动物营养学报  2015, Vol. 27 Issue (6): 1722-1732   PDF (1157 KB)    
低鱼粉饲料中补充晶体蛋氨酸和羟基蛋氨酸钙在凡纳滨对虾上饲喂效果的比较研究
黄文文, 霍雅文, 王猛强, 周歧存     
宁波大学海洋学院, 鱼类营养研究室, 宁波 315211
摘要:本试验旨在比较低鱼粉饲料中补充晶体蛋氨酸和羟基蛋氨酸钙在凡纳滨对虾上的饲喂效果。试验选用初始体重为(0.40±0.00) g的凡纳滨对虾630尾,随机分为7组,每组3个重复,每个重复放养30尾对虾,进行为期8周的饲养试验。试验共配制7种试验饲料,对照组为30%的高鱼粉饲料,试验组饲料为用豆粕、花生粕和鸡肉粉混合蛋白质源分别替代对照饲料中16.67%、33.33%和50.00%鱼粉,并补充羟基蛋氨酸钙或晶体蛋氨酸,使其蛋氨酸含量与对照组一致。结果表明:各组对虾的成活率无显著差异(P>0.05);同一鱼粉替代水平下,羟基蛋氨酸钙组的增重率、特定生长率、饲料效率、蛋白质效率和蛋白质沉积率显著高于晶体蛋氨酸组(P<0.05)。复合蛋白质源替代16.67%鱼粉并补充羟基蛋氨酸钙组的增重率和特定生长率同对照组无显著差异(P>0.05)。各组对虾的全虾粗蛋白质、干物质含量与肌肉粗脂肪、粗灰分含量无显著差异(P>0.05);对照组的全虾粗脂肪含量显著高于各试验组(P<0.05);全虾粗灰分含量以对照组最高,但与复合蛋白质源替代16.67%、33.33%鱼粉并补充羟基蛋氨酸钙组差异不显著(P>0.05)。随着鱼粉替代水平的升高,羟基蛋氨酸钙组的血清总蛋白和甘油三酯含量均呈上升趋势,而晶体蛋氨酸组则呈下降趋势;同时,羟基蛋氨酸钙组与晶体蛋氨酸组的血清总胆固醇含量和碱性磷酸酶活性均有先上升后降低的趋势;血清白蛋白、高密度脂蛋白、低密度脂蛋白及葡萄糖含量在各组间无显著差异(P>0.05)。由此可见,与补充晶体蛋氨酸相比,低鱼粉饲料中补充羟基蛋氨酸钙能更有效地改善凡纳滨对虾的生长性能和饲料利用效率,但效果仍不及对照饲料。
关键词凡纳滨对虾     羟基蛋氨酸钙     晶体蛋氨酸     生长性能     血液指标    
A Comparative Study of Feeding Effects of Crystalline Methionine and Methionine Hydroxy Analogue Calcium Supplemented in Low Fish Meal Diets for Pacific White Shrimp (Litopenaeus vannamei)
HUANG Wenwen, HUO Yawen, WANG Mengqiang, ZHOU Qicun     
Laboratory of Fish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
Abstract: An 8-weeks feeding trial was conducted to compare the feeding effects of crystalline methionine (C-Met) and methionine hydroxy analogue calcium (MHA-Ca) supplemented in low fish meal diets for Pacific white shrimp (Litopenaeus vannamei). A total of 630 juvenile Pacific white shrimp with an initial body weight of (0.40±0.00) g were randomly divided into 7 groups with 3 replicates per group and 30 shrimp for each replicate. Seven iso-nitrogenous and iso-lipid diets were formulated as experimental diets. Diet which was supplemented with 30% fish meal was used as control diet. The diets of experimental groups used soybean meal, peanut meal and poultry meal complex protein source to replace 16.67%, 33.33% and 50.00% fish meal on the basis of control diet, respectively, and MHA-Ca or C-Met were supplemented to the experimental diets in order to match the methionine content of the control diet. The results showed as follows: the survival rate (SR) of shrimp was not significantly different among all groups (P<0.05). With the same replacement level of fish meal, shrimp fed the diets supplemented with MHA-Ca had significantly higher weight gain rate (WGR), specific growth rate (SGR), feed efficiency (FE), protein efficiency ratio (PER) and protein retention rate (PRR) than those fed the diets supplemented with C-Met (P<0.05), and shrimp fed the diets used complex protein source to replace 16.67% fish meal and supplemented with MHA-Ca had no significant differences in WGR and SGR compared with shrimp fed the control diet (P>0.05). No significant differences were observed in the contents of crude protein and dry matter in whole body and the contents of ether extract and ash in muscle (P>0.05). The ether extract content in whole body was significantly higher than that in each experimental group (P<0.05). The ash content in whole body in control group was the highest, but had no significant differences compared with shrimp fed the diets used complex protein source to replace 16.67% or 33.33% fish meal and supplemented with MHA-Ca (P>0.05). With replacement level of fish meal increasing, the serum total protein (TP) and triglyceride (TG) contents in MHA-Ca groups showed an increase trend, while those in C-Met groups showed a decrease trend; meanwhile, the serum total cholesterol (TC) content and alkaline phosphatase (AKP) activity in MHA-Ca and C-Met groups were all firstly increased and then decreased; however, no significant differences were observed in the contents of serum albumin (ALB), high density lipoprotein (HDL), low density lipoprotein (LDL) and glucose (GLU) (P>0.05). Thus, the results indicate that the growth performance and feed utilization of shrimp fed low fish meal diets supplemented with MHA-Ca are more efficacious than supplemented with C-Met, but all are lower than control diet.
Key words: Pacific white shrimp (Litopenaeus vannamei)     methionine hydroxy analogue calcium     crystalline methionine     growth performance     blood indexes    

鱼粉具有蛋白质含量高、必需氨基酸(尤其是赖氨酸和蛋氨酸)、不饱和脂肪酸和矿物质含量丰富等特点,同时其适口性好和消化率高,一直以来是水生动物尤其是海洋动物最佳蛋白质源之一[1, 2]。近几年来,有限的鱼粉资源和日益高涨的价格使得对虾饲料的鱼粉用量不得不减少[3]。有鉴于此,寻找合适的可利用蛋白质源来替代鱼粉对对虾养殖业健康可持续发展有着重要的意义[4]。但与鱼粉相比较,动、植物蛋白质源具有必需氨基酸(主要是蛋氨酸、赖氨酸和苏氨酸)含量较低、存在抗营养因子及适口性差等缺点,限制了其在对虾饲料中的用量[5, 6]。 因此,以动、植物蛋白质源部分替代鱼粉为基础的对虾低鱼粉饲料需要补充外源氨基酸以满足其对必需氨基酸的需要[7]

蛋氨酸是虾类饲料中的第一限制性氨基酸,其不但参与体内蛋白质合成、甲基转移和磷的代谢,而且还参与各种含硫化合物如谷胱甘肽、胱氨酸、肾上腺素、胆碱和肌酸等的合成,可促进水产动物的生长、发育,还能防止脂肪肝、花肝等疾病的产生[8, 9, 10]。在降低鱼粉用量的情况下,饲料中补充氨基酸有助于氨基酸平衡,并将成为水产行业越来越普遍的方法[11]。然而,已有研究发现,由于晶体氨基酸存在水中溶失率较高和吸收不同步等问题,在饲料中以动、植物蛋白质源替代鱼粉并补充晶体氨基酸并不能有效改善部分鱼类和甲壳动物的生长性能[12, 13, 14]。以不同种类鱼虾为试验对象的研究均表明,与完整蛋白质中的氨基酸相比较,晶体氨基酸利用率较低[14, 15, 16, 17, 18, 19, 20]。因此,有必要寻求一种低溶失率和高利用率的替代品来代替晶体氨基酸。羟基蛋氨酸钙是市场上常用的固体蛋氨酸产品,而且不需要水解就可以直接吸收,是动物的一种最直接有效的活性蛋氨酸源,也是蛋氨酸的一种更有效更经济的替代产品[21]。有研究证实,在猪饲料中补充羟基蛋氨酸钙有利于减少粪和尿中的氮量,提高日增重和日采食量,降低料重比[22];在荷斯坦奶牛饲粮中补充羟基蛋氨酸钙,有利于提高总牛奶产量、总脂肪含量和总乳糖产量[23];用豆粕等植物蛋白质源代替鱼粉并补充羟基蛋氨酸钙来投喂鲤鱼,发现补充0.135%羟基蛋氨酸钙组的相对增重率和相对增长率显著地高于豆粕基础饲料组,补充羟基蛋氨酸钙后鲤鱼取得了较好的生长性能[24]。然而,关于羟基蛋氨酸钙对于凡纳滨对虾生长性能影响的报道较少。因此,本试验旨在通过以豆粕等蛋白质源替代鱼粉并补充羟基蛋氨酸或晶体蛋氨酸投喂凡纳滨对虾的试验,比较凡纳滨对虾低鱼粉饲料中补充晶体蛋氨酸和羟基蛋氨酸钙的饲喂效果,试验结果不仅可以丰富凡纳滨对虾氨基酸利用的营养学理论,而且可以为开发对虾低鱼粉饲料提供理论指导。

1 材料与方法 1.1 试验饲料

以羟基蛋氨酸钙(诺伟司饲料添加剂上海有限公司生产,有效含量86%)和晶体蛋氨酸(L-蛋氨酸,国药集团化学试剂有限公司生产,有效含量99.93%)为蛋氨酸源。以鱼粉、磷虾粉、鸡肉粉、豆粕和花生粕为蛋白质源,面粉为糖源,鱼油、豆油和大豆卵磷脂为脂肪源,并补充维生素和矿物质[25],以鱼粉含量为30%的饲料为对照,用豆粕、花生粕和鸡肉粉等复合蛋白质源分别替代饲料中16.67%、33.33%和50.00%的鱼粉,并对应补充0.041%、0.082%、0.110%的羟基蛋氨酸钙或晶体蛋氨酸,使其蛋氨酸含量与对照组一致,共配成7种等氮等脂的试验饲料(含粗蛋白质41.0%,粗脂肪7.5%),分别标记为Basal、MHA-Ca1、MHA-Ca2、MHA-Ca3、C-Met1、C-Met2、C-Met3组。试验饲料组成及营养水平见表1,试验饲料的氨基酸组成见表2。试验原料经粉碎过60目筛,按照表1配方称量各种饲料原料,微量组分采取逐级扩大法混合均匀,再添加30%左右的水分,再次混匀后,压制成粒径为1.0和1.5 mm的颗粒饲料,分别在其合适生长阶段进行投喂。风干后,用自封袋密封,放于-20 ℃冰柜中保存备用。

表1 试验饲料组成及营养水平(干物质基础) Table 1 Composition and nutrient levels of experimental diets (DM basis)

表2 试验饲料的氨基酸组成 (干物质基础) Table 2 Amino acid composition of experimental diets (DM basis)
1.2 试验对象及饲养管理

养殖试验于广东恒兴饲料集团东海岛试验基地进行,虾苗来源于恒兴虾苗场孵化的进口1代苗。正式试验前先将所需虾苗暂养于室外水泥池(2 m×2 m×1 m)中,待虾苗长至接近试验规格时,将其转入正式试验的室内养殖系统(300 L水体的圆桶型玻璃钢桶)中继续暂养2周。暂养期间幼虾根据虾苗规格先后投喂丰年虫、虾片、恒兴牌凡纳滨对虾开口料及0号料;试验分组前24 h虾苗停止喂食,挑选体质健壮、规格基本一致、初重约为(0.40±0.00) g的凡纳滨对虾630尾,随机分为7组,每组3个重复,每个重复30尾,试验周期为8周。试验期间每天于07:00、12:00、17:00和21:00投喂4次,投喂1 h后观察对虾摄食情况,并根据摄食情况适当调整投喂量。试验用水为经沙滤、沉淀后的海水,连续充气,每天记录水温,每周测盐度、溶解氧浓度及pH。试验期间水温为(26.48±1.16) ℃,水体pH为7.69±0.09,盐度为(27.48±1.0) g/L,溶解氧浓度>6.0 mg/L以上,氨氮浓度≤0.05 mg/L。

1.3 样品采集

试验分组前随机抽取120尾试验对虾作为初始样品,置于-20 ℃冰箱保存待用。8周饲养试验结束后饥饿24 h,记录尾数并称重,计算增重率(weight gain rate,WGR)、特定生长率(specific growth rate,SGR)、存活率(survival rate,SR)、饲料效率(feed efficiency,FE)、蛋白质效率(protein efficiency ratio,PER)及蛋白质沉积率(protein retention rate,PRR)。分别从每桶随机取6尾虾,保存于-20 ℃冰箱,用于常规营养成分分析;每桶另随机取10尾虾,于对虾围心腔取血,盛于1.5 mL离心管中,混合后于4 ℃冰箱放置过夜后,5 000 r/min离心10 min,取上清液置于-80 ℃冰箱;每桶取取血后的3尾虾取肌肉,保存于-20 ℃冰箱备用。

1.4 指标测定

饲料、全虾及肌肉常规营养成分分析:水分含量的测定采用105 ℃常压干燥法;粗蛋白质含量的测定采用微量凯氏定氮法;粗脂肪含量的测定采用索氏抽提法;粗灰分含量的测定采用550 ℃马福炉灼烧法。

饲料样品中氨基酸(除色氨酸外)含量采用高速氨基酸自动分析仪(Model 835-50,日本日立公司)进行测定。

血清生化指标分析:总蛋白(total protein,TP)、白蛋白(albumin,ALB)、葡萄糖(glucose,GLU)、总胆固醇(total cholesterol,TC)、甘油三酯(triglyceride,TG)、高密度脂蛋白(high density lipoprotein,HDL)和低密度脂蛋白(low density lipoprotein,LDL)含量及碱性磷酸酶(alkaline phosphatase,AKP)活性均由宁波大学附属医院使用日立7600-110型全自动生化分析仪测定。

1.5 计算公式

SR(%)=100×终末尾数/初始尾数;
WGR(%)=100×(终末均重-
初始均重)/初始均重;
SGR(%/d)=100×(ln终末体重-
ln初始体重)/饲养天数;
PER=(终末体重-初始体重)/蛋白质摄入量;
PRR(%)=100×(初始体重×初始体蛋白质含量-
终末体重×终末体蛋白质含量)/(投饲总量×
饲料蛋白质含量);
FE=(终末虾总重+死虾总重-初始虾总重)/
(投饲总量×饲料干物质含量)。

1.6 数据处理与分析

数据均以平均值±标准差(mean±SD)表示。用SPSS 17.0软件对所有数据进行单因素方差分析(one-way ANOVA),当组间有显著差异时,进行Duncan氏法多重比较。以P<0.05作为差异显著性判断标准。

2 结果与分析 2.1 不同剂型蛋氨酸及其添加水平对凡纳滨对虾生长性能及饲料利用的影响

由表3可知,随着鱼粉替代水平的升高,MHA-Ca组(包括MHA-Ca1组MHA-Ca2组、MHA-Ca3组)与C-Met组(包括C-Met1组、C-Met2组、C-Met3组)的WGR、SGR、FE、PER和PPV均有下降趋势,而SR无显著变化(P>0.05),且包括Basal组在内的各组SR均在91%以上。在相同鱼粉替代水平时,MHA-Ca组的WGR、SGR、FE、PER和PPV均显著高于C-Met组(P<0.05),并在MHA-Ca1组达到最大,MHA-Ca1组仅PER显著低于Basal组(P<0.05),但C-Met组的WGR、SGR、FE、PER和PPV均显著低于Basal组(P<0.05)。

表3 不同剂型蛋氨酸及其添加水平对凡纳滨对虾生长性能及饲料利用的影响 Table 3 Effects of different forms and supplemental levels of methionine on growth performance and feed utilization of Pacific white shrimp (Litopenaeus vannamei)
2.2 不同剂型蛋氨酸及其添加水平对凡纳滨对虾全虾及肌肉常规营养成分的影响

由表4可知,各组全虾干物质和粗蛋白质含量均无显著差异(P>0.05);随着鱼粉替代水平的升高,MHA-Ca组与C-Met组的粗脂肪含量均呈下降的趋势,在MHA-Ca1组达到最大,但Basal组的粗脂肪含量显著高于各试验组(P<0.05);全虾粗灰分含量仍以Basal组最高,除与MHA-Ca1组和MHA-Ca2组差异不显著(P>0.05),显著高于其他各试验组(P<0.05)。

表4 不同剂型蛋氨酸及其添加水平对凡纳滨对虾全虾常规营养成分的影响(干物质基础) Table 4 Effects of different forms and supplemental levels of methionine on whole body normal nutritional components of Pacific white shrimp (Litopenaeus vannamei) (DM basis)

由表5可知,与Basal组相比,各试验组对虾肌肉干物质和粗蛋白质含量均有所降低,且C-Met3组显著低于Basal组(P<0.05);对虾肌肉中的粗脂肪和粗灰分含量在各组间无显著差异(P>0.05)。

表5 不同剂型蛋氨酸以及添加水平对凡纳滨对虾肌肉常规营养成分的影响(干物质基础) Table 5 Effects of different forms and supplemental levels of methionine on muscle normal nutritional components of Pacific white shrimp (Litopenaeus vannamei) (DM basis)
2.3 不同剂型蛋氨酸及其添加水平对凡纳滨对虾血清生化指标的影响

由表6可知,随着鱼粉替代水平的升高,MHA-Ca组的血清TP和TG含量均呈上升趋势,与此相反,C-Met组则呈下降趋势;随着鱼粉替代 水平的升高,MHA-Ca组与C-Met组的血清TC含量和AKP活性均有先上升后降低的趋势;各组对虾血清ALB、HDL、LDL和GLU含量无显著差异(P>0.05)。

表6 不同剂型蛋氨酸及其添加水平对凡纳滨对虾血清生化指标的影响 Table 6 Effects of different level and forms of methionine on serum biochemical indices of Pacific white shrimp (Litopenaeus vannamei)

3 讨 论 3.1 不同剂型蛋氨酸及其添加水平对凡纳滨对虾生长性能和饲料利用的影响

本试验结果表明,在不同鱼粉替代水平的饲料中补充不同剂型的蛋氨酸,对凡纳滨对虾生长性能及饲料利用产生了影响。其中MHA-Ca组的WGR、SGR、FE、PER和PPV均显著高于同一添加水平下的C-Met组,说明羟基蛋氨酸钙比晶体蛋氨酸能更有效地提高凡纳滨对虾的生长性能和饲料利用效率。与晶体蛋氨酸相比,羟基蛋氨酸钙不仅具备蛋氨酸的营养功能,而且还可以发挥其特有的酸化剂和抗氧化剂等功能[26]。这一试验结果与大菱鲆(Psetta maxima)[27]、凡纳滨对虾(Litopenaeus vannamei)[28]和罗氏沼虾(Macrobrachium rosenbergii)[29]上的研究结果相似。Browdy等[28]认为,在复合蛋白质源替代50%和100%鱼粉的饲料中分别添加1.0和2.0 g/kg的羟基蛋氨酸钙能有效提高凡纳滨对虾的WGR,并与高鱼粉对照组无显著差异;然而,Forster等[30]指出,在无鱼粉饲料中添加外源羟基蛋氨酸钙与晶体蛋氨酸同样能提高凡纳滨对虾的WGR和FE,并显著高于不添加外源蛋氨酸组。这些研究结果表明鱼类和虾类能够利用氨基酸,但对晶体蛋氨酸的利用效果低于羟基蛋氨酸钙。一些研究者认为,由于虾类肠道吸收游离氨基酸的速度比吸收肽和蛋白质要快,而晶体蛋氨酸可以被迅速吸收,从而导致摄入的晶体蛋氨酸与来源于蛋白质分解的氨基酸的吸收不同步,吸收的蛋氨酸较快地分解,降低了其利用效率[31, 32]

本试验中,在25%鱼粉饲料中补充0.041%的羟基蛋氨酸钙,凡纳滨对虾的WGR、SGR和PPV与饲喂30%鱼粉饲料的对照组无显著差异,然而,在此鱼粉含量下,补充晶体蛋氨酸导致WGR、SGR和PPV显著降低,这一结果表明在饲料中降低5%鱼粉时补充羟基蛋氨酸钙可以提高凡纳滨对虾的生长性能,从而可以起到节约鱼粉的作用。本试验中,随着鱼粉替代水平的升高,MHA-Ca组与C-Met组的WGR、SGR、FE、PER和PPV均有下降趋势,这主要是由于替代鱼粉水平的增加,饲料适口性降低以及氨基酸的不平衡,导致对虾生长性能和饲料利用效率的降低[32, 33, 34, 35]。然而,Keembiyehetty等[36]研究发现,羟基蛋氨酸促进阳光鲈鱼生长的效率为L-蛋氨酸的75%;Robison等[37]和Poston[38]分别在斑点叉尾 和虹鳟上的研究发现羟基蛋氨酸类似物被鱼利用的效果(生长性能和饲料效率)比L-蛋氨酸和DL-蛋氨酸差。导致不同剂型氨基酸在不同养殖品种间出现差异的原因可能与饲料配方、试验条件、养殖品种以及养殖品种的不同生长阶段存在差异有关。

3.2 不同剂型蛋氨酸及其添加水平对凡纳滨对虾全虾及肌肉常规营养成分的影响

本试验结果表明,在不同鱼粉替代水平的饲料中添加不同剂型蛋氨酸,对凡纳滨对虾全虾粗脂肪和粗灰分含量以及肌肉干物质和粗蛋白质含量的影响显著。这一结果与在罗氏沼虾[29]、白鲈[39]和美国红鱼[40]上的研究结果相似。对照组(高鱼粉组)凡纳滨对虾全虾粗脂肪和粗灰分含量显著高于其他各试验组,并且粗脂肪含量与WGR趋势密切相关。本试验结果表明,在不同鱼粉替代水平的饲料中添加不同剂型的蛋氨酸,凡纳滨对虾肌肉粗蛋白质和干物质含量在C-Met3组显著低于除C-Met2组外的其他各组。然而,在低蛋白质饲料中添加晶体蛋氨酸、赖氨酸或者两者同时不添加并未影响斑点叉尾 可食组织的蛋白质和脂肪含量[41, 42]。Alam等[43]也认为对虾体成分不会受饲料中是否添加蛋氨酸或赖氨酸的影响,这与本试验结果并不完全一致。梁雄培等[29]指出,罗氏沼虾全虾粗脂肪含量与WGR呈现正相关,与本试验结果一直,表明对虾生长性能的提高可能体现在脂肪沉积的增加。

3.3 不同剂型蛋氨酸及其添加水平对凡纳滨对虾血清生化指标的影响

血清成分(如TP、TG、GLU和TC等)与机体健康、营养和疾病等状况有密切关系。血清TP含量在一定程度上能反映出饲料中蛋白质的营养水平及动物对蛋白质的消化和吸收状况[44]。TG和TC是体内重要的脂类物质,可以反映肝脏脂肪代谢以及脂类在肝脏的沉积情况[45]。本试验中,饲料中添加不同水平的不同剂型的蛋氨酸对凡纳滨对虾血清GLU、ALB、HDL和LDL含量的影响不显著。随着饲料中鱼粉含量降低,补充羟基蛋氨酸钙的各组血清TP含量逐渐增加,而补充晶体蛋氨酸的各组间差异不显著。饲料中补充羟基蛋氨酸钙有助于提高凡纳滨对虾对蛋白质的消化与吸收,从而导致血清中TP含量的增加。梁雄培等[29]指出罗氏沼虾饲料中用复合蛋白质源替代50%鱼粉时,晶体蛋氨酸组血清TP含量显著低于羟基蛋氨酸钙组,这一结果同本试验相似。因全虾和肌肉粗蛋白质含量并无显著差异,因此血清TP含量的降低可能是由于动物肝功能受损而引起的[46]

血清中TG和TC含量与机体脂肪代谢状况有关,在本试验中,对照组血清TG和TC含量显著高于各试验组,同肌肉粗脂肪含量变化趋势相一致。然而,梁雄培等[29]对罗氏沼虾的研究表明,晶体蛋氨酸组的血清TG含量随鱼粉含量的降低而呈现上升趋势,这一结果同本试验得出的结果不同。Ruchimat等[47]研究发现,饲料中添加0.57%~1.58%的晶体蛋氨酸,可以显著提高黄条 的血清TG含量。不同剂型蛋氨酸对凡纳滨对虾血液指标的影响有待于今后进一步的研究。

4 结 论

① 在鱼粉含量为25%的饲料中补充0.041%的羟基蛋氨酸钙,凡纳滨对虾可以获得与30%鱼粉饲料相当的生长性能;然而,随着鱼粉含量的进一步降低,饲料中补充晶体蛋氨酸和羟基蛋氨酸钙均不能改善凡纳滨对虾的生长性能和饲料利用效率。

② 在同一鱼粉含量的饲料中补充羟基蛋氨酸钙的凡纳滨对虾的生长性能优于补充晶体蛋氨酸。

参考文献
[1]SUÁREZ J A,GAXIOLA G,MENDOZA R,et al.Substitution of fish meal with plant protein sources and energy budget for white shrimp Litopenaeus vannamei (Boone,1931)[J]. Aquaculture,2009,289(1/2):118-123. (1)
[2]周歧存,麦康森,刘永坚,等.动植物蛋白源替代鱼粉研究进展[J]. 水产学报,2005,29(3):404-410. (1)
[3]TACON A G J,METIAN M.Global overview on the use of fish meal and fish oil in industrially compounded aquafeeds:trends and future prospects[J]. Aquaculture,2008,285(1/2/3/4):146-158. (1)
[4]GU M,ZHANG W B,BAI N,et al.Effects of dietary crystalline methionine or oligo-methionine on growth performance and feed utilization of white shrimp (Litopenaeus vannamei) fed plant protein-enriched diets[J]. Aquaculture Nutrition,2013,19(Suppl.1):39-46. (1)
[5]WEI K,SUN L S,AN Z H,et al.Advances in utilization effects of crystalline amino acid and microencapsulation amino acid in shrimps[J]. Chinese Journal of Animal Nutrition,2012,24(10):1871-1877. (1)
[6]TACON A G J.Feed ingredients for carnivorous fish species:alternatives to fishmeal and other dietary resources[J]. FAO Fisheries Circular,1994,881:35. (1)
[7]OGINO C,NANRY H.Relationship between the nutritive value of dietary proteins for rainbow trout and the essential amino acids compositions[J]. Bulletin of the Japanese Society of Scientific Fisheries,1980,46:109-112. (1)
[8]FOX J M,LAWRENCE A L,LI-CHAN E.Dietary requirement for lysine by juvenile Penaeus vannamei using intact and free amino acid sources[J]. Aquaculture,1995,131(3/4):279-290. (1)
[9]HALVER E J E,HARDY R W.Fish nutrition[M]. Amsterdam:Academic Press,2002:162. (1)
[10]NORDRUM S,KROGDAHL R,RØSJØ C.Effects of methionine,cysteine and medium chain triglycerides on nutrient digestibility,absorption of amino acids along the intestinal tract and nutrient retention in Atlantic salmon (Salmo salar L.) under pair-feeding regime[J]. Aquaculture,2000,186(3/4):341-360. (1)
[11]YUAN Y C,GONG S Y,YANG H J,et al.Effects of supplementation of crystalline or coated lysine and/or methionine on growth performance and feed utilization of the Chinese sucker,Myxocyprinus asiaticus[J]. Aquaculture,2011,316(1/2/3/4):31-36. (1)
[12]ROJAS-GARCÍA C,RØNNESTAD I.Assimilation of dietary free amino acids,peptides and protein in post-larval Atlantic halibut (Hippoglossus hippoglossus)[J]. Marine Biology,2003,142(4):801-808. (1)
[13]MURTHY R K,VARGHESE T J.Total sulphur amino acid requirement of the Indian major carp,Labeo rohita (Hamilton)[J]. Aquaculture Nutrition,1998,4(1):61-65. (1)
[14]牛化欣.微胶囊氨基酸制备及其在饲料加工和虾养殖中的效果研究[D]. 博士学位论文.无锡:江南大学,2011:83-93. (2)
[15]REFSTIE S,STOREBAKKEN T,BAEVERFJORD G,et al.Long-term protein and lipid growth of Atlantic salmon (Salmo salar) fed diets with partial replacement of fish meal by soy protein products at medium or high lipid level[J]. Aquaculture,2001,193(1/2):91-106. (1)
[16]LIU Y J,TIAN L X,LIU D H,et al.Influence of practical diet supplementation with free or coated lysine on the growth,plasma free amino acids and protein synthesis rates in the muscle of Ctenopharyngodon idellus[J]. Journal of Fisheries of China,2002,26(3):252-258. (1)
[17]DABROWSKI K,LEE K J,RINCHARD J.The smallest vertebrate,teleost fish,can utilize synthetic dipeptide-based diets[J]. The Journal of Nutrition,2003,133(12):4225-4229. (1)
[18]DABROWSKI K,ZHANG Y F,KWASEK K,et al.Effects of protein-,peptide- and free amino acid-based diets in fish nutrition[J]. Aquaculture Research,2010,41(5):668-683. (1)
[19]PERES H,OLIVA-TELES A.The effect of dietary protein replacement by crystalline amino acid on growth and nitrogen utilization of turbot Scophthalmus maximus juveniles[J]. Aquaculture,2005,250(3/4):755-764. (1)
[20]HAULER R C,CARTER C G,EDWARDS S J.Feeding regime does not influence lysine utilisation by Atlantic salmon,Salmo salar L.,parr[J]. Aquaculture,2007,273(4):545-555. (1)
[21]李博,武书庚,张海军,等.蛋氨酸羟基类似物相对生物学效价影响因素的研究进展[J]. 动物营养学报,2009,21(4):423-427. (1)
[22]OPAPEJU F O,HTOO J K,DAPOZA C,et al.Bioavailability of methionine hydroxy analog-calcium salt relative to DL-methionine to support nitrogen retention and growth in starter pigs[J]. Animal,2012,6(11):1750-1756. (1)
[23]FAHEY J,MEE J F,MURPHY J J,et al.Effects of calcium salts of fatty acids and calcium salt of methionine hydroxy analogue on plasma prostaglandin F2α metabolite and milk fatty acid profiles in late lactation Holstein-Friesian cows[J]. Theriogenology,2002,58(8):1471-1482. (1)
[24]沈晓芝,周洪琪,华雪铭,等.羟基蛋氨酸钙对鲤生长性能和白肌营养组成的影响[J]. 上海水产大学学报,2007,16(2):118-123. (1)
[25]黄文文,郑昌区,霍雅文,等.凡纳滨对虾不同生长阶段的蛋白质需要量[J]. 动物营养学报,2014,26(9):2675-2686. (1)
[26]金利群,李晓庆,李宗通,等.蛋氨酸羟基类似物的生产工艺及其在动物营养中的应用[J]. 动物营养学报,2013,25(7):1437-1445. (1)
[27]RUI M,HOU H P,MAI K S,et al.Comparative study on the effects of L-methionine or 2-hydroxy-4-(methylthio) butanoic acid as dietary methionine source on growth performance and anti-oxidative responses of turbot (Psetta maxima)[J]. Aquaculture,2013,412/413:136-143. (1)
[28]BROWDY C L,BHARADWAJ A S,VENERO J A,et al.Supplementation with 2-hydroxy-4-(methylthio) butanoic acid (HMTBa) in low fish meal diets for the white shrimp,Litopenaeus vannamei[J]. Aquaculture Nutrition,2012,18(4):432-440. (1)
[29]梁雄培,周歧存,黎明,等.饲料中补充晶体蛋氨酸和羟基蛋氨酸钙对罗氏沼虾幼虾生长性能的影响[J]. 宁波大学学报:理工版,2015,28(1):1-7. (5)
[30]FORSTER I P,DOMINY W G.Efficacy of three methionine sources in diets for Pacific white shrimp,Litopenaeus vannamei[J]. Journal of the World Aquaculture Society,2006,37(4):474-480. (1)
[31]LOVELL T.Nutrition of aquaculture species[J]. Journal of Animal Science,1991,69(10):4193-4200. (1)
[32]杨志强,曹俊明,赵红霞,等.饲料添加不同剂型蛋氨酸对凡纳滨对虾生长性能和生化指标的影响[J]. 饲料工业,2011(增刊2):30-33. (2)
[33]FORSTER I P,DOMINY W,OBALDO L,et al.Rendered meat and bone meals as ingredients of diets for shrimp Litopenaeus vannamei (Boone,1931)[J]. Aquaculture,2003,219(1/2/3/4):655-670. (1)
[34]AMAYA E A,DAVIS D A,ROUSE D B.Replacement of fish meal in practical diets for the Pacific white shrimp (Litopenaeus vannamei) reared under pond conditions[J]. Aquaculture,2007,262(2/3/4):393-401. (1)
[35]HERNÁNDEZ C,OLVERA-NOVOA M A,AGUILAR-VEJAR K,et al.Partial replacement of fish meal by porcine meat meal in practical diets for Pacific white shrimp (Litopenaeus vannamei)[J]. Aquaculture,2008,277(3/4):244-250. (1)
[36]KEEMBIYEHETTY C N,GATLIN D M Ⅲ.Evaluation of different sulfur compounds in the diet of juvenile sunshine bass (Morine chrysops ♀×M.saxatilis ♂)[J]. Comparative Biochemistry an Physiology Part A:Physiology,1995,112(1):155-159. (1)
[37]ROBISON E H,ALLEN O W,POE W E.Utilization of dietary sulfur compounds by fingerling channel catfish:L-methionine,DL-methionine,methionine hydroxy analogue,taurine and inorganic sulfate[J]. The Journal of Nutrition,1978,108(12):19-32. (1)
[38]POSTON H A.Response of rainbow trout to source and level of supplemental dietary methionine[J]. Comparative Biochemistry and Physiology Part A:Physiology,1986,83(4):739-744. (1)
[39]KEEMBIYEHETTY C N,GATLIN D M.Performance of sunshine bass fed soybean-meal-based diets supplemented with different methionine compounds[J]. The Progressive Fish-Culturist,1997,59(1):25-30. (1)
[40]GOFF J B,GATLIN D M Ⅲ.Evaluation of different sulfur amino acid compounds in the diet of red drum,Sciaenops ocellatus,and sparing value of cystine for methionine[J]. Aquaculture,2004,241(1/2/3/4):465-477. (1)
[41]LI M H,ROBINSONO E H.Effects of supplemental lysine and methionine in low protein diets on weight gain and body composition of young channel catfish Ictalurus punctatus[J]. Aquaculture,1998,163(1/2/3/4):295-305. (1)
[42]BAI S C,GATLIN D M Ⅲ.Effect of L-lysine supplementation of diets with different protein levels and sources on channel catfish,Ictalurus punctatus,(Rafinesque)[J]. Aquaculture Research,1994,25(5):465-474. (1)
[43]ALAM M S,TESHIMA S I,KOSHIO S,et al.Supplemental effects of coated methionine and/or lysine to soy protein isolate diet for juvenile kuruma shrimp,Marsupenaeus japonicus[J]. Aquaculture,2005,248(1/2/3/4):13-19. (1)
[44]ZHOU Q C,WU Z H,TAN B P,et al.Optimal dietary methionine requirement for juvenile cobia (Rachycentron canadum)[J]. Aquaculture,2006,258(1/2/3/4):551-557. (1)
[45]赵兰江,赵冬.尿酸代谢异常与甘油三酯代谢异常的关系[J]. 中华流行病学杂志,2006,27(4):362-365. (1)
[46]DEMIGNOT S,BEILSTEIN F,MOREL E.Triglyceride-rich lipoproteins and cytosolic lipid droplets in enterocytes:key players in intestinal physiology and metabolic disorders[J]. Biochimie,2014,96:48-55. (1)
[47]RUCHIMAT T T,MASUMOTO T,HOSOKAWA H,et al.Quantitative methionine requirement of yellowtail (Seriola quinqueradiata)[J]. Aquaculture,1997,150(1/2):113-122. (1)