近年来,追求高产肉量和高瘦肉率使畜禽肉品质大幅下降。肌纤维类型组成直接影响着肉品质。动物出生后肌纤维数量不再改变,其类型却可以转化。因此,调控肌肉发育和肌纤维类型转化的关键基因被作为影响肉品质的重要因素来研究。Six1是果蝇属SO(Sine oculis)基因在脊椎动物中的同源基因,是Six家族(Sine oculis homeobox family)成员之一,该家族是一类在进化上高度保守的转录因子家族。Six家族包含Six1~6共6个家族成员,根据氨基酸保守序列相似性,分为Six1/2、Six3/6和Six4/5 3个亚家族[1]。Six1缺失的小鼠出生时出现胸骨缺损和严重的肌肉发育不全,膈肌甚至完全缺失,导致小鼠出生后呼吸受到抑制而很快死亡[2]。另有研究表明,Six1和其辅助因子Eya1过表达使小鼠比目鱼肌中慢肌纤维向快肌纤维转变[3]。这些研究表明,Six1在脊椎动物骨骼肌发育以及肌纤维类型转化过程中起着重要作用。本文就Six1对骨骼肌发育和肌纤维类型转化的调控作一综述。
1 Six1的概述 1.1 Six1基因的发现Six1由SO基因进化而来,最早于1994年在研究果蝇视觉系统形成过程中被发现和克隆[4],随后Six1在脊椎动物鼠、人、鸡、蟾蜍、斑马鱼、猪、鸭和无脊椎动物水母中相继被发现和克隆[5],并发现Six1基因在生物感官系统[6]、骨骼肌[7]、颅面器官[8, 9]、肾脏[10]等组织器官发育过程中起着重要作用。
1.2 Six1蛋白的结构Six1蛋白同Six家族其他成员一样,由2个保守的特征结构域[同源异型结构(homeodomain,HD)域和蛋白互作结构(six domain,SD)域]、非保守的N端和C端组成。通常,HD域包含60个氨基酸,在这60个氨基酸残基中包括1个DNA螺旋识别区,能和下游靶基因的DNA序列特异性锚定结合,进而对下游受控基因进行激活或抑制[1]。SD域位于HD域的N端[11],通常包含110~115个氨基酸,其保守性仅次于HD域,主要功能是参与蛋白质间的相互作用[1]。Six1蛋白N端只包含少数氨基酸残基,这从侧面预示N端对该蛋白质功能影响不大[12]。Six1蛋白C端有几个氨基酸残基作为HD域的延伸,这些延伸的氨基酸可能与DNA绑定调节有关,起到稳定与目标DNA序列结合的作用[1];此外,C端还具有调节Six1蛋白降解的功能[13]。
1.3 Six1在不同动物中的表达谱Six1具有特定时空表达模式,具有多组织表达特性,不同组织Six1的表达量存在明显差异。Boucher等[14]等最初研究显示Six1仅在人的成年骨骼肌中具有很高表达。Wang等[15]等采用实时荧光定量PCR技术对鸭不同组织Six1基因表达图谱分析发现,Six1在胸肌中表达水平最高,其次为腿肌,再次为脾脏、胰脏、肺。Wu等[16]利用半定量PCR研究猪不同组织Six1基因表达规律发现,Six1基因在大多数组织中均有表达,其中骨骼肌中表达最高,其次为睾丸和骨髓。我们采用Western blot检测了猪不同组织Six1蛋白表达规律发现,Six1蛋白在猪骨骼肌组织中最为丰富,且快肌(如趾长伸肌和背最长肌)多于慢肌(如比目鱼肌和腰大肌)[17]。这些研究结果显示,Six1基因在骨骼肌中的表达量都明显高于其他组织,提示其与骨骼肌的发育和肌肉特异性有密切的关系。
2 Six1影响骨骼肌发育及肌纤维类型转化 2.1 Six1与骨骼肌发育脊椎动物骨骼肌发育是由一系列基因和调控因子共同协作下完成的复杂过程,Six1、Eya2、Dach、Pax3/7和MRFs等在这一过程中共同构成了一个复杂精确的调控系统[5, 18]。Six1在脊椎动物肌肉发育过程中具有至关重要的作用。敲除Six1a或Six1b都会增加斑马鱼胚胎肌细胞的凋亡;Six1a能促进斑马鱼胚胎快肌前体细胞增值和分化,其突变使胚胎肌纤维发生不规则排列,最终导致胚胎异常发育[19]。在鸡的胚胎发育过程中,Six1在四肢远端后区域的结缔组织中表达丰富,其缺失使肌细胞的分化受到抑制[20, 21]。在人胚胎发育第4周的体节中能检测到Six1的表达[22],猪胚胎发育第65天的背最长肌Six1的mRNA水平显著高于出生后21 d[16],说明Six1与人体节生成和猪肌肉发育有着密切关系。
小鼠胚胎原位杂交试验发现,Six1的表达基本限制在胚胎的生肌区域[23];在Six1和Six4双突变的小鼠胚胎中,Pax3在轴下生皮肌节的表达不足,导致轴下生皮肌节生肌前体细胞不能向肢芽转移[24]。Pax3是肌祖细胞形成必不可少的调控因子,Pax3调控着生皮肌节外侧部分延伸,在Pax3缺失的小鼠胚胎中,轴下迁移的肌祖细胞严重缺少;在胚胎肢芽中,Six1和Six4可以通过调控Pax3的表达来控制体节肌细胞早期的分层和迁移[25]。这些研究表明,Six1和Six4不仅对肌肉的发生发育有着至关重要的作用,同时还是Pax3的上游基因。在Six1缺失的小鼠胚胎中,生肌前体细胞向肢芽转移的能力减弱,分化的成肌细胞异常凋亡;Six1缺失的小鼠出生时出现广泛的肌肉发育不全,胸骨缺损,膈肌甚至完全缺失,导致小鼠出生后呼吸受到抑制而很快死亡[2]。Six1/4基因双敲除的小鼠胚胎比单独Six1基因敲除的小鼠胚胎出现更为广泛和严重的肌肉发育不全,并伴随肋骨和颅面骨缺陷[26],而单独缺失Six4的小鼠胚胎或成年小鼠都没有出现骨骼肌发育畸形[27]。上述结果表明,Six4在胚胎发育中有重要的作用但其重要性不如Six1,Six4和Six1存在明显的功能冗余。另有研究认为,Six5同样参与了肌肉发育进程,Six5与肌肉萎缩有关[28],但缺失Six5的小鼠胚胎没有出现肌肉发育不良或缺陷[29]。
2.2 Six1与生肌调节因子(MRFs)家族关系MRFs是一类调控肌肉发生、发育及肌肉功能完善的调节因子家族,其作用贯穿于动物胚胎期到出生后骨骼肌发育整个过程,该家族包含4个成员:MyoD、myogenin(MyoG)、Myf5和MRF4。Myf5和MyoD决定成肌细胞前体生成不同类型的成肌细胞,Myf5和MyoD基因表达是胚胎肌肉发生起始的标志[30]。Six1对MRFs家族4个成员都有转录调控作用,Six1基因是MRFs家族的上游基因[2, 22, 26, 31, 32]。
Myf5在胚胎生肌决定、细胞增殖和肌纤维形成过程中有着重要作用,MyoD和MyoG位于肌分化基因的上游,调控着肌肉损伤修复进程和胚胎中胚层细胞分化到形成肌纤维整个过程[26, 33, 34]。小鼠胚胎Myf5基因存在1个长145 bp的调控元件区,在这一区域中存在与Six1特异识别的MEF3位点,在MEF3位点附近还存在着Pax3的识别序列[35]。Six1通过与MEF3位点特异结合,在肢芽中活化启动并调控Myf5的转录[31]。在MEF3位点突变的小鼠胚胎中,Six1对Myf5的转录调控被阻遏,而Pax3仍然能与Myf5中Pax3位点有效结合,但Myf5的转录水平显著下降,Pax3与Myf5中Pax3位点的结合可以部分补偿MEF3位点突变造成的生肌发育障碍[2, 31, 35]。原位杂交试验显示,在Six1缺失的小鼠胚胎E10.5期,向四肢迁移的Pax3阳性肌祖细胞数量减少,在胚胎前肢中不能检测到Myf5的表达;在Six1缺失的胚胎E11.5期中,胚胎前肢中无法检测到Pax3、MyoD和MyoG阳性细胞,后肢能检测到少量的Pax3和Myf5的表达;Six1缺失的小鼠胚胎E12.5期前肢中可以检测到Myf5的表达,后肢腹侧区有少量的表达MyoD和MyoG阳性细胞,而表达MyoD的阳性细胞主要集中在后肢背侧[2, 26];在Six1/4都缺失的胚胎E10.5期,Myf5在前肢中不能检测,MyoG在背侧肌节有极少量表达;在Six1/4双突变的小鼠胚胎中,轴下生肌节生肌前体细胞迁移异常,胚胎期早期肌节中不能检测MyoD、Mrf4和MyoG的表达,Myf5虽然可以少量的表达但被限制在体节的末端,Mrf4的表达受到抑制可能导致Six1和Six4基因双敲除小鼠在出生后出现肋骨缺陷的原因[2, 26]。当Six1被敲除时,Six4可以部分补偿Six1缺失个体中Myf5的转录激活作用[26, 31]。
Wang等[15]发现鸭Six1基因过表达促进鸭成肌细胞增殖同时显著提高Myf5和MyoD的mRNA水平。在小鼠C2C12细胞分化过程中,随着分化时间越长,Six1的mRNA水平越低,同时Myf5、MyoD和MyoG的mRNA水平随着Six1降低而下降[36]。Six1过表达抑制小鼠成肌细胞MyoG及myosin的表达,延迟细胞分化进程[37, 38, 39]。Liu等[40]等利用小干扰RNA降低Six1基因表达后,发现小鼠成肌细胞中MyoD水平和MyoG活力下降,Six1通过与MyoD增强子核心区域中MEF3位点结合调控MyoD的表达,这与Le Grand等[34]在对卫星细胞体外研究的结果一致。在MyoG上184 bp增强子核心区域中同样存在MEF3位点,Six1与MEF3位点结合调控MyoG的表达[41]。当阻断Six1a表达时,超过一半的斑马鱼胚胎快肌前体细胞为MyoG阴性细胞[42],快肌的分化进程受到抑制[19]。过表达Six1上调MyoG的表达水平,Six4/5过表达则下调MyoG的表达水平[43]。有研究表明,Six1/4缺失时,Six2可以部分代替Six1/4激活MyoD,另外Myf5可能是MyoD的上游基因[44]。
2.3 Six1与肌肉损伤修复骨骼肌卫星细胞是位于肌膜和基底膜之间的组织干细胞,当肌肉受损时,静止的卫星细胞被激活,形成成肌细胞后开始表达Myf5、MyoD、MyoG,最后分化融合形成肌纤维,最终修复受损肌肉[45]。Six1在肌肉损伤后卫星细胞的激活、分化、修复损伤肌肉的过程中起着重要作用。研究表明,Six1在静止状态和激活状态的卫星细胞中都有表达,Six1基因敲除后对静止卫星细胞的激活、增殖没有影响,而Pax7阳性细胞增多,其增殖不受影响可能是由于Pax7大量表达抵消了Six1缺失的作用[34, 46]。Six1过表达抑制卫星细胞增殖促进其分化,Six1缺失后卫星细胞分化能力显著降低,分化进程延迟,形成的肌管减少,再生的肌肉中肌纤维含量减少[34, 43]。沉默Six1的斑马鱼胚胎中,分化的成肌细胞中MyoD和MyoG的表达减少,而MyoD和MyoG在成肌细胞分化最终形成肌纤维过程中有至关重要作用[40, 47]。对人股四头肌进行延长或收缩刺激后发现,在刺激后3~6 h内,Six1的mRNA水平显著降低,随后逐渐恢复正常[48],说明Six1与肌肉收缩性能有着密切的关系。卫星细胞通过一系列过程修复损伤肌肉后,其本身的自我更新过程同样受到Six1调控,当Six1缺失时,卫星细胞容量增大,其原有的微环境平衡被打破。另外,Six家族其他成员在骨骼肌损伤修复过程中有重要作用,如Six2/4/5在静止卫星细胞中有少量表达,但其表达量比Six1低。敲除Six5促进卫星细胞增殖,而分别过表达Six4和Six5抑制MyoG的在卫星细胞的表达导致其增殖和分化受到抑制[43]。
2.4 Six1与肌纤维类型转化最早在Grifone等[3]的研究中发现,Six1/Eya1复合物可以使成年小鼠慢肌向快肌转变,随后越来越多关于Six1在骨骼肌纤维的形成和肌纤维类型转化的作用相继被报道。在骨骼肌醛缩酶A基因启动子中存在着MEF3结合位点,此位点对骨骼肌快肌表型具有重要作用。研究表明,在快速型肌纤维中,MEF3位点的活性和Eya1的表达量明显高于慢速型肌纤维,在ⅡB型肌纤维中,Six1与MEF3位点结合能力明显高于其他类型肌纤维。在比目鱼肌中,单独的Six1过表达不能使慢速型肌纤维向快速型肌纤维转变,而当Six1和Eya1同时过表达时,比目鱼肌中慢速氧化型肌纤维则向快速酵解型肌纤维转变,说明即使在成年骨骼肌中Six1/Eya1复合物依然可以使慢速型肌纤维向快速型肌纤维转化。Six1和Eya1协同作用于Six1基因的靶基因使骨骼肌的慢肌表型向快肌表型转化。另外,Six4和Six5对骨骼肌中快肌基因的表达有一定的转录激活作用,当Six1缺失时,Six4和Six5可以部分代偿性补偿Six1缺失而转录激活下游快肌基因[3, 49]。
Sakakibara等[32]等通过小干扰RNA技术降低成年小鼠胫骨前肌Six1基因表达后发现,Ⅰ型和ⅡA型肌纤维所占比例显著上升,而ⅡB型肌纤维所占比例显著的下降,其肌肉抗疲劳性显著增强,同时快肌基因mRNA水平显著下降而慢肌基因mRNA水平显著上升。Hetzler等[50]对小鼠胫骨前肌Six1基因敲除后发现,缺失Six1的肌肉与正常肌肉相比存在明显的损伤,并且MyoG的mRNA水平显著下降;肌肉中MyHC-ⅡB蛋白和ⅡB型肌纤维比例显著下降,MyHC-ⅡA蛋白含量显著上升,ⅡA型肌纤维比例有上升趋势。在对C2C12成肌细胞分别进行抑制Six1表达和过表达Six1处理,结果发现,抑制Six1表达时,MyHC-ⅡB和MyHC-ⅡX启动子活性显著降低;Six1基因过表达时,MyHC-ⅡB和MyHC-ⅡX启动子活性显著上升[50]。这些研究提示,Six1可以调控成年骨骼肌肌纤维转化从而改变骨骼肌中肌纤维类型比例。在Six1a基因敲除的斑马鱼胚胎中快肌基因和MyoG表达不足,快速型肌纤维的分化受到抑制,而慢速型肌纤维则不受影响[42]。此外,研究发现猪和鸭Six1在快肌中的表达明显高于慢肌[15, 17],侧面提示Six1对骨骼肌快肌表型的维持具有重要作用。
Six1还可能通过其他途径调控肌纤维类型之间的转化。研究表明,Sox6在快速型肌纤维中大量存在而在慢速型肌纤维中较少,在Sox6突变的小鼠中,骨骼肌中大多数慢肌基因mRNA水平和Ⅰ型肌纤维比例显著上升[51, 52]。另外,linc-MYH在快肌中比慢肌有较多的表达,在linc-MYH缺失的骨骼肌中快肌基因的表达显著降低,而慢肌基因的表达显著上升[32]。上述结果表明,Sox6和linc-MYH抑制慢肌基因表达而对快肌基因表达及快速型肌纤维的维持有促进作用。另外,在Six1缺失的胚胎期的小鼠背肌中Sox6蛋白与对照组相比明显减少[53];当Six1缺失时,小鼠骨骼肌中linc-MYH的mRNA水平显著降低[32]。上述结果提示,Six1可能是Sox6和linc-MYH的上游基因,Six1可通过调控Sox6和linc-MYH的表达来调节肌肉发育和肌纤维类型的转化。
3 Six1在畜禽肉质调控中可能的作用影响畜禽肉品质的因素有很多,如基因、营养、年龄及环境等,其中基因是影响肉质性状的内因,包括RN-基因和氟烷敏感基因2个主效基因和多个微效基因。肉品质性状是由复杂的多基因网络及信号转导通路共同调控决定的,目前发现与肉质性状相关的候选基因主要有:1)参与脂肪形成及代谢的相关基因,如过氧化物酶体增殖物激活受体γ基因(PPARγ)、解偶联蛋白基因(UCP)、脂肪细胞决定和分化因子1基因(ADD1)、CCAAT增强子结合蛋白基因(C/EBP)、脂肪酸结合蛋白基因(FABPs)、脂肪酸合成酶基因(FAS)及激素敏感脂酶基因(HSL)等;2)参与肌肉形成及代谢相关因子,如肌肉生长抑制素基因(MSTN)、钙蛋白酶抑制蛋白基因(CAST)、MRFs等;3)其他基因,如黑色素皮质素受体基因(MCR)、胰岛素样生长因子2基因(IGF2)等。
目前Six1在畜禽肉质性状和生产性能相关的研究还未见报道,但Six1调控骨骼肌细胞分化、肌纤维类型转化等已在小鼠上得到充分的研究。由此可以推测Six1在畜禽肉质性状方面可能有着重要的调控作用,如通过调控生肌调节因子家族(MRFs)调控肌细胞分化方向直接影响畜禽肉质性状,或通过调控Myh2/4/7及相关快肌基因和慢肌基因影响肌纤维类型的决定及转化间接影响畜禽肉品质。但Six1基因能否作为畜禽肉质性状相关候选基因以及其具体的作用机制还有待于进一步深入研究。
4 小 结综上所述,无论是在胚胎期还是动物出生后Six1对骨骼肌的调控作用都伴随始终,其调控着骨骼肌发育、肌肉损伤修复、肌纤维类型转化。同时,Six1还可能是畜禽肉质性状的候选基因。因此,深入研究该基因对肌肉发育、肌纤维类型转化的可能调控机制以及是否可作为畜禽肉质性状的候选基因,将为今后改善畜禽肉品质提供新的思路。
[1] | HU S Y,MAMEDOVA A,HEGDE R S.DNA-binding and regulation mechanisms of the SIX family of retinal determination proteins[J]. Biochemistry,2008,47(11):3586-3594. (![]() |
[2] | LACLEF C,HAMARD G,DEMIGNON J,et al.Altered myogenesis in Six1-deficient mice[J]. Development,2003,130(10):2239-2252. (![]() |
[3] | GRIFONE R,LACLEF C,SPITZ F,et al.Six1 and Eya1 expression can reprogram adult muscle from the slow-twitch phenotype into the fast-twitch phenotype[J]. Molecular and Cellular Biology,2004,24(14):6253-6267. (![]() |
[4] | CHEYETTE B N R,GREEN P J,MARTIN K,et al.The Drosophila sine oculis locus encodes a homeodomain-containing protein required for the development of the entire visual system[J]. Neuron,1994,12(5):977-996. (![]() |
[5] | WU W J,HUANG R H,WU Q H,et al.The role of Six1 in the genesis of muscle cell and skeletal muscle development[J]. International Journal of Biological Sciences,2014,10(9):983-989. (![]() |
[6] | STIERWALD M,YANZE N,BAMERT R P,et al.The Sine oculis/Six class family of homeobox genes in jellyfish with and without eyes:development and eye regeneration[J]. Developmental Biology,2004,274(1):70-81. (![]() |
[7] | GORDON B S,ELGADO DÍAZ D C,WHITE J P,et al.Six1 and Six1 cofactor expression is altered during early skeletal muscle overload in mice[J]. The Journal of Physiological Sciences,2012,62(5):393-401. (![]() |
[8] | NONOMURA K,TAKAHASHI M,WAKAMATSU Y,et al.Dynamic expression of Six family genes in the dental mesenchyme and the epithelial ameloblast stem/progenitor cells during murine tooth development[J]. Journal of Anatomy,2010,216(1):80-91. (![]() |
[9] | SATO S,IKEDA K,SHIOI G,et al.Regulation of Six1 expression by evolutionarily conserved enhancers in tetrapods[J]. Developmental Biology,2012,368(1):95-108. (![]() |
[10] | XU P X,ZHENG W M,HUANG L,et al.Six1 is required for the early organogenesis of mammalian kidney[J]. Development,2003,130(14):3085-3094. (![]() |
[11] | KAWAKAMI K,OHTO H,TAKIZAWA T,et al.Identification and expression of six family genes in mouse retina[J]. FEBS Letters,1996,393(2/3):259-263. (![]() |
[12] | WEASNER B,SALZER C,KUMAR J P.Sine oculis,a member of the SIX family of transcription factors,directs eye formation[J]. Developmental Biology,2007,303(2):756-771. (![]() |
[13] | CHRISTENSEN K L,BRENNAN J D G,ALDRIDGE C S,et al.Cell cycle regulation of the human Six1 homeoprotein is mediated by APCCdh1[J]. Oncogene,2006,26(23):3406-3414. (![]() |
[14] | BOUCHER C A,CAREY N,EDWARDS Y H,et al.Cloning of the human SIX1 gene and its assignment to chromosome 14[J]. Genomics,1996,33(1):140-142. (![]() |
[15] | WANG H H,JINT H B,LIU H H,et al.Molecular cloning and expression pattern of duck Six1 and its preliminary functional analysis in myoblasts transfected with eukaryotic expression vector[J]. Indian Journal of Biochemistry & Biophysics,2014,51(4):271-281. (![]() |
[16] | WU W J,REN Z Q,WANG Y,et al.Molecular characterization,expression patterns and polymorphism analysis of porcine Six1 gene[J]. Molecular Biology Reports,2011,38(4):2619-2632. (![]() |
[17] | XU M,CHEN X L,HUANG Z Q,et al.Prokaryotic expression,purification,and polyclonal antibody preparation,and tissue distribution of porcine Six1[J]. Turkish Journal of Biology,2015,doi:10.3906/biy-1408-1466. (![]() |
[18] | BUCKINGHAM M,RIGBY P W J.Gene regulatory networks and transcriptional mechanisms that control myogenesis[J]. Developmental Cell,2014,28(3):225-238. (![]() |
[19] | O'BRIEN J H,HERNANDEZ-LAGUNAS L,ARTINGER K B,et al.MicroRNA-30a regulates zebrafish myogenesis through targeting the transcription factor Six1[J]. Journal of Cell Science,2014,127(10):2291-2301. (![]() |
[20] | BONNIN M A,LACLEF C,BLAISE R,et al.Six1 is not involved in limb tendon development,but is expressed in limb connective tissue under Shh regulation[J]. Mechanisms of Development,2005,122(4):573-585. (![]() |
[21] | DELFINI M-C,DUPREZ D.Ectopic Myf5 or MyoD prevents the neuronal differentiation program in addition to inducing skeletal muscle differentiation,in the chick neural tube[J]. Development,2004,131(4):713-723. (![]() |
[22] | FOUGEROUSSE F,DURAND M,LOPEZ S,et al.Six and Eya expression during human somitogenesis and MyoD gene family activation[J]. Journal of Muscle Research & Cell Motility,2002,23(3):255-264. (![]() |
[23] | OLIVER G,MAILHOS A,WEHR R,et al.Six3,a murine homologue of the sine oculis gene,demarcates the most anterior border of the developing neural plate and is expressed during eye development[J]. Development,1995,121(12):4045-4055. (![]() |
[24] | GRIFONE R,DEMIGNON J,GIORDANI J,et al.Eya1 and Eya2 proteins are required for hypaxial somitic myogenesis in the mouse embryo[J]. Developmental Biology,2007,302(2):602-616. (![]() |
[25] | TREMBLAY P,DIETRICH S,MERICSKAY M,et al.A crucial role for Pax3 in the development of the hypaxial musculature and the long-range migration of muscle precursors[J]. Developmental Biology,1998,203(1):49-61. (![]() |
[26] | GRIFONE R,DEMIGNON J,HOUBRON C,et al.Six1 and Six4 homeoproteins are required for Pax3 and Mrf expression during myogenesis in the mouse embryo[J]. Development,2005,132(9):2235-2249. (![]() |
[27] | OZAKI H,WATANABE Y,TAKAHASHI K,et al.Six4,a putative myogenin gene regulator,is not essential for mouse embryonal development[J]. Molecular and Cellular Biology,2001,21(10):3343-3350. (![]() |
[28] | KIRBY R,HAMILTON G M,FINNEGAN D J,et al.Drosophila homolog of the myotonic dystrophy-associated gene,SIX5,is required for muscle and gonad development[J]. Current Biology,2001,11(13):1044-1049. (![]() |
[29] | KLESERT T R,CHO D H,CLARK J I,et al.Mice deficient in Six5 develop cataracts:implications for myotonic dystrophy[J]. Nature Genetics,2000,25(1):105-109. (![]() |
[30] | PARKER M H,SEALE P,RUDNICKI M A.Looking back to the embryo:defining transcriptional networks in adult myogenesis[J]. Nature Reviews Genetics,2003,4(7):497-507. (![]() |
[31] | GIORDANI J,BAJARD L,DEMIGNON J,et al.Six proteins regulate the activation of Myf5 expression in embryonic mouse limbs[J]. Proceedings of the National Academy of Sciences,2007,104(27):11310-11315. (![]() |
[32] | SAKAKIBARA I,SANTOLINI M,FERRY A,et al.Six homeoproteins and a linc-RNA at the fast MYH locus lock fast myofiber terminal phenotype[J]. PLoS Genetics,2014,10(7):e1004538. (![]() |
[33] | WYZYKOWSKI J C,WINATA T I,MITIN N,et al.Identification of novel MyoD gene targets in proliferating myogenic stem cells[J]. Molecular and Cellular Biology,2002,22(17):6199-6208. (![]() |
[34] | LE GRAND F,GRIFONE R,MOURIKIS P,et al.Six1 regulates stem cell repair potential and self-renewal during skeletal muscle regeneration[J]. The Journal of Cell Biology,2012,198(5):815-832. (![]() |
[35] | DAUBAS P,BUCKINGHAM M E.Direct molecular regulation of the myogenic determination gene Myf5 by Pax3,with modulation by Six1/4 factors,is exemplified by the-111 kb-Myf5 enhancer[J]. Developmental Biology,2013,376(2):236-244. (![]() |
[36] | WU W J,REN Z Q,CHEN C,et al.Subcellular localization of different regions of porcine Six1 gene and its expression analysis in C2C12 myoblasts[J]. Molecular Biology Reports,2012,39(12):9995-10002. (![]() |
[37] | LI Z X,DENG D M,HUANG H C,et al.Overexpression of Six1 leads to retardation of myogenic differentiation in C2C12 myoblasts[J]. Molecular Biology Reports,2013,40(1):217-223. (![]() |
[38] | WU W J,REN Z Q,ZHANG L,et al.Overexpression of Six1 gene suppresses proliferation and enhances expression of fast-type muscle genes in C2C12 myoblasts[J]. Molecular and Cellular Biochemistry,2013,380(1/2):23-32. (![]() |
[39] | WU W J,REN Z Q,LIU H L,et al.Core promoter analysis of porcine Six1 gene and its regulation of the promoter activity by CpG methylation[J]. Gene,2013,529(2):238-244. (![]() |
[40] | LIU Y B,CHAKROUN I,YANG D B,et al.Six1 Regulates MyoD expression in adult muscle progenitor cells[J]. PloS One,2013,8(6):e67762. (![]() |
[41] | ZHANG H,STAVNEZER E.Ski regulates muscle terminal differentiation by transcriptional activation of Myog in a complex with Six1 and Eya3[J]. Journal of Biological Chemistry,2009,284(5):2867-2879. (![]() |
[42] | BESSARAB D A,CHONG S W,SRINIVAS B P,et al.Six1a is required for the onset of fast muscle differentiation in zebrafish[J]. Developmental Biology,2008,323(2):216-228. (![]() |
[43] | YAJIMA H,MOTOHASHI N,ONO Y,et al.Six family genes control the proliferation and differentiation of muscle satellite cells[J]. Experimental Cell Research,2010,316(17):2932-2944. (![]() |
[44] | RELAIX F,DEMIGNON J,LACLEF C,et al.Six homeoproteins directly activate Myod expression in the gene regulatory networks that control early myogenesis[J]. PLoS Genetics,2013,9(4):e1003425. (![]() |
[45] | FU X,WANG H T,HU P.Stem cell activation in skeletal muscle regeneration[J]. Cellular and Molecular Life Sciences,2015:1-15. (![]() |
[46] | NORD H,SKALMAN L N,VON HOFSTEN J.Six1 regulates proliferation of Pax7-positive muscle progenitors in zebrafish[J]. Journal of Cell Science,2013,126(8):1868-1880. (![]() |
[47] | NORD H,BURGUIERE A C,MUCK J,et al.Differential regulation of myosin heavy chains defines new muscle domains in zebrafish[J]. Molecular Biology of the Cell,2014,25(8):1384-1395. (![]() |
[48] | KOSTEK M C,CHEN Y W,CUTHBERTSON D J,et al.Gene expression responses over 24 h to lengthening and shortening contractions in human muscle:major changes in CSRP3,MUSTN1,SIX1,and FBXO32[J]. Physiological Genomics,2007,31(1):42-52. (![]() |
[49] | NIRO C,DEMIGNON J,VINCENT S,et al.Six1 and Six4 gene expression is necessary to activate the fast-type muscle gene program in the mouse primary myotome[J]. Developmental Biology,2010,338(2):168-182. (![]() |
[50] | HETZLER K L,COLLINS B C,SHANELY R A,et al.The homoeobox gene Six1 alters myosin heavy chain isoform expression in mouse skeletal muscle[J]. Acta Physiologica,2014,210(2):415-428. (![]() |
[51] | QUIAT D,VOELKER K A,PEI J M,et al.Concerted regulation of myofiber-specific gene expression and muscle performance by the transcriptional repressor Sox6[J]. Proceedings of the National Academy of Sciences of the United States of America,2011,108(25):10196-10201. (![]() |
[52] | AN C I,GANIO E,HAGIWARA N.Trip12,a HECT domain E3 ubiquitin ligase,targets Sox6 for proteasomal degradation and affects fiber type-specific gene expression in muscle cells[J]. Skeletal Muscle,2013,3(1):11. (![]() |
[53] | RICHARD A F,DEMIGNON J,SAKAKIBARA I,et al.Genesis of muscle fiber-type diversity during mouse embryogenesis relies on Six1 and Six4 gene expression[J]. Developmental Biology,2011,359(2):303-320. (![]() |