Ⅰ and truncated keratinocyte growth factor accelerate healing of left-sided colonic anastomoses[J]. British Journal of Surgery,2001,88(1):90-98. (1)
[29]ALEXANDER A N,CAREY H V.Insulin-like grouth factor-Ⅰ stimulates Na+-dependent glutamine absorption in piglet enterocytes[J]. Digestive Diseases and Sciences,2002,47(5):1129-1134. (1)
[30]SCHOBER D A,SIMMEN F A,HADSELL D L,et al.Perinatal expression of type Ⅰ IGF receptors in porcine small intestine[J]. Endocrinology,1990,126(2):1125-1132. (1)
[31]KARNES W E.Epidermal growth factor transforming growth factor-alpha.Gut peptides:biochemistry and physiology[M]. New York:Raven Press,1998:553-586. (1)
[32]WAGNER C L,FORSYTHE D W,WAGNER M T.The effect of recombinant TGF-α,human milk,and human milk macrophage media on gut epithelial proliferation is decreased in the presence of a neutralizing TGF-α antibody[J]. Biology of the Neonate,1998,74(5):363-371. (1)
[33]王卉,刘宁.转化生长因子α对人肠上皮细胞增殖、细胞总RNA和总蛋白质含量的影响[J]. 东北农业大学学报,2008,39(12):86-89. (1)
[34]张帆,胡凤爱,郑静,等.肠内营养对梗阻性黄疸大鼠肠黏膜上皮细胞凋亡及增殖的影响[J]. 滨州医学院学报,2012,35(3):192-195. (1)
[35]HOWE K L,REARDON C,WAND A,et al.Transforming growth factor-β regulation of epithelial tight junction proteins enhances barrier function and blocks enterohemorrhagic Escherichia coli O157 ∶ H7-induced increased permeability[J]. The American Journal of Pathology,2005,167(6):1587-1597. (1)
[36]DRUCKER D J,EHRLICH P,ASA S L,et al.Induction of intestinal epithelial proliferation by glucagon-like peptide 2[J]. Proceedings of the National Academy of Sciences of the United States of America,1996,93(15):7911-7916. (1)
[37]QI K K,WU J,WAN J,et al.Purified PEGylated porcine glucagon-like peptide-2 reduces the severity of colonic injury in a murine model of experimental colitis[J]. Peptides,2014,52:11-18. (2)
[38]HSIEH J,LONGUET C,MAIDA A,et al.Glucagon-like peptide-2 increases intestinal lipid absorption and chylomicron production via CD36[J]. Gastroenterology,2009,137(3):997-1005. (1)
[39]DRUCKER D J,DE FOREST L,BRUBAKER P L.Intestinal response to growth factors administered alone or in combination with human glucagon-like peptide 2[J]. The American Journal of Physiology,1997,273:G1252-G1262. (1)
[40]SIGALET D L,DE HEUVEL E,WALLACE L,et al.Effects of chronic glucagon-like peptide-2 therapy during weaning in neonatal pigs[J]. Regulatory Peptides,2014,188:70-80. (1)
[41]DRUCKER D J,YUSTA B,BOUSHEY R P,et al.Human GLP-2 reduces the severity of colonic injury in a murine model of experimental colitis[J]. The American Journal of Physiology:Gastrointestinal and Liver Physiology,1999,276:G79-G91. (1)
[42]ALAVI K,SCHWARTZ M Z,PALAZZO J P,et al.Treatment of inflammatory bowel disease in a rodent model with the intestinal growth factor glucagon-like peptide-2[J]. Journal of Pediatric Surgery,2000,35(6):847-851. (2)
[43]EDERSEN N B,HJOLLUND K R,JOHNSEN A H,et al.Porcine glucagon-like peptide-2:structure,signaling,metabolism and effects[J]. Regulotary Peptides,2008,146(1/2/3):310-320. (1)
[44]吴杰,齐珂珂,徐子伟,等.猪胰高血糖素样肽-2(pGLP-2)微球的制备及其对结肠炎小鼠肠道损伤修复的研究[J]. 农业生物技术学报,2014,22(2):150-157. (1)
[45]QI K K,WU J,XU Z W.Effects of PEGylated porcine glucagon-like peptide-2 therapy in weaning piglets challenged with lipopolysaccharide[J]. Peptides,2014,58:7-13. (1)
[46]SIEPERT B,REINHARDT N,KREUZER S,et al.Enterococcus faecium NCIMB 10415 supplementation affects intestinal immune-associated gene expression in post-weaning piglets[J]. Veterinary Immunology and Immunopathology,2014,157(1/2):65-77. (1)
[47]辛娜,张乃锋,刁其玉,等.芽孢杆菌制剂对断奶仔猪生长性能、胃肠道发育的影响[J]. 畜牧兽医学报,2012,43(6):901-908. (1)
[48]SCHAREK-TEDIN L,PIEPER R,VAHJEN W,et al.Bacillus cereus var.Toyoi modulates the immune reaction and reduces the occurrence of diarrhea in piglets challenged with Salmonella Typhimurium DT104[J]. Journal of Animal Science,2013,91(12):5696-5704. (1)
[49]梁明振,李莉,刘浩.丁酸梭状芽孢杆菌对断奶仔猪肠道微生物区系的影响[J]. 中国畜牧杂志,2013,49(23):64-67. (1)
[50]GUERRA-ORDAZ A A,GONZLEZ-ORTIZ G,LA RAGIONE R M,et al.Lactulose and Lactobacillus plantarum:a potential complementary synbiotic to control post-weaning colibacillosis in piglets[J]. Applied and Environmental Microbiology,2014,doi:10.1128/AEM.00770-14. (1)
[51]LE BON M,DAVIES H E,GLYNN C,et al.Influence of probiotics on gut health in the weaned pig[J]. Livestock Science,2010,133(1/2/3):179-181. (1)
[52]KIM K H,INGALE S L,KIM J S,et al.Bacteriophage and probiotics both enhance the performance of growing pigs but bacteriophage are more effective[J]. Animal Feed Science and Technology,2014,196:88-95. (1)
[53]李云峰,邓军,张锦华,等.枯草芽孢杆菌对仔猪小肠局部天然免疫及TLR表达的影响[J]. 畜牧兽医学报,2011,42(4):562-566. (1)
[54]邓军,李云锋,杨倩.枯草芽孢杆菌和猪源乳酸杆菌混合饲喂对仔猪肠绒毛发育的影响[J]. 畜牧兽医学报,2013,44(2):295-301. (1)
[55]DENG J,LI Y F,ZHANG J H,et al.Co-administration of Bacillus subtilis RJGP16 and Lactobacillus salivarius B1 strongly enhances the intestinal mucosal immunity of piglets[J]. Research in Veterinary Science,2013,94(1):62-68. (1)
[56]任建波,毛宗林,张立彬.天蚕素抗菌肽替代杆菌肽锌对断奶仔猪生产性能及腹泻的影响[J]. 中国畜牧杂志,2013,49(14):59-61,65. (1)
[57]WU S D,ZHANG F R,HUANG Z M,et al.Effects of the antimicrobial peptide cecropin AD on performance and intestinal health in weaned piglets challenged with Escherichia coli[J]. Peptides,2012,35(2):225-230. (1)
[58]PENG Z X,WANG A R,FENG Q Y,et al.High-level expression,purification and characterisation of porcine β-defensin 2 in Pichia pastoris and its potential as a cost-efficient growth promoter in porcine feed[J]. Applied Microbiology and Biotechnology,2014,98(12):5487-5497. (1)
[59]TANG Z R,DENG H,ZHANG X L,et al.Effects of orally administering the antimicrobial peptide buforin Ⅱ on small intestinal mucosal membrane integrity,the expression of tight junction proteins and protective factors in weaned piglets challenged by enterotoxigenic Escherichia coli[J]. Animal Feed Science and Technology,2013,186(3/4):177-185. (1)
[60]YOON J H,INGALE S L,KIM J S,et al.Effects of dietary supplementation with antimicrobial peptide-P5 on growth performance,apparent total tract digestibility,faecal and intestinal microflora and intestinal morphology of weanling pigs[J]. Journal of the Science of Food and Agriculture,2013,93(3):587-592. (1)
[61]XIAO H,TAN B E,WU M M,et al.Effects of composite antimicrobial peptides in weanling piglets challenged with deoxynivalenol:Ⅱ.Intestinal morphology and function[J]. Journal of Animal Science,2013,91(10):4750-4756. (1)
[62]EWASCHUK J B,MURDOCH G K,JOHNSON I R,et al.Glutamine supplementation improves intestinal barrier function in a weaned piglet model of Escherichia coli infection[J]. The British Journal of Nutrition,2011,106(6):870-877. (1)
[63]YI G F,CARROLL J A,ALLEE G L,et al.Effect of glutamine and spray-dried plasma on growth performance,small intestinal morphology,and immune responses of Escherichia coli K88+-challenged weaned pigs[J]. Journal of Animal Science,2005,83(3):634-643. (1)
[64]张军民,高振川.谷氨酰胺对早期断奶仔猪血浆、肝和肠中γ-谷氨酰转肽酶活性的影响[J]. 中国兽医学报,2010,30(9):1269-1272. (1)
[65]肖英平,洪奇华,刘秀婷,等.谷氨酰胺对断奶仔猪生长性能、营养物质表观消化率、空肠碱性磷酸酶活性及与肠道健康相关因子基因表达的影响[J]. 动物营养学报,2012,24(8):1438-1446. (1)
[66]周琳,曹广添,张帅,等.断奶仔猪小肠黏膜脂肪酸结合蛋白和二肽转运载体1 mRNA表达发育性变化及谷氨酰胺对其的影响[J]. 动物营养学报,2012,24(4):701-711. (1)
[67]ZHONG X,ZHANG X H,LI X M,et al.Intestinal growth and morphology is associated with the increase in heat shock protein 70 expression in weaning piglets through supplementation with glutamine[J]. Journal of Animal Science,2011,9(11):3634-3642. (1)
[68]SHAN Y P,SHAN A S,LI J P,et al.Dietary supplementation of arginine and glutamine enhances the growth and intestinal mucosa development of weaned piglets[J]. Livestock Science,2012,150(1/2/3):369-373. (1)
[69]HAYNES T E,LI P,LI X,et al.L-glutamine or L-alanyl-L-glutamine prevents oxidant- or endotoxin-induced death of neonatal enterocytes[J]. Amino Acids,2009,37(1):131-142. (1)
[70]袁雪波,马黎,陈克嶙,等.丙氨酰谷氨酰胺二肽对哺乳仔猪生长性能、小肠形态学和血清生化指标的影响[J]. 动物营养学报,2011,23(1):94-101. (1)
[71]WANG H,JIA G,CHEN Z L,et al.The effect of glycyl-glutamine gipeptide concentration on enzyme activity,cell proliferation and apoptosis of jejunal tissues from weaned piglets[J]. Agricultural Sciences in China,2011,10(7):1088-1095. (1)
[72]JIANG Z Y,SUN L H,LIN Y C,et al.Effects of dietary glycyl-glutamine on growth performance,small intestinal integrity,and immune responses of weaning piglets challenged with lipopolysaccharide[J]. Journal of Animal Science,2009,87(12):4050-4056. (1)
[73]胡泉舟,侯永清,丁斌鹰,等.α-酮戊二酸对仔猪小肠组织学形态与功能的影响[J]. 动物营养学报,2008,20(6):662-667. (1)
[74]刘坚,侯永清,丁斌鹰,等.α-酮戊二酸对脂多糖应激断奶仔猪空肠黏膜蛋白合成和抗氧化能力的影响[J]. 中国畜牧杂志,2010,46(11):35-38. (1)
[75]HOU Y Q,YAO K,WANG L,et al.Effects of α-ketoglutarate on energy status in the intestinal mucosa of weaned piglets chronically challenged with lipopolysaccharide[J]. The British Journal of Nutrition,2011,106(3):357-363. (1)
[76]YAO K,GUAN S,LI T J,et al.Dietary L-arginine supplementation enhances intestinal development and expression of vascular endothelial growth factor in weanling piglets[J]. The British Journal of Nutrition,2011,105(5):703-709. (1)
[77]WU X,RUAN Z,GAO Y L,et al.Dietary supplementation with L-arginine or N-carbamylglutamate enhances intestinal growth and heat shock protein-70 expression in weanling pigs fed a corn- and soybean meal-based diet[J]. Amino Acids,2010,39(3):831-839. (1)
[78]WANG Y X,ZHANG L L,ZHOU G L,et al.Dietary L-arginine supplementation improves the intestinal development through increasing mucosal Akt and mammalian target of rapamycin signals in intra-uterine growth retarded piglets[J]. The British Journal of Nutrition,2012,108(8):1371-1381. (1)
[79]ZHAN Z,OU D,PIAO X,et al.Dietary arginine supplementation affects microvascular development in the small intestine of early-weaned pigs[J]. The Journal of Nutrition,2008,138(7):1304-1309. (1)
[80]伍国华,李娇,侯永清,等.N-乙酰半胱氨酸对脂多糖单次刺激仔猪肠黏膜免疫应激的影响[J]. 动物营养学报,2012,24(9):1793-1798. (1)
[81]HOU Y Q,WANG L,ZHANG W,et al.Protective effects of N-acetylcysteine on intestinal functions of piglets challenged with lipopolysaccharide[J]. Amino Acids,2012,43(3):1233-1242. (1)
[82]HOU Y Q,WANG L,YI D,et al.N-acetylcysteine reduces inflammation in the small intestine by regulating redox,EGF and TLR4 signaling[J]. Amino Acids,2013,45(3):513-522. (1)
[83]WANG Q J,HOU Y Q,YI D,et al.Protective effects of N-acetylcysteine on acetic acid-induced colitis in a porcine model[J]. BMC Gastroenterol,2013,13:133. (1)
[84]KOTUNIA A,WOLISKI J,LAUBITZ D.Effect of sodium butyrate on the small intestine development in neonatal piglets fed by artificial sow[J]. Journal of Physiology and Pharmacology:an Official Journal of the Polish Physiological Society,2004,55(Suppl.2):59-68. (1)
[85]MANZANILLA E G,NOFRARIAS M,ANGUITA M,et al.Effects of butyrate,avilamycin,and a plant extract combination on the intestinal equilibrium of early-weaned pigs[J]. Journal of Animal Science,2006,84(10):2743-2751. (1)
[86]王纯刚,张克英,丁雪梅.丁酸钠对轮状病毒攻毒和未攻毒断奶仔猪生长性能和肠道发育的影响[J]. 动物营养学报,2009,21(5):719-726. (1)
[87]BOYEN F,HAESEBROUK F,VANPARYS A,et al.Coated fatty acids alter virulence properties of Salmonella typhimurium and decrease intestinal colonization of pigs[J]. Veterinary Microbiology,2008,132(3/4):319-327. (1)
[88]CHUNG Y C,CHEN C Y.Antibacterial characteristics and activity of acid-soluble chitosan[J]. Bioresource Technology,2008,99(8):2806-2814. (1)
[89]XIAO D F,TANG Z R,YIN Y L,et al.Effects of dietary administering chitosan on growth performance,jejuna morphology,jejunal mucosal sIgA,occluding,claudin-1 and TLR4 expression in weaned piglets challenged by enterotoxigenic Escherichia coli[J]. International Immunopharmacology,2013,17(3):670-676. (1)
[90]谢正军,刘国花,李云涛,等.壳聚糖锌对断奶仔猪小肠组织学形态与功能的影响[J]. 中国畜牧杂志,2012,48(1):32-37. (1)
[91]朱叶萌,谢正军,李云涛,等.壳聚糖铜对断奶仔猪生产性能、肠道菌群及黏膜形态的影响[J]. 中国农业科学,2011,44(2):387-394. (1)
[92]WANG M Q,DU Y J,WANG C,et al.Effects of copper-loaded chitosan nanoparticles on intestinal microflora and morphology in weaned piglets[J]. Biological Trace Element Research,2012,149(2):184-189. (1)
[93]JIN M L,ZHAO K,HUANG Q S,et al.Structural features and biological activities of the polysaccharides from Astragalus membranaceus[J]. International Journal of Biological Macromolecules,2014,64:257-266. (1)
[94]YUAN S L,PIAO X S,Li D F,et al.Effects of dietary Astragalus polysaccharide on growth performance and immune function in weaned pigs[J]. Animal Science,2006,82(4):501-507. (1)
[95]YIN F G,LIU Y L,YIN Y L,et al.Dietary supplementation with Astragalus polysaccharide enhances ileal digestibilities and serum concentrations of amino acids in early weaned piglets[J]. Amino Acids,2009,37(2):263-270. (1)
[96]CHEN Q H,LIU Z Y,HE J H.Achyranthes bidentata polysaccharide enhances immune response in weaned piglets[J]. Immunopharmacology and Immunotoxicology,2009,31(2):253-260. (1)
[97]秦文雅.牛膝多糖对免疫应激仔猪肠道的影响及其作用机理[D]. 硕士学位论文.长沙:湖南农业大学,2012. (1)
[98]胡彩虹,钱仲仓,刘海萍,等.高锌对早期断奶仔猪肠黏膜屏障和肠上皮细胞紧密连接蛋白表达的影响[J]. 畜牧兽医学报,2009,40(11):1638-1644. (1)
[99]STRARKE I C,PIEPER R,NEUMANN K,et al.The impact of high dietary zinc oxide on the development of the intestinal microbiota in weaned piglets[J]. FEMS Microbiology Ecology,2014,87(2):416-427. (1)
[100]HU C H,XIAO K,SONG J,et al.Effects of zinc oxide supported on zeolite on growth performance,intestinal microflora and permeability,and cytokines expression of weaned pigs[J]. Animal Feed Science and Technology,2013,181(1/2/3/4):65-71. (1)
[101]HU C H,GU L Y,LUAN Z S,et al.Effects of montmorillonite-zinc oxide hybrid on performance,diarrhea,intestinal permeability and morphology of weanling pigs[J]. Animal Feed Science and Technology,2012,177(1/2):108-115. (1)
[102]CAINE W R,METZLER-ZEBELI B U,MCFALL M,et al.Supplementation of diets for gestating sows with zinc amino acid complex and gastric intubation of suckling pigs with zinc-methionine on mineral status,intestinal morphology and bacterial translocation in lipopolysaccharide-challenged early-weaned pigs[J]. Research in Veterinary Science,2009,86(3):453-462. (1)
[103]晏家友,贾刚,王康宁,等.缓释复合酸化剂对断奶仔猪消化道酸度及肠道功能的影响[J]. 畜牧兽医学报,2009,40(12):1747-1754. (1)
[104]吴志锋.鱼油对脂多糖刺激仔猪肠道损伤的保护作用[D]. 硕士学位论文.武汉:武汉工业学院,2011. (1)
[105]LIU Y L,CHEN F,ODLE J,et al.Fish oil alleviates activation of the hypothalamic-pituitary-adrenal axis associated with inhibition of TLR4 and NOD signaling pathways in weaned piglets after a lipopolysaccharide challenge[J]. The Journal of Nutrition,2013,143(11):1799-1807. (1)