动物营养学报  2014, Vol. 26 Issue (11): 3245-3250   PDF (1129 KB)    
多胺跨膜物质转运的机制
王贵鸿, 马容, 康波 , 姜冬梅 , 何珲    
四川农业大学动物科技学院, 雅安 625014
摘要:多胺具有调控细胞增殖、分化和凋亡的功能,可参与动物繁殖、胚胎发育以及癌症发生发展等多种生物学过程。在动物机体中,多胺稳态是通过多胺跨膜物质转运和多胺代谢途径共同维持的。溶质转运蛋白(SLC)基因家族中的SLC3A2、SLC7A1、SLC12A8、SLC22A16、SLC22A1、SLC22A2、SLC22A3基因及其编码的蛋白质可参与多胺的跨膜物质转运;多胺代谢关键调控基因鸟氨酸脱羧酶(ODC)、鸟氨酸脱羧酶抗酶(OAZ)和鸟氨酸脱羧酶抗酶抑制剂(AZIN)对多胺跨膜物质转运也具有重要的调控功能;此外,金属阳离子、细胞膜跨膜电位和pH等内环境因素也可参与多胺转运的调节。因此,本文就多胺转运蛋白、多胺代谢相关基因和蛋白质以及内环境因素调控多胺跨膜物质转运的分子调控机制作一综述,以期为阐明多胺转运调控机制的研究奠定理论基础。
关键词多胺     多胺转运蛋白     鸟氨酸脱羧酶     鸟氨酸脱羧酶抗酶     内环境因素    
Mechanisms of Transmembrane Transport of Polyamines
WANG Guihong, MA Rong, KANG Bo , JIANG Dongmei , HE Hui    
College of Animal Science and Technology, Sichuan Agricultural University, Ya'an 625014, China
Abstract: Polyamines are involved in several biological processes including reproduction, embryo development and cancer development, as well as play important roles in cell proliferation, differentiation and apoptosis. The homeostasis of polyamines is regulated strictly by transmembrane transporter and polyamine metabolically pathways. Solute carrier (SLC) gene family including SLC3A2, SLC7A1, SLC12A8, SLC22A16, SLC22A1, SLC22A2 and SLC22A3 genes and their protein could involve in the process of polyamine transmembrane transport; furthermore, the key regulatory genes of polyamine metabolism including ornithine decarboxylase (ODC), ornithine decarboxylase antizyme (OAZ) and ornithine decarboxylase antizyme inhibitorgenes (AZIN) genes could also regulate transmembrane transport of polyamines; moreover, the internal environmental factors including metal cation, transmembrane potential and pH also involved in the process of polyamine transport. Therefore, in this paper, the roles of the polyamine transporters, the key regulatory genes of polyamine metabolism and their proteins, and internal environmental factors mediating polyamine transport were reviewed.
Key words: polyamine     polyamine transporter     ornithine decarboxylase     ornithine decarboxylase antizyme     internal environmental factor    

多胺(如腐胺、亚精胺和精胺)是一类广泛存在于动物机体内的脂肪族化合物,在细胞增殖、分化和凋亡过程中发挥重要作用。近年来研究发现,多胺可参与调控动物繁殖、胚胎发育以及癌症发生发展等生物学过程[1, 2]。因此,细胞内多胺稳态的维持就显得尤为重要。生物体内多胺主要来源于体内生物合成、食物和肠道菌群等3条途径,因而细胞内多胺的浓度是通过多胺合成、分解和转运过程共同维持[3]。用抗生素抑制肠道微生物菌群的活性,或摄食多胺缺乏的食物可显著增强二氟甲基鸟氨酸(difluoromethylornithine,DFMO,一种多胺生物合成酶抑制剂)诱导的多胺耗竭效应,说明多胺转运对维持细胞内多胺稳态起着至关重要的作用[4]。因此,阐明多胺转运分子调控机制对动物繁殖、胚胎发育以及癌症发生发展等生物学过程的研究有着十分重要的理论和实践意义。本文就多胺转运蛋白、多胺代谢相关基因和蛋白质以及内环境因素调控多胺跨膜物质转运的研究作一综述,旨在为阐明多胺转运调控机制的研究奠定理论基础。

1 多胺转运蛋白

多胺转运蛋白是一种能特异性识别多胺及多胺类似物,并介导多胺跨膜物质转运的蛋白质[5]。尽管多胺跨膜物质转运的分子机制仍不清楚,但有研究表明,一些膜转运蛋白能参与多胺的转运[6]。目前,在人体中已经发现了超过400种属于溶质转运蛋白(solute-linked carrier,SLC)和ATP结合盒蛋白(ATP-binding cassette,ABC)的膜转运蛋白,而且SLC基因家族编码的部分蛋白质能介导多胺的转运。

SLC基因家族编码的有机阳离子转运体(organic cation transporters,OCTs)能介导多胺转运。OCTs包括OCT1、OCT2和OCT3,其中OCT1由SLC22A1基因编码,在肝脏中表达量高[7];OCT2由SLC22A2基因编码,相较于OCT1,OCT2更具组织特异性,主要在人肾脏远端小管的管腔膜上表达,另有研究表明OCT2在人脑部神经细胞也有表达[8];OCT3由SLC22A3基因编码,在大多数组织中均有表达[7]。在鼠体内OCT1能介导阳离子通过细胞膜,而这种介导过程不依赖于Na+,而且对pH也不敏感。进一步的研究表明,OCT1能介导亚精胺和精胺的入胞过程[9]。Winter等[10]研究表明,HEK293细胞中的OCT2能介导腐胺的转运,而且呈一定的浓度和pH依赖性。此外,腐胺和亚精胺的跨膜转运过程依赖于细胞膜的跨膜电位水平[11, 12];而OCT1和OCT3介导阳离子转运的过程也依赖于细胞膜的跨膜电位水平[7],据此推测OCT1和OCT3能介导腐胺和亚精胺的跨膜物质转运。最近,Sala-Rabanal等[13]研究非洲爪蟾蜍OCTs(OCT1、OCT2和OCT3)介导多胺跨膜物质转运的结果进一步证实,OCTs可作为多胺转运蛋白,并且在多胺跨膜物质转运过程中具有重要作用。

SLC7A1属于阳离子氨基酸转运体家族中的一员,在哺乳动物的大部分组织中均有表达[14, 15],其家族成员属于氨基酸y+转运系统,表现出转运体的活性[14, 16],主要负责L-赖氨酸、精氨酸和鸟氨酸的转运。Sharpe等[17]研究表明,由于y+转运系统转运的氨基酸和多胺的结构相似,而且转运都具有底物高亲和力和非Na+依赖的特性,因而y+转运系统能接受多胺作为底物进行转运。可见,多胺的转运可能受到一个未知y+转运位点的介导。SLC3A2基因编码的蛋白质是细胞抗原4F2重链。研究表明,SLC3A2基因不仅能作为癌症化学预防的靶点[18, 19],还可作为Ⅱ型肾细胞癌的生物标志[20]。在哺乳动物细胞中,SLC3A2基因参与多胺跨膜物质转运[21]。在CHO细胞中,SLC3A2基因能促进多胺的外排[22, 23]。另外,在人直肠癌细胞中,SLC3A2基因能促进腐胺的外排[23],然而在低水平多胺的组织中,SLC3A2基因能介导腐胺的摄入。可见,SLC3A2介导腐胺跨膜物质转运具有双向性的特点[4]。另外,SLC22A16基因编码的OCT6在人类组织中表达较低,但在睾丸组织中高表达[7]。有研究表明,OCT6不仅能介导多胺的转运,还能介导多胺类似物的转运[24]SLC12A8基因编码的阳离子-氯离子转运蛋白9可促进哺乳动物细胞多胺和氨基酸的转运[24, 25]。若HEK293细胞表达SLC12A8A基因,那么细胞膜能够接受多胺和氨基酸作为底物并促进它们的转运,与此同时,随着SLC12A8A基因在HEK293细胞内表达,细胞对多胺的摄入量增加[6]

此外,非洲爪蟾蜍卵母细胞中表达的TcPAT12基因在亚精胺摄入过程中也发挥重要调控作用。Carrillo等[26]研究表明,TcPAT12基因不仅能参与调控亚精胺的转运,而且还能参与腐胺跨膜物质转运的调节。另外,转运载体PotABCD也能参与调控细胞对亚精胺和精胺的跨膜物质转运过程[27, 28]。总之,一些膜转运蛋白,尤其是SLC基因家族编码蛋白能以多胺和多胺类似物为底物,在介导多胺跨膜物质转运的过程中发挥重要作用。

2 多胺代谢关键基因和蛋白质

多胺跨膜物质转运不仅受到多胺转运蛋白的调控,还受到多胺代谢相关基因的调控。研究表明,鸟氨酸脱羧酶(ornithine decarboxylase,ODC)与多胺转运密切相关,ODC抑制剂二氟甲基鸟氨酸(difluoromethylornithine,DFMO)能显著增强多胺的跨膜物质转运[29]。鸟氨酸脱羧酶抗酶(ornithine decarboxylase antizyme,OAZ)作为多胺合成代谢过程第一限速酶ODC的特异性抑制剂,是多胺转运过程的关键调控因子之一。OAZ1广泛存在于生物体中,Hoshino等[30, 31]研究表明,在NIH3T3细胞中,OAZ不仅能显著抑制精胺的摄取,而且还能抑制ODC的生物活性,进而促进ODC降解。另外,研究还证实,OAZ2和OAZ3也能抑制细胞对外源多胺的摄取[32]。在酵母的双杂交试验中,OAZ1能与排序连接蛋白5(sorting nexin-5,SNX-5)结合,而SNX-5在囊泡运输中有重要作用[33, 34],提示多胺转运可能与囊泡运输有关。综上所述,OAZ能参与多胺转运的调节,但其抑制多胺转运的具体机制仍有待进一步研究阐明。鸟氨酸脱羧酶抗酶抑制剂(ornithine decarboxylase antizyme inhibitor,AZIN)作为OAZ的抑制剂,能促进OAZ-ODC复合物中ODC的解离,从而恢复ODC的生物活性。新近研究表明,AZIN在多胺跨膜物质转运过程中也具有重要调控作用[35]。Liao等[36]研究表明,在肺泡巨噬细胞中,肺孢子菌可诱导AZIN1基因过表达,继而显著增加细胞内多胺的生物合成和多胺的摄入。多胺代谢途径是MycRas等致癌基因的下游靶点,而且在癌细胞中,多胺转运系统的活性显著增强。Roy等[37]研究表明,在人结肠癌细胞中,激活K-ras蛋白将上调细胞对多胺的摄取。综上所述,多胺代谢途径的关键调控基因和蛋白质在多胺转运过程中发挥重要作用,而致癌因子也可能在多胺跨膜物质转运过程中具有重要调控作用,然而其机制有待进一步研究阐明。

3 调控多胺跨膜物质转运的内环境因素

细胞膜跨膜电位、金属阳离子和pH等内环境因素可参与调节多胺转运。腐胺和亚精胺转运具有Na+依赖的特性,因此可利用内源性的Na+浓度梯度作为多胺协同转运的驱动力。Aziz等[38]研究表明,在低氧环境中,降低牛肺动脉平滑肌细胞外液Na+浓度或增加Na+通透性可显著抑制细胞的多胺跨膜转运,提示低氧可诱导Na+依赖的多胺跨膜物质转运。然而,后继研究发现,用非电解质溶液完全替换NaCl将促进细胞摄取多胺,提示Na+本身也可作为一种多胺转运的抑制剂[39]。Kakinuma等[40]研究表明,牛淋巴细胞中多胺摄取依赖于细胞膜的跨膜电位水平,并且受细胞内亚精胺和精胺水平的调节。随后的研究证实,细胞摄取多胺的过程依赖于细胞膜的跨膜电位水平[11, 41],而且细胞对多胺的摄取对离子通道具有强烈的依赖性。另外有研究表明,二价阳离子是腐胺和精胺转运蛋白激活的必需因子,这些二价阳离子激活腐胺和精胺转运蛋白的效率为:Mn2+>Ca2+>Mg2+>Co2+[42, 43, 44],而且乙二胺四乙酸(EDTA)和乙二醇双四乙酸(EGTA)螯合试验的结果表明,Mn2+和Mg2+是多胺跨膜物质转运所必需的二价阳离子[39]。另外,多胺转运还与pH有关。研究表明,在转运过程中,腐胺比精胺对pH更为敏感,其最适pH偏向于碱性[45]。因此,多胺的转运与细胞跨膜电位、金属阳离子和pH等因素有关。

4 小 结

多胺参与调控动物繁殖、胚胎发育和癌症发生发展等多种生物学过程,同时还具有调控细胞增殖、分化和凋亡的功能。多胺转运蛋白、多胺代谢关键基因和蛋白质以及内环境因素共同参与细胞多胺跨膜物质转运过程。然而,目前关于多胺转运蛋白介导多胺跨膜物质转运的机制尚不清楚,ODCOAZAZIN等多胺代谢关键调控基因调控多胺转运活性的机制仍有待进一步研究阐明。多胺跨膜物质转运分子调控机制的研究将对阐明细胞内多胺稳态维持调控机制具有重要意义,同时也将为动物繁殖、胚胎发育以及抗癌治疗等方面的研究提供新的切入点。

参考文献
[1]WALLACE H M,NIIRANEN K.Polyamine analogues-an up date[J]. Amino Acids,2007,33(2):261-265. (1)
[2]AGUDELO-ROMERO P,BORTOLLOTI C,PAIS M S,et al.Study of polyamines during grape ripening indicate an important role of polyamine catabolism[J]. Plant Physiologyand Biochemistry2013,67:105-119. (1)
[3]IGARASHI K,KASHIWAGI K.Polyamines:mysterious modulators of cellular functions[J]. Biochemical and Biophysical Research Communications,2000,271(3):559-564. (1)
[4]UEMURA T,STRINGER D E,BLOHM-MANGONE K A,et al.Polyamine transport is mediated by both endocytic and solute carrier transport mechanisms in the gastrointestinal tract[J]. American Journal of Physiology Gastrointestinal and Liver Physiology,2010,299(2):G517-G522. (2)
[5]PHANSTIEL O Ⅳ,KAUR N,DELCROS J G.Structure-activity investigations of polyamine-anthracene conjugates and their uptake via the polyamine transporter[J]. Amino Acids,2007,33(2):305-313. (1)
[6]ABDULHUSSEIN A A,WALLACE H M.Polyamines and membrane transporters[J]. Amino Acids,2014,46(3):655-660. (2)
[7]KOEPSELL H,LIPS K,VOLK C.Polyspecific organic cation transporters:structure,function,physiological roles,and biopharmaceutical implications[J]. Pharmaceutical Research,2007,24(7):1227-1251. (4)
[8]KOEPSELL H.Organic cation transporters in intestine,kidney,liver,and brain[J]. Annual Review of Physiology,1998,60(1):243-266. (1)
[9]BUSCH A E,QUESTER S,ULZHEIMER J C,et al.Electrogenic properties and substrate specificity of the polyspecific rat cation transporter rOCT1[J]. The Journal of Biological Chemistry,1996,271(51):32599-32604. (1)
[10]WINTER T N,ELMQUIST W F,FAIRBANKS C A.OCT2 and MATE1 provide bidirectional agmatine transport[J]. Molecular Pharmaceutics,2011,8(1):133-142. (1)
[11]POULIN R,ZHAO C,VERMA S,et al.Dependence of mammalian putrescine and spermidine transport on plasma-membrane potential:identification of an amiloride binding site on the putrescine carrier[J]. The Biochemical Journal,1998,330(Suppl.3):1283-1291. (2)
[12]POULIN R,CASERO R A,SOULET D.Recent advances in the molecular biology of metazoan polyamine transport[J]. Amino Acids,2012,42(2/3):711-723. (1)
[13]SALA-RABANAL M,LI D C,DAKE G R,et al.Polyamine transport by the polyspecific organic cation transporters OCT1,OCT2,and OCT3[J]. Molecular Pharmaceutics,2013,10(4):1450-1458. (1)
[14]PALACÍN M,ESTÉVEZ R,BERTRAN J,et al.Molecular biology of mammalian plasma membrane amino acid transporters[J]. Physiological Reviews,1998,78(4):969-1054. (2)
[15]YANG Z,VENARDOS K,JONES E,et al.Identification of a novel polymorphism in the 3'UTR of the L-arginine transporter gene SLC7A1:contribution to hypertension and endothelial dysfunction[J]. Circulation,2007,115(10):1269-1274. (1)
[16]DEVÉS R,BOYD C A.Transporters for cationic amino acids in animal cells:discovery,structure,and function[J]. Physiological Reviews,1998,78(2):487-545. (1)
[17]SHARPE J G,SEIDEL E R.Polyamines are absorbed through a y+ amino acid carrier in rat intestinal epithelial cells[J]. Amino Acids,2005,29(3):245-253. (1)
[18]BABBAR N,GERNER E W.Targeting polyamines and inflammation for cancer prevention[J]. Recent Results in Cancer Research. Fortschritte der Krebsforschung. Progres Dans Les Recherches Sur Le Cancer,2011,188:49-64. (1)
[19]WOOD P L,KHAN M A,SMITH T,et al.Cellular diamine levels in cancer chemoprevention:modulation by ibuprofen and membrane plasmalogens[J]. Lipids in Health and Disease,2011,10:214. (1)
[20]PRAGER G W,POETTLER M,SCHMIDINGER M,et al.CD98hc (SLC3A2),a novel marker in renal cell cancer[J]. European Journal of Clinical Investigation,2009,39(4):304-310. (1)
[21]UEMURA T,GERNER E W.Polyamine transport systems in mammalian cells and tissues[J]. Methods in Molecula Biology,2011,720:339-348. (1)
[22]XIE X,GILLIES R J,GERNER E W.Characterization of a diamine exporter in Chinese hamster ovary cells and identification of specific polyamine substrates[J]. The Journal of Biological Chemistry,1997,272(33):20484-20489. (1)
[23]UEMURA T,YERUSHALMI H F,TSAPRAILIS G,et al.Identification and characterization of a diamine exporter in colon epithelial cells[J]. The Journal of Biological Chemistry,2008,283(39):26428-26435. (2)
[24]AOUIDA M,POULIN R,RAMOTAR D.The human carnitine transporter SLC22A16 mediates high affinity uptake of the anticancer polyamine analogue bleomycin-A5[J]. The Journal of Biological Chemistry,2010,285(9):6275-6284. (1)
[25]FRIAUF E,RUST M B,SCHULENBORG T,et al.Chloride cotransporters,chloride homeostasis,and synaptic inhibition in the developing auditory system[J]. Hearing Research,2011,279(1/2):96-110. (1)
[26]CARRILLO C,CANEPA G E,ALGRANATI I D,et al.Molecular and functional characterization of a spermidine transporter (TcPAT12) from Trypanosoma cruzi[J]. Biochemical and Biophysical Research Communications,2006,344(3):936-940. (1)
[27]KASHIWAGI K,MIYAMOTO S,NUKUI E,et al.Functions of potA and potD proteins in spermidine-preferential uptake system in Escherichia coli[J]. The Journal of Biological Chemistry,1993,268(26):19358-19363. (1)
[28]YAO X,LU C D.Functional characterization of the potRABCD operon for spermine and spermidine uptake and regulation in staphylococcus aureus[J]. Current Microbiology,2014,69(1):75-78. (1)
[29]POULIN R,COWARD J K,LAKANEN J R,et al.Enhancement of the spermidine uptake system and lethal effects of spermidine overaccumulation in ornithine decarboxylase-overproducing L1210 cells under hyposmotic stress[J]. The Journal of Biological Chemistry,1993,268(7):4690-4698. (1)
[30]KHOMUTOV M A,WEISELL J,HYVONEN M,et al.Hydroxylamine derivatives for regulation of spermine and spermidine metabolism[J]. Biochemistry,2013,78(13):1431-1446. (1)
[31]HOSHINO K,MOMIYAMA E,YOSHIDA K,et al.Polyamine transport by mammalian cells and mitochondria:role of antizyme and glycosaminoglycans[J]. The Journal of Biological Chemistry,2005,280(52):42801-42808. (1)
[32]ZHU C,LANG D W,COFFINO P.Antizyme2 is a negative regulator of ornithine decarboxylase and polyamine transport[J]. The Journal of Biological Chemistry,1999,274(37):26425-26430. (1)
[33]WANG J T H,KERR M C,KARUNARATNE S,et al.The SNX-PX-BAR family in macropinocytosis:the regulation of macropinosome formation by SNX-PX-BAR proteins[J]. PLoS One,2010,5(10):e13763. (1)
[34]WASSMER T,ATTAR N,HARTERINK M,et al.The retromer coat complex coordinates endosomal sorting and dynein-mediated transport,with carrier recognition by the trans-Golgi network[J]. Developmental Cell,2009,17(1):110-122. (1)
[35]KAHANA C.Regulation of cellular polyamine levels and cellular proliferation by antizyme and antizyme inhibitor[J]. Essays in Biochemistry,2009,46:47-62. (1)
[36]LIAO C P,LASBURY M E,WANG S H,et al.Pneumocystis mediates overexpression of antizyme inhibitor resulting in increased polyamine levels and apoptosis in alveolar macrophages[J]. The Journal of Biological Chemistry,2009,284(12):8174-8184. (1)
[37]ROY U K,RIAL N S,KACHEL K L,et al.Activated K-RAS increases polyamine uptake in human colon cancer cells through modulation of caveolar endocytosis[J]. Molecular Carcinogenesis,2008,47(7):538-553. (1)
[38]AZIZ S M,LIPKE D W,OLSON J W,et al.Role of ATP and sodium in polyamine transport in bovine pulmonary artery smooth cells[J]. Biochemical Pharmacology,1994,48(8):1611-1618. (1)
[39]POULIN R,LESSARD M,ZHAO C Q.Inorganic cation dependence of putrescine and spermidine transport in human breast cancer cells[J]. The Journal of Biological Chemistry,1995,270(4):1695-1704. (2)
[40]KAKINUMA Y,HOSHINO K,IGARASHI K.Characterization of the inducible polyamine transporter in bovine lymphocytes[J]. European Journal of Biochemistry,1988,176(2):409-414. (1)
[41]DOT J,LLUCH M,BLANCO I,et al.Polyamine uptake in cultured astrocytes:characterization and modulation by protein kinases[J]. Journal of Neurochemistry,2000,75(5):1917-1926. (1)
[42]MINCHIN R F,MARTIN R L.Extracellular calcium stimulates Na(+)-dependent putrescine uptake in B16 melanoma cells[J]. The International Journal of Biochemistry & Cell Biology,1997,29(3):447-454. (1)
[43]GROBLEWSKI G E,HARGITTAI P T,SEIDEL E R.Ca2+/calmodulin regulation of putrescine uptake in cultured gastrointestinal epithelial cells[J]. The American Journal of Physiology,1992,262(6 Pt 1):C1356-C1363. (1)
[44]BRACHET P,TOME D.Putrescine uptake by rabbit intestinal brush-border membrane vesicles[J]. Biochemistry International,1992,27(3):465-475. (1)
[45]BRACHET P,DEBBABI H,TOME D.Transport and steady-state accumulation of putrescine in brush-border membrane vesicles of rabbit small intestine[J]. The American Journal of Physiology,1995,269(5):G754-G762. (1)