当环境发生大范围改变,如盐度、酸碱度或者营养素等发生变化,多细胞生物体本身的内稳态机制能够保证其存活。对高等动物的研究表明,氨基酸代谢库中氨基酸的组成与含量变化引起不同的细胞应答,由相关信号传导系统介导,调控下游效应因子,实现蛋白质的合成与降解、基因表达与抑制以及营养素的新陈代谢,最终在宏观上表现为动物生长发育等经济性状的差别[1]。目前已知在细胞水平上有2条信号通路可感知氨基酸含量,1条为感知氨基酸丰度的雷帕霉素靶蛋白(target of rapamycin,TOR)信号系统,1条为感知氨基酸平衡的氨基酸应答(amino acid response,AAR)信号通路[1, 2]。
1 TOR信号通路的氨基酸感知与代谢调节 1.1 TOR信号通路与氨基酸感知TOR是一种高度保守的丝氨酸/苏氨酸激酶,它接收并整合来自细胞内的氨基酸、生长因子、能量状态和应激等信号,调节细胞的生长和代谢[3, 4]。TOR存在2个结构和功能上有差异的复合物,分别是对雷帕霉素和营养素敏感的TOR复合体(TOR complex,TORC)1和对雷帕霉素和营养素不敏感的TORC2[5, 6]。在哺乳动物细胞中,TORC1主要包含有TOR、TOR调节相关蛋白(regulatory-associated protein of mTOR,Raptor)和哺乳动物酵母同源致命因子Sec13蛋白8(mammalian lethal with SEC13 protein 8,mLST8)成分,而TORC2主要包含有TOR、对雷帕霉素不敏感的伴随物(rapamycin-insensitive companion ofmTOR,Rictor)、哺乳动物应激激活蛋白激酶作用蛋白(mSIN1)、mLST8和富含脯氨酸蛋白(proline rich protein,PRR)成分[7]。TORC1可以综合细胞内氨基酸、生长因子、应激等信号,进而控制着多种主要的细胞生命活动,例如蛋白质合成、脂肪合成、能量代谢和自噬等过程[4, 8]。TORC2主要由生长因子激活,进而通过磷脂酰肌醇-3-激酶(phosphoinositide-3-kinase,PI3K)依赖的核糖体辅助和磷酸化蛋白激酶A、G、C相关(AGC)激酶家族,进而控制着细胞的存活、肌动蛋白细胞骨架的组织和其他生命过程[8, 9, 10]。
对TORC1激活的机制已在哺乳动物、畜禽和鱼类中进行了广泛研究[5, 8, 11]。其一,胰岛素可以激活TORC1的活性。胰岛素或类胰岛素生长因子(IGFs)首先与细胞膜表面的受体结合,使胰岛素受体底物1(insulin receptor substrate 1,IRS1)磷酸化,继而使PI3K在细胞膜聚集。PI3K通过磷酸肌醇依赖激酶1(PDK1)磷酸化蛋白激酶B(protein kinase B,Akt)。Akt可通过2种途径激活TORC1:磷酸化的结节性硬化症复合体(TSC)2使TSC1/TSC2复合物去抑制,通过脑组织中丰富表达的Ras同源类似物(Ras homolog enriched in brain,Rheb)鸟苷三磷酸酶(GTPase)激活TORC1;Akt也可通过磷酸化富含脯氨酸Akt/PKB亚基40(PRAS40)激活TORC1[12]。其二,氨基酸可以激活TORC1的活性。氨基酸信号如何传递至TORC1目前还知之甚少,但是一些重要的信号传递蛋白已逐渐被发现[13]。氨基酸感知一个至关重要的步骤是由氨基酸招募TORC1至溶酶体膜上,其中Rheb对TORC1附着在溶酶体膜上起至关重要的作用[14],对所有可以激活TORC1的信号来讲都是必需的[15]。
然而,TSC2敲除的小鼠胚胎成纤维细胞(MEFs)仍然可以感知氨基酸的缺乏,意味着存在其他非TSC-Rheb途径的复合物参与到氨基酸感知的过程中。TORC1在溶酶体上的激活模型已被广泛接受,其受氨基酸含量调节,涉及多个蛋白酶复合体,包括Rag GTPase、调节子(regulator)和空泡H+-ATP酶(v-ATPase)。Rag GTPase共有4个亚基,分别是RagA、RagB、RagC和RagD,其中通常RagA和RagB、RagC和RagD聚集组成没有功能的二聚体,它们通常常驻在溶酶体膜上。Rag复合物与鸟苷三磷酸(GTP)或鸟苷二磷酸(GDP)的结合是受氨基酸调控的。细胞经过氨基酸刺激之后结合核苷酸时开始翻转,RagA/B和RagC/D分别与GTP和GDP结合,这是一种Rag二聚体活化的状态。当氨基酸充足时,RagA/B·GTP-RagC/D·GDP激活复合体与TORC1复合体的Raptor相互作用而成为停靠位点,使TORC1停靠在溶酶体的表面。当处于氨基酸缺乏状态时,TORC1分散在整个细胞中,而当加入氨基酸刺激后,TORC1重新分布在含有溶酶体和晚期核内体标志蛋白溶酶体相关膜蛋白(LAMP2)和小GTPase酶结合蛋白7(RAB7)的小泡中。这意味着Rag GTPase可以将氨基酸信号传导到TORC1[14, 15]。Rag GTPase定位在溶酶体表面,需要一个锚定分子,而regulator多聚复合物就是介导二者结合的骨架,其是由有丝分裂原激活蛋白激酶衔接蛋白1(MP1)、衔接蛋白14(p14)和衔接蛋白18(p18)组成的三聚体。当氨基酸改变时,溶酶体膜上的v-ATPase调节regulator的氨基酸应答反应。高度保守的v-ATPase由2个组分组成,包括V1结构域和V0结构域。V1结构域的ATP水解介导细胞质中的质子通过V0结构域的通道泵入溶酶体中。V1结构域与Rag GTPase和regulator相互作用,其作用受氨基酸调节,当氨基酸缺乏时其作用加强,当氨基酸充足时作用减弱。V1结构域的ATP水解对于Rag GTPase与TORC1的相互作用是必需的,从而激活TORC1。无论是果蝇还是哺乳动物细胞中,氨基酸均引起溶酶体膜上v-ATPase与Rag GTPase和regulator相互作用,从而调节TORC1的活力[16]。
饲料高蛋白质、氨基酸和胰岛素均能激活TOR信号系统,影响虹鳟的多种代谢过程[17]。氨基酸对动物TOR信号通路调控作用的研究发现,去除组织培养液中的氨基酸1~2 h,显著抑制了TOR下游信号应答蛋白核糖体蛋白S6激酶(ribosomal protein S6 kinases,S6Ks)和真核起始因子4E结合蛋白(eukaryotic translation initiation factor 4E-binding proteins,4E-BPs)磷酸化作用;氨基酸恢复至基础水平,恢复了下游信号传导物的活性或磷酸化作用[18]。在对啮齿动物[19, 20]和人类[21, 22]的体内体外研究发现,氨基酸种类对TOR信号传导的调控作用存在差异,亮氨酸和精氨酸的调控作用较强,特别是亮氨酸。
1.2 TOR信号通路控制蛋白质合成TORC1调控着整体的翻译水平,进而促进细胞生长和生命延长。TORC1的下游蛋白包括4E-BP1和S6K1,它们以磷酸化的方式调控着mRNA多方面的翻译功能[8]。蛋白质合成的限速步骤是翻译起始,在这个过程中小核糖体亚基聚集到mRNA 5′端,识别起始密码子,随后完整的核糖体也聚集其上完成翻译[23, 24]。小核糖体亚基与mRNA的结合需要真核细胞转录起始因子(eukaryotic translation initiation factor,eIF)4F复合体结合到mRNA 5′帽子结构。eIF4F复合体包含3个起始因子,即eIF4E、eIF4G和eIF4A,其中eIF4E与5′帽子结构结合是组装eIF4F复合体的关键,它能够召集eIF4G和eIF4A的结合[23]。而4E-BP1与eIF4E结合抑制了eIF4F复合体形成。当TOR信号通路激活后,磷酸化4E-BP1使eIF4E与之分离,eIF4E募集eIF4G和eIF4A,起始蛋白质的合成[25]。
TORC1的另一个重要应答因子是S6Ks,由TORC1磷酸化激活。研究表明,S6Ks在蛋白质翻译中调节翻译起始过程,且协同调节核糖体的生物合成,从而使翻译更加高效[26]。S6K1有多个效应因子,S6K1的磷酸化可以磷酸化下游核糖体蛋白(S6),转录起始因子eIF4B,抑制胰岛素受体底物-1(IRS-1)、凋亡蛋白(BAD)以及对真核细胞延伸因子2(eukaryotic elongation factor 2,eEF2)有抑制作用的eEF2激酶(eEF2K)等,从而调节蛋白质合成、糖脂代谢、细胞大小和分裂以及细胞存活等细胞过程[27, 28]。S6是第1个被鉴别的S6K1底物,同样,S6的磷酸化作用也是被研究的最彻底的一个。S6有5个磷酸化位点,分别为苏氨酸35、236、240、244和247位点,其中苏氨酸236位点为最重要的磷酸化位点[27]。S6磷酸化促进了核糖体和5′端寡嘧啶束(5′-terminal oligopyrimidine tract,5′-TOP)mRNA,的亲和力,从而诱导5′TOP mRNA进行有效翻译[29, 30]。5′TOP mRNA主要编码核糖体蛋白和其他翻译过程的必需蛋白[31]。
蛋白质合成代谢主要受TOR信号通路调节,而蛋白质分解则主要是通过泛素-蛋白酶体通路调控[32, 33]。然而,鱼类蛋白酶体的活性对营养状况敏感与否仍有待验证[34, 35]。近年来,国外学者也针对鱼类肌肉组织中的蛋白质降解和特定氨基酸对TOR信号途径的激活状态开展了探索性研究[11]。研究发现,饲粮氨基酸含量是激活TOR系统的有效途径,比如通过添加谷氨酰胺来激活TOR信号通路,可提高生长性能[36]。而蛋白质摄入不足或氨基酸不平衡会导致IGF-1水平下降,而IGF结合蛋白1(IGFBP-1)水平升高,共同作用于TOR信号通路,引起生长抑制[37, 38]。
1.3 TOR信号通路与糖脂代谢调控尽管目前对于TOR和代谢调控的研究尚处于初级阶段,但已有不少结果显示TORC1可以在很多组织器官中,从转录、翻译和翻译后水平上调控多条代谢通路[3]。在淋巴瘤细胞中,雷帕霉素抑制TORC1活性改变了许多代谢酶基因的表达,结合代谢图谱和基因表达结果分析显示,在培养的细胞中TORC1调控着糖酵解、甾醇和脂质的合成,另外,磷酸戊糖途径也受TORC1的调控[39, 40]。大量报道显示TORC1可以激活转录因子固醇调节元件结合蛋白1(sterol regulatory element binding protein-1,SREBP-1)。SREBP-1是转录因子固醇调节元件结合蛋白家族(SREBPs)的一员,调控着脂肪合成相关酶的表达,以及脂肪和胆固醇的稳态。完整的SREBP-1主要存在于内质网膜上,在各种刺激物的作用下,如降低的甾醇、胰岛素或者饱和脂肪酸水平,使SREBP-1从内质网运送到高尔基体,在高尔基体内SREBP-1前体被激活。被激活后的SREBP-1进而被转运到细胞核内,在细胞核内激活和促进甾醇调节原件和相关基因表达[41]。TORC1通过促进SREBP-1转录、翻译和翻译后的加工,使其活性提高,从而诱导甾醇和脂肪的合成,以及磷酸戊糖途径相关基因的转录[39]。由TORC1上调的SREBP-1活性对于由Akt磷酸化引起的脂肪合成是必需的[42]。
TORC1也可以促进缺氧诱导因子(hypoxia inducible factor,HIF)基因表达,这是通过4E-BP1依赖的方式调控其翻译[43, 44]。HIF可激活100~200个涉及到细胞内代谢和细胞适应低氧环境的基因的转录,且TORC1依赖性的HIF的激活足以上调这些基因的表达[39]。HIF-1对糖酵解途径的激活被认为是低氧代谢适应的关键,通过增加葡萄糖转化为丙酮酸盐进而分解为乳酸来实现。HIF-1也可以间接激活丙酮酸脱氢酶激酶(PDK1),通过三羧酸循环(TCA)来有效抑制代谢过程[45]。当营养素变化后,TORC1通过调节HIF和SREBP-1的活性,从而使机体能量代谢和脂肪合成代谢发生适应性改变。TORC1另一重要功能是,可以调控线粒体数量和功能。在小鼠骨骼肌中,缺乏Raptor导致调控线粒体生物合成酶的表达量降低,且氧化能力损失,Cunningham等[46]发现TORC1促进了转录因子PPARγ联合激活因子1a(PGC1a)的转录活性,其在调节线粒体合成和氧化代谢方面起重要作用。另外,目前对于TORC1信号如何影响和调节转录网络的了解仍然很少,仍需要大量的工作。
与TORC1受抑制时对相关基因表达的调节一致,S6K1或4E-BPs突变的小鼠表现出极大的代谢改变。S6K1缺失的小鼠由于降低了β细胞的数量显现出低胰岛素症状,但是同时也升高了对胰岛素信号的敏感性[47]。另外,S6K1缺失的小鼠能够抵抗由饮食和年龄引起的肥胖[48],尽管摄食量未受影响,S6K1的缺失通过增加甘油三酯的分解阻止了脂肪在脂肪组织的富集,并增加了脂肪酸在脂肪组织和肌肉中的氧化。而4E-BP1和4E-BP2缺失的小鼠表现出相反的表观症状,尽管这些小鼠都正常存活,但与正常野生型小鼠相比在16周的研究时间内,它们明显肥胖且体重增加30%,这些小鼠脂肪组织的重量显著升高,且血浆中的胰岛素和胆固醇的水平升高,进而建立起研究肥胖的模型。
大量研究证明,TOR信号系统与氨基酸应答通路在从酵母到人的不同生物中功能保守,TOR信号通路上的大部分信号蛋白,如TOR、S6K1、S6和4E-BP1,都已经在虹鳟上证明是保守性存在的[11, 17]。体内和体外试验表明胰岛素[11]、氨基酸[49]、胰岛素和氨基酸[50]、植物蛋白质源替代[51]以及碳水化合物和蛋白质比例不同的饲粮[17, 52]均显著影响TOR信号通路和肝脏中的次级代谢相关的基因表达。简要来讲,TOR信号通路和其他相关因子的响应状况与畜禽和其他高等动物中的研究结果一致。在斑马鱼中的研究结果表明,餐后TOR通路被激活,饲喂显著上调了餐后糖酵解基因[葡萄糖激酶(GK)、己糖激酶(HK1)]和脂肪合成基因[脂肪酸合成酶(FAS)、葡萄糖-6-磷酸脱氢酶(G6PD)、乙酰辅酶A羧化酶α(ACCα)]的表达,显著抑制了斑马鱼肝胰脏糖异生基因[磷酸烯醇式丙酮酸羧激酶(cPEPCK)]和脂肪分解途径关键酶基因[肉碱棕榈酰基转移酶1b(CPT1b)]的表达[53]。而腹腔注射雷帕霉素后,显著下调虹鳟脂肪合成和糖酵解途径关键酶基因的表达[54]。这表明氨基酸和胰岛素依赖的TOR通路的激活或抑制调控鱼体糖脂代谢过程。
2 AAR信号通路的氨基酸感知与代谢调节 2.1 AAR信号通路与氨基酸应答蛋白质缺乏或必需氨基酸缺乏将激活氨基酸应答通路[55]。一般来说,酵母转录激活因子(GCN)2作为氨基酸感知传感器,通过与非负载tRNA结合从而感知细胞内氨基酸含量,当GCN2与任一非负载转运RNA(tRNA)结合均能激活GCN2,从而使AAR信号通路激活。当氨基酸缺乏时,细胞内空载tRNA增多,使GCN2激酶去磷酸化被激活,进而引起eIF2α丝氨酸51位点的磷酸化。eIF2α的磷酸化使体内大部分蛋白质的合成减少,但也会通过转录水平调控另一些基因的表达。转录激活因子(activating transcription factor,ATF)4就是其中之一,当氨基酸缺乏时上调其表达量。ATF4与CCAAT增强子结合蛋白(CCAAT/enhancer-binding protein,C/EBP)形成二聚体,与C/EBP激活转录因子应答元件(C/EBP activating transcription factor response elements,CARE)结合,激活大量下游基因转录,包括氨基酸转运载体、氨基酸代谢酶、氧化状态调节因子、能量调节因子等,从而调控着细胞内的氨基酸缺乏应答[56]。研究发现,在人肝癌细胞系(HepG2)细胞培养液中任何一种必需氨基酸缺乏都可以激活AAR信号通路[57]。另外,eIF2α的磷酸化也是会提高其他转录调节因子水平,包括转录因子ATF5以及生长停滞与DNA损害可诱导基因34(GADD34)。
最重要的是当必需氨基酸缺乏时,ATF4可以诱导氨基酸转运载体和氨基酸合成酶基因的表达,从而促进氨基酸的合成与吸收,保证正常的生理机能。ATF4还可上调其他基因转录,如C/EBPβ、ATF3和C/EBP同源蛋白(CHOP),这些可以作为ATF4的负调节因子[56, 58]。在动物中,饲喂低蛋白质的饲粮会增加C/EBP mRNA表达量和活性[59]。细胞感知多种胁迫信号均可上调ATF3的表达[60]。Pan等[61]和Jiang等[62]发现ATF3基因的表达量受氨基酸应答和UPR通路的上调,这些调节分别需要eIF2α激酶GCN2和蛋白激酶R样内质网激酶(PERK)。在GCN2敲除[62]和ATF4敲除[63]的纤维母细胞中发现,ATF3 mRNA表达量显著降低。在营养缺乏情况下,AAR信号通路的激活对癌细胞存活和增殖有至关重要的作用[64]。关于ATF4调控的下游目的基因及其具体功能在Kilberg等[56]的综述中有详尽的描述。另外,受AAR调节的下游基因4E-BP1和发育和DNA损伤应答调节基因1(regulated in development and DNA damage response 1,REDD1)均为TOR信号应答通路的负调节因子,且2条信号通路均可通过调节ATF4的表达来而调控合成代谢,说明在营养状态改变时,2条信号通路共同作出应答使机体处于最优生长状态[65, 66, 67]。
2.2 AAR信号通路与代谢调控氨基酸的不平衡不仅可以调控氨基酸代谢,而且会对糖脂代谢造成显著影响。当必需氨基酸缺乏时,GCN2是蛋白质和脂肪代谢过程中关键的代谢调节因子[68, 69]。氨基酸缺乏会激活AAR信号通路,导致细胞内大多数蛋白质的翻译起始受抑制,从而抑制体内大部分蛋白质的翻译[63]。GCN2作为氨基酸缺乏时的感受器能够感知任何一种必需氨基酸的缺乏,eIF2α磷酸化抑制细胞内大多数蛋白质的翻译起始,从而降低整体蛋白质合成。因此,GCN2能够确保维持生长和细胞功能的最低氨基酸量;同时,eIF2α可以调节特异基因的翻译。在酵母中研究发现,转录因子GCN4的翻译可促进一系列基因的表达,包括所有的氨基酸合成酶、氨基酸转运载体,以使酵母抵抗氨基酸缺乏应激[70]。AAR信号通路可以保证足够的氨基酸前体的供应,从而使机体在必需氨基酸缺乏时维持关键蛋白的合成。同酵母一致,哺乳动物对氨基酸缺乏也有一套应答机制[71],包括提高氨基酸合成酶和氨基酸转运载体的表达量,同时降低整体蛋白质的合成。敲除GCN2基因的小鼠当饲喂氨基酸平衡的饲粮时可以正常存活,但当饲喂氨基酸不平衡的饲粮时发育受损。敲除GCN2的细胞,在氨基酸缺乏状态下,不能使eIF2α磷酸化[67, 72]。
除调节蛋白质的翻译外,AAR信号通路还可调节机体脂肪代谢。Guo等[68]发现饲粮缺乏亮氨酸后影响了小鼠脂质代谢过程:当亮氨酸缺乏时,小鼠肝脏和脂肪组织中甘油三酯的合成受抑制;但敲除GCN2基因的小鼠摄食亮氨酸缺乏的饲粮后肝脏脂肪合成升高,且出现脂肪肝,同时,小鼠脂肪组织中的脂肪氧化降解降低;然而,继续敲除转录因子固醇调节元件结合蛋白1c(sterol regulatory element binding protein-1c,SREBP-1c)后肝脏甘油三酯的积累降低,与同窝野生型小鼠差异不显著。在HepG2细胞中的研究结果与之一致,当细胞培养液中缺乏亮氨酸时抑制了脂肪的合成[57]。另外,敲除ATF4基因的小鼠能够抵抗高脂饮食诱导肥胖与脂肪肝[73]。给小鼠饲喂赖氨酸和苏氨酸缺乏的小麦面筋会引起胆固醇合成的降低;给小鼠饲喂完全不含蛋白质的饲粮时也会导致这些基因表达量的降低[74];同时,饲喂这2种饲粮的组中小鼠血浆胆固醇含量也均降低。以上研究均证明饲粮必需氨基酸缺乏显著影响脂肪合成,即饲粮中氨基酸的含量会影响到体内非蛋白质类营养物质的动态平衡。
2.3 AAR信号通路与摄食调控当以某一种必需氨基酸缺乏的饲粮饲喂动物时,这种不平衡会很快被动物体所识别并降低摄食量。事实上,血浆中的氨基酸缺乏是和摄食量的降低直接联系起来的,研究还发现大脑的前梨状皮质区域可以监测到蛋白质的质量或者氨基酸的平衡性[75, 76]。氨基酸应答通路对摄食量的调控方式为:氨基酸不平衡时缺乏的氨基酸相应tRNA出现去乙酰化,激活GCN2激酶,进而磷酸化转录启动因子eIF2α,引起摄食量下调、抑制蛋白质合成[77]。GCN2有非常保守的、调控氨基酸平衡的功能,在酵母中它通过调控氨基酸合成而获得氨基酸平衡;在哺乳动物和畜禽中是通过调控摄食行为进行。在饥饿的动物中,GCN2通过抑制蛋白质合成从而减少肌肉重量[78]。对GCN2敲除小鼠的研究发现,大脑对氨基酸不平衡的识别需要GCN2感知细胞内空载tRNA的量[79]。ATF4敲除的成纤维细胞和肝癌细胞中的微阵列分析显示ATF4调控着大量的和氨基酸转运、代谢、氧化状态和能量调控相关的基因[63, 80]。体内研究发现,给GCN2敲除小鼠饲喂亮氨酸缺乏的饲粮会导致其肌肉生长受损,但是并未引起肝脏损伤,而在野生小鼠中,亮氨酸的缺乏同时降低了肌肉和肝脏的重量[67]。
3 小 结氨基酸可以作为信号传导通路的调节因子引起信号通路应答,从而调节相关蛋白的翻译与糖脂代谢过程,尽管其在哺乳动物中有较深入的研究,但是在水产营养领域中仍是一个较新的概念。尤其对于肉食性鱼类,氨基酸不平衡问题是限制鱼粉蛋白质源替代研究的一个主要原因,因此深入探究其机制将对鱼类饲料中非鱼粉蛋白质源的大量应用有一定的指导作用。另外,尽管TOR信号通路与代谢调节在鱼类中有部分研究,而AAR信号通路在鱼类营养研究中未见相关报道。因此氨基酸与胰岛素、氨基酸本身,尤其是必需氨基酸对鱼类AAR和TOR信号通路的调节作用与响应阈值,以及对糖脂代谢的调控机制有待深入研究。
[1] | GALLINETTI J,HARPUTLUGIL E,MITCHELL J R.Amino acid sensing in dietary-restriction-mediated longevity:roles of signal-transducing kinases GCN2 and TOR[J]. Biochemical Journal,2013,449(1):1-10. (![]() |
[2] | 吕子全,郭非凡.氨基酸感应与糖脂代谢调控的研究进展[J]. 生命科学,2013,25(2):152-157. (![]() |
[3] | POLAK P,HALL M N.mTOR and the control of whole body metabolism[J]. Current Opinion in Cell Biology,2009,21(2):209-218. (![]() |
[4] | WULLSCHLEGGER S,LOEWITH R,HALL M N.TOR signaling in growth and metabolism[J]. Cell,2006,124(3):471-484. (![]() |
[5] | KIM J,GUAN K L.Amino acid signaling in TOR activation[J]. Annual Review of Biochemistry,2011,80:1001-1032. (![]() |
[6] | LOEWITH R,JACINTO E,WULLSCHLEGER S,et al.Two TOR complexes,only one of which is rapamycin sensitive,have distinct roles in cell growth control[J]. Molecular Cell,2002,10(3):457-468. (![]() |
[7] | ZINZALLA V,STRACKA D,OPPLIGER W,et al.Activation of mTORC2 by association with the ribosome[J]. Cell,2011,144(5):757-768. (![]() |
[8] | LAPLANTE M,SABATINI D M.mTOR signaling in growth control and disease[J]. Cell,2012,149(2):274-293. (![]() |
[9] | CYBULSKI N,HALL M N.TOR complex 2:a signaling pathway of its own[J]. Trends in Biochemical Sciences,2009,34(12):620-627. (![]() |
[10] | HAGIWARA A,CORNU M,CYBULSKI N,et al.Hepatic mTORC2 activates glycolysis and lipogenesis through Akt,glucokinase,and SREBP1c[J]. Cell Metabolism,2012,15(5):725-738. (![]() |
[11] | SEILIEZ I,GABILLARD J C,SKIBA-CASSY S,et al.An in vivo and in vitro assessment of TOR signaling cascade in rainbow trout (Oncorhynchus mykiss)[J]. American Journal of Physiology:Regulatory,Integrative and Comparative Physiology,2008,295(1):R329-R335. (![]() |
[12] | BHASKAR P T,HAY N.The two TORCs and AKT[J]. Developmental Cell,2007,12(4):487-502. (![]() |
[13] | KIM E,GORAKSHA-HICKS P,LI L,et al.Regulation of TORC1 by Rag GTPases in nutrient response[J]. Nature Cell Biology,2008,10(8):935-945. (![]() |
[14] | SANCAK Y,BAR-PELED L,ZONCU R,et al.Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids[J]. Cell,2010,141(2):290-303. (![]() |
[15] | SANCAK Y,PETERSON T R,SHAUL Y D,et al.The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1[J]. Science,2008,320(5882):1496-1501. (![]() |
[16] | JEWELL J L,RUSSELL R C,GUAN K L.Amino acid signalling upstream of mTOR[J]. Nature Reviews Molecular Cell Biology,2013,14(3):133-139. (![]() |
[17] | SEILIEZ I,PANSERAT S,LANSARD M,et al.Dietary carbohydrate-to-protein ratio affects TOR signaling and metabolism-related gene expression in the liver and muscle of rainbow trout after a single meal[J]. American Journal of Physiology:Regulatory,Integrative and Comparative Physiology,2011,300(3):733-743. (![]() |
[18] | HARA K,YONEZAWA K,WENG Q P,et al.Amino acid sufficiency and mTOR regulate p70 S6 kinase and eIF-4E BP1 through a common effector mechanism[J]. Journal of Biological Chemistry,1998,273(23):14484-14494. (![]() |
[19] | KIMBALL SR,JEFFERSON L S.Signaling pathways and molecular mechanisms through which branched-chain amino acids mediate translational control of protein synthesis[J]. The Journal of Nutrition,2006,136(1):227S-231S. (![]() |
[20] | STIPANUK M H.Leucine and protein synthesis:mTOR and beyond[J]. Nutrition Reviews,2007,65(3):122-129. (![]() |
[21] | 邓会玲,刘国华,刘宁.氨基酸介导的TOR信号传导通路研究进展[J]. 动物营养学报,2011,23(4):529-535. (![]() |
[22] | DRUMMOND M J,RASMUSSEN B B.Leucine-enriched nutrients and the regulation of mammalian target of rapamycin signalling and human skeletal muscle protein synthesis[J]. Current Opinion in Clinical Nutrition & Metabolic Care,2008,11(3):222-226. (![]() |
[23] | PESTOVA T V,KOLUPAEVA V G,LOMAKIN I B,et al.Molecular mechanisms of translation initiation in eukaryotes[J]. Proceedings of the National Academy of Sciences of the United States of America,2001,98(13):7029-7036. (![]() |
[24] | GEBAUER F,HENTZE M W.Molecular mechanisms of translational control[J]. Nature Reviews Molecular Cell Biology,2004,5(10):827-835. (![]() |
[25] | GINGRAS A C,KENNEDY S G,O'LEARY M A,et al.4E-BP1,a repressor of mRNA translation,is phosphorylated and inactivated by the Akt (PKB) signaling pathway[J]. Genes Development,1998,12(4):502-513. (![]() |
[26] | JASTRZEBSKI K,HANNAN K M,TCHOUBRIEVA E B,et al.Coordinate regulation of ribosome biogenesis and function by the ribosomal protein S6 kinase,a key mediator of mTOR function[J]. Growth Factors,2007,25(4):209-226. (![]() |
[27] | RUVINSKY I,SHARON N,LERER T,et al.Ribosomal protein S6 phosphorylation is a determinant of cell size and glucose homeostasis[J]. Genes Development,2005,19(18):2199-2211. (![]() |
[28] | RUVINSKY I,MEYUHAS O.Ribosomal protein S6 phosphorylation:from protein synthesis to cell size[J]. Trends in Biochemical Sciences,2006,31(6):342-348. (![]() |
[29] | JEFFERIES H B,FUMAGALLI S,DENNIS P B,et al.Rapamycin suppresses 5' TOP mRNA translation through inhibition of p70S6K[J]. The EMBO Journal,1997,16(12):3693-3704. (![]() |
[30] | HORNSTERN E,TANG H,MEYUHAS O.Mitogenic and nutritional signals are transduced into translational efficiency of TOP mRNAs[C]//Cold spring harbor symposia on quantitative biology.Cold Spring Harbor,NY:Cold Spring Harbor Laboratory Press,2001:477-484. (![]() |
[31] | MEYUHAS O,AVNI D,SHAMA S.Translational control of ribosomal protein mRNAs in eukaryotes[M]. Cold Spring Harbor,NY:Cold Spring Harbor Laboratory Press,1996:363-364. (![]() |
[32] | LECKER S H,JAGOE R T,GILBERT A,et al.Multiple types of skeletal muscle atrophy involve a common program of changes in gene expression[J]. The FASEB Journal,2004,18(1):39-51. (![]() |
[33] | HOCHSTRASSER M.Ubiquitin-dependent protein degradation[J]. Annual Review of Genetics,1996,30(1):405-439. (![]() |
[34] | MARTIN S A M,BLANEY S,BOWMAN A B,et al.Ubiquitin-proteasome-dependent proteolysis in rainbow trout (Oncorhynchus mykiss):effect of food deprivation[J]. Pflügers Archiv,2002,445(2):257-266. (![]() |
[35] | SALEM M,KENNEY P B,REXROAD C E,et al.Microarray gene expression analysis in atrophying rainbow trout muscle:a unique nonmammalian muscle degradation model[J]. Physiological Genomics,2007,28(1):33-45. (![]() |
[36] | WANG Y,LI K,HAN H,et al.Potential of using a blend of rendered animal protein ingredients to replace fish meal in practical diets for malabar grouper (pinephelus malabricus)[J]. Aquaculture,2008,281(1):113-117. (![]() |
[37] | STRAUS D S.Nutritional regulation of hormones and growth factors that control mammalian growth[J]. The FASEB Journal,1994,8(1):6-12. (![]() |
[38] | DUAN C M,REN H X,GAO S.Insulin-like growth factors (IGFs),IGF receptors,and IGF-binding proteins:roles in skeletal muscle growth and differentiation[J]. General and Comparative Endocrinology,2010,167(3):344-351. (![]() |
[39] | DUVEL K,YECIES J L,MENON S,et al.Activation of a metabolic gene regulatory network downstream of mTOR complex 1[J]. Molecular Cell,2010,39(2):171-183. (![]() |
[40] | YECIES J L,MANNING B D.Transcriptional control of cellular metabolism by mTOR signaling[J]. Cancer Research,2011,71(8):2815-2820. (![]() |
[41] | ESPENSHADE P J,HUGHES A L.Regulation of sterol synthesis in eukaryotes[J]. Genetics,2007,41:401-427. (![]() |
[42] | PORSTMANN T,SANTOS C R,GRIFFITHS B,et al.SREBP activity is regulated by mTORC1 and contributes to Akt-dependent cell growth[J]. Cell Metabolism,2008,8(3):224-236. (![]() |
[43] | THOMAS G V,TRAN C,MELLINGHOFF I K,et al.Hypoxia-inducible factor determines sensitivity to inhibitors of mTOR in kidney cancer[J]. Nature Medicine,2005,12(1):122-127. (![]() |
[44] | MAJMUNDAR A J,WONG W J,SIMON M C.Hypoxia-inducible factors and the response to hypoxic stress[J]. Molecular Cell,2010,40(2):294-309. (![]() |
[45] | KIM J W,TCHERNYSHYOV I,SEMENZA G L,et al.HIF-1-mediated expression of pyruvate dehydrogenase kinase:a metabolic switch required for cellular adaptation to hypoxia[J]. Cell Metabolism,2006,3(3):177-185. (![]() |
[46] | CUNNINGHAM J T,RODGERS J T,ARLOW D H,et al.mTOR controls mitochondrial oxidative function through a YY1-PGC-1[agr] transcriptional complex[J]. Nature,2007,450(7170):736-740. (![]() |
[47] | PENDE M,KOZMA S C,JAQUET M,et al.Hypoinsulinaemia,glucose intolerance and diminished β-cell size in S6K1-deficient mice[J]. Nature,2000,408(6815):994-997. (![]() |
[48] | UM S H,FRIGERIO F,WATANABE M,et al.Absence of S6K1 protects against age-and diet-induced obesity while enhancing insulin sensitivity[J]. Nature,2004,431(7005):200-205. (![]() |
[49] | LANSARD M,PANSERAT S,PLAGNES-JUAN E,et al.L-leucine,L-methionine,and L-lysine are involved in the regulation of intermediary metabolism-related gene expression in rainbow trout hepatocytes[J]. The Journal of Nutrition,2011,141(1):75-80. (![]() |
[50] | LANSARD M,PANSERAT S,PLAGNES-JUAN E,et al.Integration of insulin and amino acid signals that regulate hepatic metabolism-related gene expression in rainbow trout:role of TOR[J]. Amino Acids,2010,39(3):801-810. (![]() |
[51] | LANSARD M,PANSERAT S,SEILIEZ I,et al.Hepatic protein kinase B (Akt)-target of rapamycin (TOR)-signalling pathways and intermediary metabolism in rainbow trout (Oncorhynchus mykiss) are not significantly affected by feeding plant-based diets[J]. British Journal of Nutrition,2009,102(11):1564-1573. (![]() |
[52] | SKIBA-CASSY S,PANSERAT S,LARQUIER M,et al.Apparent low ability of liver and muscle to adapt to variation of dietary carbohydrate:protein ratio in rainbow trout (Oncorhynchus mykiss)[J]. British Journal of Nutrition,2013,109(8):1359-1372. (![]() |
[53] | SEILIEZ I,MÉDALE F,AGUIRRE P,et al.Postprandial regulation of growth- and metabolism-related factors in Zebrafish[J]. Zebrafish,2013,10(2):237-248. (![]() |
[54] | DAI W W,PANSERAT S,MENNIGEN J A,et al.Post-prandial regulation of hepatic glucokinase and lipogenesis requires the activation of TORC1 signalling in rainbow trout (Oncorhynchus mykiss)[J]. Journal of Experimental Biology,2013,216(23):4483-4492. (![]() |
[55] | PADDON-JONES D,SHEFFIELD-MOORE M,ZHANG X J,et al.Amino acid ingestion improves muscle protein synthesis in the young and elderly[J]. American Journal of Physiology:Endocrinology and Metabolism,2004,286(3):E321-E328. (![]() |
[56] | KILBERG M S,SHAN J X,SU N.ATF4-dependent transcription mediates signaling of amino acid limitation[J]. Trends in Endocrinology and Metabolism,2009,20(9):436-443. (![]() |
[57] | DUDEK S M,SEMENKOVICH C F.Essential amino acids regulate fatty acid synthase expression through an uncharged transfer RNA-dependent mechanism[J]. Journal of Biological Chemistry,1995,270(49):29323-29329. (![]() |
[58] | CHAVEROUX C,JOUSSE C,CHERASSE Y,et al.Identification of a novel amino acid response pathway triggering ATF2 phosphorylation in mammals[J]. Molecular and Cellular Biology,2009,29(24):6515-6526. (![]() |
[59] | MARTEN N,SLADEK F,STRAUS D.Effect of dietary protein restriction on liver transcription factors[J]. Biochemical Journal,1996,317(2):361-370. (![]() |
[60] | HAI T,WOLFGANG C D,MARSEE D K,et al.ATF3 and stress responses[J]. Gene Expression,1999,7(4/5/6):321-335. (![]() |
[61] | PAN Y X,CHEN H,SIU F,et al.Amino acid deprivation and endoplasmic reticulum stress induce expression of multiple activating transcription factor-3 mRNA species that,when overexpressed in HepG2 cells,modulate transcription by the human asparagine synthetase promoter[J]. The Journal of Biological Chemistry,2003,278(40):38402-38412. (![]() |
[62] | JIANG H Y,WEK S A,MCGRATH B C,et al.Activating transcription factor 3 is integral to the eukaryotic initiation factor 2 kinase stress response[J]. Molecular and Cellular Biology,2004,24(3):1365-1377. (![]() |
[63] | HARDING H P,ZHANG Y,ZENG H,et al.An integrated stress response regulates amino acid metabolism and resistance to oxidative stress[J]. Molecular Cell,2003,11(3):619-633. (![]() |
[64] | YE J B,KUMANOVA M,HART L S,et al.The GCN2-ATF4 pathway is critical for tumour cell survival and proliferation in response to nutrient deprivation[J]. The EMBO Journal,2010,29(12):2082-2096. (![]() |
[65] | KIMBALL S R,DO A N D,KUTZLER L,et al.Rapid turnover of the mTOR complex 1 (mTORC1) repressor REDD1 and activation of mTORC1 signaling following inhibition of protein synthesis[J]. The Journal of Biological Chemistry,2008,283(6):3465-3475. (![]() |
[66] | JIN H O,SEO S K,WOO S H,et al.SP600125 negatively regulates the mammalian target of rapamycin via ATF4-induced Redd1 expression[J]. FEBS Letters,2009,583(1):123-127. (![]() |
[67] | ANTHONY T G,MCDANIEL B J,BYERLEY R L,et al.Preservation of liver protein synthesis during dietary leucine deprivation occurs at the expense of skeletal muscle mass in mice deleted for eIF2 kinase GCN2[J]. The Journal of Biological Chemistry,2004,279(35):36553-36561. (![]() |
[68] | GUO F F,CAVENER D R.The GCN2 eIF2α kinase regulates fatty-acid homeostasis in the liver during deprivation of an essential amino acid[J]. Cell Metabolism,2007,5(2):103-114. (![]() |
[69] | DEVAL C,CHAVEROUX C,MAURIN A C,et al.Amino acid limitation regulates the expression of genes involved in several specific biological processes through GCN2-dependent and GCN2-independent pathways[J]. The FEBS Journal,2009,276(3):707-718. (![]() |
[70] | HINNEBUSCH A G.Translational regulation of GCN4 and the general amino Acid control of yeast[J]. Annual Review of Microbiology,2005,59:407-450. (![]() |
[71] | KILBERG M S,PAN Y X,CHEN H,et al.Nutritional control of gene expression:how mammalian cells respond to amino acid limitation[J]. Annual Review of Nutrition,2005,25:59-85. (![]() |
[72] | ZHANG P C,MCGRATH B C,REINERT J,et al.The GCN2 eIF2α kinase is required for adaptation to amino acid deprivation in mice[J]. Molecular and Cellular Biology,2002,22(19):6681-6688. (![]() |
[73] | DE SOUSA-COELHO A L,MARRERO P F,HARO D.Activating transcription factor 4-dependent induction of FGF21 during amino acid deprivation[J]. Biochemical Journal,2012,443(1):165-171. (![]() |
[74] | ENDO Y,FU Z W,ABE K,et al.Dietary protein quantity and quality affect rat hepatic gene expression[J]. The Journal of Nutrition,2002,132(12):3632-3637. (![]() |
[75] | KOEHNLE T J,RUSSELL M C,MORIN A S,et al.Diets deficient in indispensable amino acids rapidly decrease the concentration of the limiting amino acid in the anterior piriform cortex of rats[J]. The Journal of Nutrition,2004,134(9):2365-2371. (![]() |
[76] | 郑溜丰,彭健.中枢神经系统整合外周信号调节采食量的分子机制[J]. 动物营养学报,2013,25(10):2212-2221. (![]() |
[77] | MAURIN A C,JOUSSE C,AVEROUS J,et al.The GCN2 kinase biases feeding behavior to maintain amino acid homeostasis in omnivores[J]. Cell Metabolism,2005,1(4):273-277. (![]() |
[78] | DEVER T E,HINNEBUSCH A G.GCN2 whets the appetite for amino acids[J]. Molecular Cell,2005,18(2):141-142. (![]() |
[79] | HAO S Z,SHARP J W,ROSS-INTA C M,et al.Uncharged tRNA and sensing of amino acid deficiency in mammalian piriform cortex[J]. Science,2005,307(5716):1776-1778. (![]() |
[80] | LEE J I,DOMINY J E,Jr,SIKALIDIS A K,et al.HepG2/C3A cells respond to cysteine deprivation by induction of the amino acid deprivation/integrated stress response pathway[J]. Physiological Genomics,2008,33(2):218-229. (![]() |