2. 贵州大学动物科学学院, 贵阳 550025;
3. 贵州省凯里市 畜牧兽医管理办公室, 凯里 556000;
4. 江西省农业科学院畜牧兽医研究所, 南昌 330200;
5. 贵州大学新农村发展研究院, 中国西部发展能力研究中心, 贵阳 550025
2. College of Animal Science, Guizhou University, Guiyang 550025, China;
3. Kaili Animal Husbandry and Veterinary Bureau of Guizhou Province, Kaili 564000, China;
4. Institute of Animal Science, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China;
5. Institute of New Rural Development, China Center for Western Development Capacity Research, Guizhou University, Guiyang 550025, China
低血钙症是一种频发于围产期乳畜的营养代谢性疾病,是众多生产性疾病的核心疾病[1,2]。该病是由于动物骨钙不能充分动用,采食量、肠钙吸收率降低等因素致使产后不能弥补初乳钙的损失,使血钙浓度明显降低难以恢复至正常水平,严重时诱发起卧困难、胎衣不下、真胃移位等,甚至死亡或淘汰[3]。近年来,通过降低围产前期饲粮阴阳离子差(dietary cation-anion difference,DCAD)水平诱发机体轻度代谢性酸中毒、提高血钙浓度,已成为防治低血钙症最实用有效的措施,并在生产实践中得到大规模推广使用,但其作用机理仍未明确。机体血钙稳恒的维持通过3种途径:肾重吸收、骨动员、胃肠道钙吸收。其中肾重吸收钙量有限[4],骨动员存在1周左右的延迟[5,6],因此增强胃肠道钙吸收能力成为维持血钙稳恒的重要手段,而胃肠道钙吸收受维生素D受体(vitamin D receptor,VDR)的调控。VDR广泛分布在胃肠道、肾脏、骨骼等组织,以胃肠道含量最多,可增加小肠对钙的吸收[7]。同时,钙的吸收效率与钙吸收因子在相应组织中的表达水平呈正比[8,9,10]。可见,增强胃肠道VDR mRNA表达,有利于增加血钙浓度,对防治低血钙症具有重要的学术价值。
本课题组前期研究发现,低DCAD水平可提高钙吸收因子维生素D依赖型钙结合蛋白9kDa(vitamin D-dependent calcium binding proteins 9kDa,CaBP-D9k)mRNA的表达水平。故我们推测,降低DCAD水平可能通过增加胃肠道组织VDR mRNA的表达水平,达到预防低血钙症的目的。但截至目前,有关低DCAD水平条件下胃肠道组织VDR mRNA的表达水平鲜见报道。据此,本研究以围产期小鼠作为模型动物,探讨低DCAD水平对其胃肠道组织VDR mRNA的表达水平,为推进低DCAD水平防治低血钙症研究提供试验依据。 1 材料与方法 1.1 试验设计
本试验所用动物为围产期小鼠,经预先多次复配直至受孕后开始试验。小鼠共120只,体重(30±0.26) g,按随机区组试验设计分成3组:高DCAD水平组(饲喂基础饲粮+NaHCO3,HD组)、对照组(饲喂基础饲粮,CON组)、低DCAD水平组(饲喂基础饲粮+NH4Cl,LD组),每组40只。预设3组小鼠DCAD水平分别为+300、+150及-50 mmol/kg DM,DCAD水平的计算公式为DCAD=Na++K+-Cl--S2-[11]。试验预试期3 d,用于小鼠分笼饲养适应;正试期20 d,用于试验采样。小鼠分笼饲养,每笼4只,自由采食及饮水。小鼠基础饲粮组成为:玉米68%、豆粕20%、麸皮8%、食盐1%、预混料3%。主要营养水平为:粗蛋白质20.5%、粗灰分6.9%、中性洗涤纤维13.1%、酸性洗涤纤维7.5%、钙0.51%、磷0.40%(主要营养水平为实测值,测定方法依据张丽英[12]著《饲料分析及饲料质量检测技术》(第3版)。根据CON组小鼠采食量和DCAD水平,添加相应水平的NaHCO3和NH4Cl,配制预定DCAD水平试验饲粮。
![]() | 表1 实际测定的DCAD水平 Table 1 Actually measured DCAD level |
总RNA提取试剂盒、样本保存液购自北京天根生化科技有限公司,反转录试剂盒(RT reagent Kit with gDNA Eraser)、PCR试剂盒(TaKaRa PCR Amplification Kit)、荧光定量PCR试剂盒(SYBR Premix Ex TaqTM Ⅱ)购自大连宝生物工程有限公司,血钙浓度检测试剂盒购自南京建成生物工程研究所。 1.3 样品采集与检测
小鼠在配种次日(-20 d)、预产前5 d(-5 d)、产仔当天(0 d)及产后3 d(+3 d)随机选取10只,摘眼球处死。用抗凝管收集小鼠血液,3 500 r/min离心20 min制备血清,用无菌的一次性吸管将上层血清分装到灭菌的1.5 mL离心管中,置-20 ℃保存。无RNase环境下迅速采集小鼠胃、小肠(十二指肠、空肠、回肠)和大肠(盲肠、结肠)样本,用配制好的磷酸盐缓冲液(PBS)冲洗后放入已加RNA保存液的冻存管于-80 ℃冻存备用。按试剂盒操作步骤测定小鼠血钙浓度,依照本课题组已建立的RT-PCR检测体系(莘海亮等[13])检测小鼠胃肠道组织样本VDR mRNA表达水平。 1.4 数据处理
所有数据使用SAS 9.3进行统计。其中,小鼠血钙浓度的平均值调用Proc GLM模块进行Duncan氏法检验;mRNA表达水平利用Willems等[14]报道的方法进行归一化及相对表达量计算,调用Proc NPar1 Way程序进行Kruskal-Wallis检验,比较不同组织间基因表达差异。各组平均数间差异水平设为P<0.05。数据统计结果采用平均值±标准差表示。 2 结果与分析 2.1 血钙浓度
从整个试验期来看(表1),DCAD水平对小鼠血钙浓度产生明显的影响,主要表现在血钙浓度随DCAD水平的降低而增加,以LD组最高,较HD组、CON组分别高46.2%、26.7%,差异显著(P<0.05)。HD组和CON组之间小鼠血钙浓度差异不显著(P>0.05)。
![]() | 表2 DCAD水平对围产期小鼠血钙浓度的影响 Table 2 Effects of DCAD level on plasma calcium concentration of mice during the transition period |
DCAD水平对小鼠围产期各采血时间点血钙浓度影响列于图1。可见,各时间点血钙浓度均以LD组小鼠最高,除-20 d外,其余各时间点与HD组、CON组之间的差异均达到显著水平(P<0.05);HD组、CON组小鼠血钙浓度在各时间点差异不显著(P>0.05)。此外,产前小鼠血钙浓度缓慢增加,至-5 d达到最高水平;与前一时间点相比,产仔当天(0 d),各组小鼠血钙浓度分别下降了17.67%(HD组)、25.82%(CON组)、6.58%(LD组),以LD组降幅最小。HD组、CON组小鼠+3 d血钙浓度呈现出恢复的趋势,但均低于LD组(P<0.05)。 2.2 组织VDR mRNA表达水平
以同一时间点的CON组相同样本为参考,计算所得不同时间点各组小鼠胃肠道的VDR mRNA表达水平见图2。可见,与CON组相比,-20 d 时,LD组显著提高了空肠、回肠和结肠的 VDR mRNA表达水平(P<0.05);而胃VDR mRNA表达水平则以HD组最高,其次为CON组,最低为LD组,且互为差异显著水平(P<0.05);各组十二指肠和盲肠VDR mRNA表达水平差异不显著(P>0.05)。经过15 d的饲粮处理后(即-5 d),胃VDR mRNA的表达水平虽然仍以HD组最高,但LD组高于CON组,互为差异显著水平(P<0.05);同时,LD组空肠、结肠VDR mRNA表达水平显著高于其余2组(P<0.05)。0 d时,LD组十二指肠VDR mRNA表达水平最高,显著高于其余2组(P<0.05);结肠VDR mRNA表达水平也最高,显著高于HD组(P<0.05)。+3 d时,LD组饲粮显著提高了十二指肠、空肠和结肠VDR mRNA表达水平,显著高于其余2组(P<0.05);各组小鼠胃、回肠和盲肠VDR mRNA表达水平差异不显著(P>0.05)。
![]() | 图1 DCAD水平饲粮对围产期 小鼠血钙浓度的时间效应 Fig. 1 Time effects of DCAD level on plasma Ca2+concentration of mice during the transition period |
低DCAD水平最明显的效应是维持血钙浓度处于正常范围,对保障机体神经传导、肌肉收缩、信号转导等生理机能和动物产品所需钙质方面起着重要作用。正常情况下机体内血钙浓度处于稳恒状态,但对处于围产期哺乳动物来说,当机体维生素D代谢及激活系统响应能力低下或钙离子(Ca2+)短期内流失过多,稳恒状态会被打破而诱发一系列钙负平衡症状[15,16,17]。当机体发生钙负平衡时,可在组织水平上调控甲状旁腺激素(PTH)、1,25-二羟维生素D3[1,25-(OH)2D3]分泌,提高肾重吸收、骨动员和胃肠道摄入三大血钙稳恒途径效率[4,18],改变机体总可交换钙库(TEP)释放/蓄积过程的动力学参数[8],最终缓和血钙浓度波动幅度。降低DCAD水平是经典的低血钙防治手段,有助于激活围产期内趋于沉寂的钙稳态调节系统,最终维持正常血钙水平。研究指出,低DCAD水平主要通过上调动物胃肠道主动跨膜Ca2+摄取能力,满足TEP补充所需钙水平[8]。
![]() | 图2 DCAD水平对围产期小鼠胃肠道组织VDR mRNA表达水平的影响 Fig. 2 Effects of DCAD level on VDR mRNA expression level from gastro-intestinal tissues of mice during the transition period |
在本研究整个试验期内,LD组血钙浓度显著高于其余2组。具体表现为:从-5 d至+3 d,饲喂低DCAD水平小鼠的血钙浓度与高DCAD水平组差异显著,并在0 d和+3 d明显高于CON组。前人也有类似报道[10,19,20]。小鼠刚进入妊娠期时(-20 d),体内血钙浓度波动应激不大,低DCAD水平作用时间不长,这可能是该采样时间点3组小鼠间血钙差异不显著的原因。由于血容量从进入妊娠至产前有大幅提高,Berme等[15]认为胎儿发育进程的不断延伸,使PTH及1,25-(OH)2D3分泌增加,促进血钙含量增加以满足母体和胎儿对钙的需求;Seifi等[21]指出,孕期母体加强骨钙动员入血,上调肠道Ca2+摄取能力,减少尿钙排泄,致使血钙水平稳步上升。本研究中,小鼠进入预产期后,血钙浓度有所下降,这可能是由于胎儿钙质需求进一步上升和合成初乳为即将开始的哺乳做好准备所致。研究还发现,LD组小鼠产仔当天血钙浓度变动幅度低于其余2组,这得益于低DCAD水平提高了胃肠道对钙的吸收效率[8]。总之,低DCAD水平可提高围产期小鼠血钙浓度,有利于维持血钙稳恒。 3.2 DCAD水平对胃肠道组织VDR mRNA表达水平的影响
临近分娩动物对钙的需求量急剧增加,除用于满足胎儿和自身需求外,还需合成初乳钙,可见血钙稳恒对动物的健康极其重要。哺乳动物胃肠道钙的主动运输过程包括以下3个步骤:Ca2+经瞬时受体电位通道蛋白6(TRPV6)介入细胞与CaBP-D9k结合并转运到细胞另一侧,最后由基底钠-钙交换蛋白(PMCA1b)和质膜钙离子ATP酶通道(NCX1)通道运载出胞入血[22]。这一过程受VDR的严格调控[23,24],可见VDR是血钙稳恒调控过程的核心元件,并得到研究佐证。在缺乏维生素D或对VDR敲除的小鼠,肠道内CaBP-D9k mRNA的表达水平显著下降,而给予野生型小鼠1,25-(OH)2D3或对VDR敲除小鼠进行VDR转基因后,十二指肠CaBP-D9k mRNA 的表达水平明显升高[25]。小鼠VDR敲除会导致肠内钙的主动吸收率下降(大于70%),而对VDR敲除小鼠进行VDR转基因后,十二指肠钙的主动吸收恢复正常[26]。基于低DCAD水平提高血钙浓度的事实,可以推测,低DCAD水平可通过提高VDR mRNA表达水平,促进胃肠道钙的吸收,从而增加血钙浓度。
本研究中,饲喂低DCAD水平均在各采样时间点提高了围产期小鼠胃肠道组织VDR mRNA表达水平,提示在血钙稳态的三大调节机制中,胃肠道钙吸收响应迅速,可在机体发生钙代谢紊乱前先行精细调控,同时有更多的VDR通过与1,25-(OH)2D3特异性结合成蛋白-受体复合物,与靶基因的上游启动子区域或调控区域内的特定DNA序列耦合,在转录及转录后水平增强钙吸收相关蛋白质表达,促进钙吸收。本课题组前期研究发现,随着产仔时间的临近,母鼠小肠及结肠肠段CaBP-D9k mRNA表达量均大幅上调,血钙浓度也显著提高。Goulding等[27]、Hirata等[28]、Lee等[29]认为,钙摄取相关基因存在代偿性表达,可能是出现这种情况的部分原因;同时,也与VDR mRNA表达水平的提高促进了CaBP-D9k mRNA的表达,进而吸收更多的食糜钙有关。高DCAD水平组VDR mRNA表达水平显著降低,Li等[30]认为,这可能是由于高DCAD水平造成的代谢性碱中毒钝化了PTH的分泌,进而对整个机体血钙稳恒造成了影响,但其分子机制有待进一步考察。
本课题组前期研究发现,低DCAD水平亦可提高胃肠道组织CaBP-D9k mRNA的表达水平。基于CaBP-D9k mRNA的表达水平和生理功能的发挥有赖于VDR的调控,因此本试验中VDR mRNA表达水平的提高正是增强CaBP-D9k mRNA表达水平的论证。综合分析DCAD水平对体液酸碱平衡、血液钙稳态的研究报道,可以认为十二指肠、空肠、回肠是胃肠道血钙稳恒的主要位点,以围产期小鼠为试验动物观测到了低DCAD水平对胃肠道钙吸收关键因子VDR mRNA表达水平的提高,伴随着血钙水平的升高,说明VDR mRNA表达水平的上调归因于低DCAD水平的生理作用,即低DCAD诱导的体内代偿性酸中毒状态。小鼠尿液难以收集,因此本试验未检测其尿液pH;但从低DCAD降低其他围产期乳畜尿液pH的效应来看[2,4,19],不难判定采食低DCAD水平的小鼠尿液pH也会有所降低。同时,低DCAD水平维持血钙稳恒,可能正是得益于胃肠道相关部位钙吸收因子的表达上调。这提示低DCAD水平具备上调胃肠道钙主动跨膜吸收途径关键限速大分子的能力;此外,胃肠道主动钙吸收途径相关生物大分子的表达上调,可能是低DCAD水平有效维持正常血钙浓度的重要途径。
经典理论认为,动物血钙的稳恒是由PTH、1,25-(OH)2D3、降钙素(CT)3个激素的共同作用来决定的。因此,检测低DCAD水平条件下PTH、1,25-(OH)2D3、CT的浓度变化情况,可作为进一步论证低DCAD水平提高胃肠道组织VDR mRNA表达水平和血钙水平的辅助证据。这是笔者目前正在进行的研究工作,有待完成后再深入分析讨论。 4 结 论
低DCAD水平可提高围产期小鼠胃肠道组织VDR mRNA表达水平,增加血钙浓度。这可能是低DCAD水平有效防治低血钙症的作用机理。
[1] | GOFF J P.The monitoring,prevention,and treatment of milk fever and subclinical hypocalcemia in dairy cows[J]. The Veterinary Journal,2008,176(1):50-57. (![]() |
[2] | GRVNBERG W,DONKIN S S,CONSTABLE P D.Periparturient effects of feeding a low dietary cation-anion difference diet on acid-base,calcium,and phosphorus homeostasis and on intravenous glucose tolerance test in high-producing dairy cows[J]. Journal of Dairy Science,2011,94(2):727-745. (![]() |
[3] | 熊双丽.不同阴阳离子水平的日粮对过渡期奶牛钙利用及健康状况的影响[D]. 硕士学位论文.兰州:甘肃农业大学,2003. (![]() |
[4] | GOFF J P.Macromineral physiology and application to the feeding of the dairy cow for prevention of milk fever and other periparturient mineral disorders[J]. Animal Feed Science and Technology,2006,126(3/4):237-257. (![]() |
[5] | HORST R L.Regulation of calcium and phosphorus homeostasis in the dairy cow[J]. Journal of Dairy Science,1986,69(2):604-616. (![]() |
[6] | HORST R L,GOFF J P,REINHARDT T A.Adapting to the transition between gestation and lactation:differences between rat,human and dairy cow[J]. Journal of Mammary Gland Biology and Neoplasia,2005,10(2):141-156. (![]() |
[7] | FLEET J C,SCHOCH R D.Molecular mechanisms for regulation of intestinal calcium absorption by vitamin D and other factors[J]. Critical Reviews in Clinical Laboratory Sciences,2010,47(4):181-195. (![]() |
[8] | MARTIN-TERESO J,VERSTEGEN M W.A novel model to explain dietary factors affecting hypocalcaemia in dairy cattle[J]. Nutrition Research Reviews,2011,24(2):228-243. (![]() |
[9] | DEINER C,REICHE M,LASSNER D,et al.Allelic variations in coding regions of the vitamin D receptor gene in dairy cows and potential susceptibility to periparturient hypocalcaemia[J]. Journal of Dairy Research,2012,79(4):423-428. (![]() |
[10] | MARTIN-TERESO J,DISTEFANO C,VAN LAAR H,et al.Effect of feeding rumen-protected rice bran on mineral status of non-lactating dairy heifers[J]. Journal of Animal Physiology and Animal Nutrition,2011,95(1):73-80. (![]() |
[11] | DEGARIS P J,LEAN I J.Milk fever in dairy cows:a review of pathophysiology and control principles[J]. The Veterinary Journal,2008,176(1):58-69. (![]() |
[12] | 张丽英.饲料分析及饲料质量检测技术[M]. 3版.北京:中国农业大学出版社,2007. (![]() |
[13] | 莘海亮,吴文旋,李胜利.动物胃肠道钙吸收关键基因表达实时荧光定量PCR检测方法的建立[J]. 江苏农业科学,2013,41(4):31-34. (![]() |
[14] | WILLEMS E,LEYNS L,VANDESOMPELE J.Standardization of real-time PCR gene expression data from independent biological replicates[J]. Analytical Biochemistry,2008,379(1):127-129. (![]() |
[15] | KOEPPEN B M,STANTON B A.Berne & levy physiology[M]. Amsterdam:Mosby/Elsevier,2008. (![]() |
[16] | 朱思明.医学生理学[M]. 北京:人民卫生出版社,1998. (![]() |
[17] | GOFF J P,KIMURA K,HORST R L.Effect of mastectomy on milk fever,energy,and vitamins A,E,and β-carotene status at parturition[J]. Journal of Dairy Science,2002,85(6):1427-1436. (![]() |
[18] | NATIONAL RESEARCH COUNCIL.Nutrient requirements of beef cattle[M]. 7th ed.Washington,D.C.:National Academy Press,2001. (![]() |
[19] | OBA M,OAKLEY A E,TREMBLAY G F.Dietary Ca concentration to minimize the risk of hypocalcaemia in dairy cows is affected by the dietary cation-anion difference[J]. Animal Feed Science and Technology,2011,164(3/4):147-153. (![]() |
[20] | LIESEGANG A.Influence of anionic salts on bone metabolism in periparturient dairy goats and sheep[J]. Journal of Dairy Science,2008,91(6):2449-2460. (![]() |
[21] | SEIFI H A,MOHRI M,FARZANEH N,et al.Effects of anionic salts supplementation on blood pH and mineral status,energy metabolism,reproduction and production in transition dairy cows[J]. Research in Veterinary Science,2010,89(1):72-77. (![]() |
[22] | WILKENS M R,MROCHEN N,BREVES G,et al.Gastrointestinal calcium absorption in sheep is mostly insensitive to an alimentary induced challenge of calcium homeostasis[J]. Comparative Biochemistry and Physiology Part B:Biochemistry and Molecular Biology,2011,158(3):199-207. (![]() |
[23] | BALESARIA S,SANGHA S,WALTERS J R F.Human duodenum responses to vitamin D metabolites of TRPV6 and other genes involved in calcium absorption[J]. American Journal of Physiology:Gastrointestinal and Liver Physiology,2009,297(6):G1193-G1197. (![]() |
[24] | BRONNER F.Recent developments in intestinal calcium absorption[J]. Nutrition Reviews,2009,67(2):109-113. (![]() |
[25] | XUE Y B,FLEET J C.Intestinal vitamin D receptor is required for normal Calcium and bone metabolism in mice[J]. Gastroenterology,2009,136(4):1317-1327. (![]() |
[26] | BACK O,BLOMQUIST H K,HERNELL O,et al.Does vitamin D intake during infancy promote the development of atopic allergy?[J]. Acta Dermato-Venereologica,2009,89(1):28-32. (![]() |
[27] | GOULDING A,CAMPBELL D R.Thyroparathyroidectomy exaggerates calciuric action of ammonium chloride in rats[J]. The American Journal of Physiology,1984,246(1Pt2):F54-F58. (![]() |
[28] | HIRATA Y,OKU Y.TRP channels are involved in mediating hypercapnic Ca2+ responses in rat glia-rich medullary cultures independent of extracellular pH[J]. Cell Calcium,2010,48(2/3):124-132. (![]() |
[29] | LEE G S,LEE K Y,CHOI K C,et al.Phenotype of a calbindin-D9k gene knockout is compensated for by the induction of other calcium transporter genes in a mouse model[J]. Journal of Bone and Mineral Research,2007,22(12):1968-1978. (![]() |
[30] | LI Y C,KONG J,WEI M,et al.1,25-dihydroxyvitamin D3 is a negative endocrine regulator of the renin-angiotensin system[J]. Journal of Clinical Investigation,2002,110(2):229-238. (![]() |