2. 内蒙古农业大学动物科学学院, 呼和浩特 010018;
3. 农业部奶及奶制品质量监督检验测试中心(北京), 北京 100193;
4. 中国农业科学院北京畜牧兽医研究所, 动物营养学国家重点实验室, 北京 100193;
5. 甘肃农业大学动物科学技术学院, 兰州 730070
2. College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China;
3. Ministry of Agriculture-Milk and Dairy Product Inspection Center, Beijing 100193, China;
4. State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
5. College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
乳蛋白主要包括酪蛋白和乳清蛋白;其中酪蛋白约占其总量的80%,主要由αs-酪蛋白、β-酪蛋白、γ-酪蛋白和κ-酪蛋白组成。它不仅含有机体所需的全部必需氨基酸(essential amino acid,EAA),也可作为衡量乳品质的重要指标。乳蛋白合成是一个以EAA为底物的耗能过程,所以充足的能量和EAA对于满足泌乳需要是必需的。EAA已被越来越多的学者证明其不仅可作为蛋白质合成的底物而且可作为信号分子通过mTOR信号通路调控乳蛋白合成;其稳态可通过感知氨基酸平衡的氨基酸应答(amino acid respones,AAR)通路来调控[1]。Proud等[2]、Burgos等[3]、Hardie等[4]通过常规小鼠灌注和奶牛乳腺上皮细胞为模型的试验进一步证明能量物质和EAA可作为信号分子通过腺苷酸活化蛋白激酶/结节性硬化复合物/哺乳动物雷帕霉素靶蛋白(AMPK/TSC/mTOR)信号通路作用于蛋白质翻译过程来调控乳蛋白合成。本文主要从能量和EAA这2个因子研究其通过AMPK/TSC/mTOR信号通路对乳蛋白合成调控的影响,旨在阐明能量和EAA对乳蛋白合成调控的作用机理。
1 AMPK/TSC/mTOR信号通路腺苷酸活化的蛋白激酶(adenosine 5’-monophosphate-activated protein kinase,AMPK)和哺乳动物雷帕霉素靶蛋白(mammalian target rapamycin,mTOR)均属丝氨酸/苏氨酸磷脂酰肌醇激酶相关蛋白激酶家族的成员[5]。
1.1 AMPK信号通路AMPK复合物普遍存在于真核细胞中,可感受细胞内能量和营养物质状态,在调节糖脂、蛋白质和能量代谢中起着重要的作用[6, 7]。AMPK为一种异源三聚体复合物,由催化亚单位α和调节亚单位β、γ组成。此前Xiao等[8]和Calabrese等[9]已分别阐明了人类的AMPK复合物的晶体结构α2β1γ1和α1β1γ1,二者均可通过磷酸化位于α亚单位N末端保守的苏氨酸残基(Thr172)和存在于腺苷一磷酸(AMP)中变构因子A-76692,911来调控。而α、β亚单位以及含有AMP、腺苷二磷酸(ADP)和腺苷三磷酸(ATP)结合位点的γ亚单位活性的调节主要由α亚单位的C末端负责[10]。
目前已经确定AMPK上游磷酸化激酶分别为:1)转化生长因子-β激活的激酶1(transforming growth factor-β activated kinase1,TAK1)[5];2)钙调蛋白依赖蛋白激酶激酶(calmodulin-dependent protein kinase kinases,CaMKKs)[11, 12, 13];3)丝氨酸/苏氨酸激酶11(serine/threonine kinase 11 or liver kinaose B1,LKB1)与2个亚基STE-20相关连接蛋白(STE-20 related adaptor protein,STRAD)和鼠蛋白-25(mouse protein-25,MO25)形成的复合体[14, 15]。LKB1可通过激活AMPK磷酸化位点(Thr172)从而增强AMPK的活性[14, 15],此外LKB1也可激活AMPK循环相关的12个激酶同时调控其活性[16, 17, 18]。
结节性硬化复合物(tuberous sclerosis complex,TSC)和mTOR复合物蛋白依次是AMPK下游的重要靶点,二者可通过减缓蛋白质合成和细胞生长的耗能方式来调控ATP水平[19]。
TSC包含2个互作蛋白TSC1和TSC2,二者形成了一个稳定的异源二聚体复合物。TSC在AMPK和mTOR信号通路之间起着重要的调控作用。在果蝇的遗传学和哺乳动物细胞的基因研究和生物学分析中确定,TSC2是mTOR复合物1(mTOR complex 1,mTORC1)关键的上游抑制剂[19]。TSC下游的直接靶点是脑中表达丰富的Ras同源类似物(Ras homolog enriched in brain,Rheb),由于TSC1不具有明显的催化活性所以TSC2作为特殊的鸟苷三磷酸(GTPase)激活GAP抑制Rheb,Rheb直接结合mTOR的催化区域从而诱导mTORC1构象改变导致mTORC1激活并使下游靶点磷酸化[20]。
1.2 mTOR信号通路mTOR以2种蛋白复合物的形式存在:对雷帕霉素敏感的mTORC1和对雷帕霉素不敏感的mTOR复合物2(mTOR complex 2,mTORC2)。mTORC1包含mTOR、mTOR调节相关蛋白(regulatory-associated protein of mTOR,raptor)、哺乳动物致命SEC13蛋白8(mammalian ortholog of lethal with SEC13 protein 8,mLST8)和富含脯氨酸的Akt底物40(proline-rich Akt substrate of 40 ku,PRAS40)[21]。
mTOR信号通路涉及3种翻译机制:1)mRNA编码核糖体蛋白S6(ribosomal Protein S6,RPS6),促进RPS6磷酸化进而增强细胞合成蛋白质的能力;2)mTOR激活后抑制真核细胞翻译起始因子4E结合蛋白1(eukaryotic translation initiation factor 4E binding protein 1,4EBP1)磷酸化导致真核细胞翻译起始因子4E(eukaryotic Initiation Factor 4E,eIF4E)释放4EBP1,使eIF4E的表达量增高从而促进相关蛋白的翻译;3)mTOR调控真核细胞延伸因子(eukaryotic translation elongation factor,eEF2)的磷酸化,阻止其与核糖体蛋白结合调控其生理学功能[22]。
2 能量对乳蛋白合成的调控哺乳动物泌乳期需要大量的能量。葡萄糖不仅是机体能量的主要来源,还可为组织器官的新陈代谢提供能量;葡萄糖供应量的增加可减少生糖氨基酸用于合成葡萄糖的量,剩余的葡萄糖到达乳腺后便可用于乳蛋白合成。在乳腺细胞内,葡萄糖的供应或补充乳蛋白合成所需的能量可提高乳蛋白产量[23]。
AMPK作为细胞能量的监测器,起着维持细胞内能量平衡进而调控乳蛋白合成的作用[24, 25, 26, 27]。腺苷酸激酶反应(2ADPATP+AMP)的进行可保持细胞内的能量平衡。Gowans等[28]指出细胞内ADP/ATP的上升经常伴随着AMP/ATP更大程度的升高,表明AMP在整个反应中起着非常重要的作用。AMP/ATP可通过AMPK来调控,当AMPK感受能量不足时即开启生成ATP的代谢途径;能量充足时,ATP即可转化为ADP促进乳蛋白生成。前人研究证明AMPK不仅可以直接磷酸化其下游靶点TSC2还可磷酸化raptor[16, 29],而且在营养物质不足时,AMPK可促进mTORC1从溶酶体上分离下来[30],由此诱导抑制mTORC1活性,这样便可减少细胞内合成代谢,使细胞分裂增殖停止从而减少ATP的消耗,维持能量平衡。
在奶牛体外试验中,Toerien等[31]试验发现,通过给泌乳奶牛瘤胃灌注葡萄糖可提高乳蛋白产量而S6K1磷酸化水平无明显变化。但Rius等[32]通过瘤胃灌注淀粉得出,乳蛋白合成率增加的同时也伴随着mTOR和RPS6的磷酸化作用的增加。对于二者试验结果差异的原因可能是试验动物基础饲粮的差别或额外添加葡萄糖或淀粉的水平不足以影响AMPK/TSC/mTOR信号通路。近年来,Burgos等[33]以奶牛乳腺腺泡为模型,向其添加12 mmol/L葡萄糖和12 mmol/L乙酸的混合物并未影响乳蛋白合成率,S6K1和4EBP1的磷酸化水平也没有显著变化。Burgos等[34]而后又通过向牛乳腺上皮细胞中额外添加10 mmol/L的2-脱氧葡萄糖的试验证实AMPK的激活可抑制mTORC1的活性,降低S6K1和4EBP1的磷酸化水平最终降低乳蛋白合成率,维持能量平衡。Appuhamy等[35]发现除葡萄糖外,当额外添加足够高水平的EAA时,EAA也可作为乳腺细胞的能源物质。所以能量载体物质对信号通路的影响是通过自身的调节作用还是刺激机体产生其他物质引起通路的改变,目前尚不清楚需要进一步研究。
3 EAA对乳蛋白合成的调控在哺乳期,奶牛乳腺组织可以合成和分泌大量蛋白质[36]。乳腺组织从血液中获取的EAA不仅可作为前体物质有效被利用,还可作为信号蛋白激活信号通路[37, 38]。乳蛋白合成率与乳腺从血液中摄取EAA的量和mRNA的翻译效率有关[22, 39]。因此,研究EAA的利用以及其对乳蛋白合成过程的调控机理是重要的。
对哺乳动物细胞来说,mTORC1激活促进蛋白质合成代谢已经得到了广泛的研究。mTOR作为AMPK的下游靶点,负责营养物质尤其是氨基酸对信号通路的调控[40]。当氨基酸充足时,机体可通过mTORC1信号通路感知细胞液和溶酶体中的氨基酸水平[41, 42];氨基酸不足时,感知氨基酸平衡的AAR信号通路即被激活[43]。细胞内氨基酸含量可通过酵母转录激活因子(GCN2)来感知,GCN2可通过非转运tRNA结合来激活进而激活AAR信号通路。近年来,已有学者通过试验证明当体外去除奶牛乳腺上皮细胞培养基中的EAA时,mTOR下游靶点S6K1和4EBP1磷酸化作用下降抑制信号通路最终导致乳蛋白合成率降低[1]。氨基酸的缺乏会导致细胞内空载tRNA增加,激活GCN2引发eEF2α(ser51)磷酸化进而减少蛋白质的合成;与此同时在转录水平上表现为转录激活因子4(activating transcription factor4,ATF4)表达量增高[44]。ATF4可通过诱导氨基酸转运体和氨基酸合成酶基因表达的上调从而维持氨基酸的平衡。
Appuhamy等[45]试验已经证明,在体外培养的牛乳腺上皮细胞中,EAA可通过mTOR信号通路调控mRNA翻译的起始和延伸从而提高乳蛋白合成率。但是不论对于啮齿类、哺乳类还是人的体内和体外的研究均表明,氨基酸的种类和配比模式对于mTOR信号通路的调控作用均存在一定的差异[46, 47, 48, 49]。
在所有EAA中,支链氨基酸(branched chain amino acid,BCAA)对乳蛋白合成的影响最为突出,Appuhany等[35]在奶牛乳腺上皮细胞和乳腺切片组织细胞的试验中得出,亮氨酸和异亮氨酸可显著通过作用于mTORC1从而磷酸化下游靶点S6K1和4EBP1,进而提高乳蛋白合成率。Prizant等[50]通过氨基酸单独添加的试验进一步验证,BCAA可以通过增加S6K1的磷酸化水平来提高乳蛋白合成率,这与前人结果是一致的;同时Prizant的试验也证明了并不是所有EAA对乳蛋白合成调控都起促进作用,赖氨酸、组氨酸、苏氨酸的添加可以降低S6K1和mTOR的磷酸化从而使乳蛋白合成率下降;色氨酸、苯丙氨酸、蛋氨酸的添加对信号蛋白磷酸化的影响不显著。李喜燕等[51]向奶牛乳腺上皮细胞中添加0.4 mmol/L赖氨酸和1.2 mmol/L蛋氨酸(V ∶ V=3 ∶ 1)混合液时乳腺上皮细胞总酪蛋白合成量最高达2.95 μg/mL,且均能极显著地促进CSN1S1、CSN1S2、CSN2、CSN3、mTOR和S6K基因的表达。Arrilola等[52]以乳腺上皮细胞为模型添加不同配比氨基酸的研究表明,随着亮氨酸和苏氨酸水平的增加,mTOR的磷酸化作用表现为先增加后降低的趋势。但是目前对于EAA组合效应对mTOR信号通路调控蛋白质合成的报道较少需要更多的试验来验证。
4 能量和EAA互作对乳蛋白合成的调控乳腺组织蛋白质合成过程不仅需要氨基酸作为底物而且还需要充足的能量。能量和EAA互作对蛋白质合成的影响在传统营养和分子生物学层面均被已关注。
在传统营养方面,Safayi等[53]通过向奶山羊静脉灌注乙酸、葡萄糖和EAA的试验得出泌乳早期作为能量物质的乙酸可以弥补EAA供应不足的影响;这就意味着乙酸(或β-羟丁酸)的供应可以通过氧化过程生成ATP的方式来提高泌乳早期蛋白质合成过程中氨基酸的利用率。但Burgos等[33]通过向奶牛乳腺腺泡细胞中单一或混合添加氨基酸、葡萄糖和乙酸的试验得出氨基酸的单独添加可以使乳蛋白合成率提高50%,而葡萄糖和乙酸的额外添加却不会增强氨基酸的作用,也不会明显增强S6K1和4EBP1的磷酸化水平。同样Appuhamy等[35]以奶牛乳腺上皮细胞为模型的试验表明与EAA单独存在时相比葡萄糖或乙酸的额外添加并不能提高乳蛋白合成率,AMPK、mTOR、4EBP1和eEF2的磷酸化作用也不存在差异。在传统营养和分子生物学层面的研究存在一定的差异可能是由于物种或额外添加营养物质水平的不同所导致的。总之,对于能量和EAA互作对乳蛋白合成调控的影响还需进一步研究探讨。
5 小 结乳蛋白合成是一个以EAA为底物的耗能过程,葡萄糖、淀粉和乙酸的添加可提供翻译过程中所需的能量。EAA作为底物和信号分子主要通过mTOR信号通路调控乳蛋白合成。研究能量和EAA单一或互作对乳蛋白合成调控的作用机理可提高乳腺对EAA的利用率,从而提高乳蛋白合成,进而减少氮源的浪费。AMPK对能量调控的研究目前主要集中在癌症的治疗和肌肉细胞蛋白质的合成,在乳腺组织蛋白质合成方面的研究还不是很成熟,本综述有助于进一步开展对能量和EAA在乳腺组织蛋白质合成和调控方面的研究。
[1] | GALLINETTI J,HARPUTLUGIL E,MITCHELL J R.Amino acid sensing in dietary-restriction-mediated longevity:roles of signal-transducing kinases GCN2 and TOR [J]. Biochemical Journal,2013,449(1):1-10. (![]() |
[2] | PROUD C G.Signalling to translation:how signal transduction pathways control the protein synthetic machinery[J]. Biochemical Journal,2007,403(2):217-234. (![]() |
[3] | BURGOS S A,CANT J P.IGF-1 stimulates protein synthesis by enhanced signaling through mTORC1 in bovine mammary epithelial cells[J]. Domestic animal endocrinology,2010,38(4):211-221. (![]() |
[4] | HARDIE D G.The AMP-activated protein kinase pathway-new players upstream and downstream[J]. Journal of Cell Science,2004,117(23):5479-5487. (![]() |
[5] | HARDIE D G.AMP-activated/SNF1 protein kinases:conserved guardians of cellular energy[J]. Nature Reviews Molecular Cell Biology,2007,8(10):774-785. (![]() |
[6] | HARIDE D G.AMPK and raptor:matching cell growth to energy supply[J]. Molecular Cell,2008,30(3):263-265. (![]() |
[7] | ZHANG B B,ZHOU G C,LI C.AMPK:an emerging drug target for diabetes and the metabolic syndrome[J]. Cell Metabolism,2009,9(5):407-416. (![]() |
[8] | XIAO B,SANDERS M J,CARMENA D,et al.Structural basis of AMPK regulation by small molecule activators[J]. Nature Communications,2013,4:3017. (![]() |
[9] | CALABRES M F,RAJAMOHAN F,HARRIS M S,et al.Structural basis for AMPK activation:natural and synthetic ligands regulate kinase activity from opposite poles by different molecular mechanisms[J]. Structure,2014,22(8):1161-1172. (![]() |
[10] | HARDIE D G.AMPK:positive and negative regulation,and its role in whole-body energy homeostasis[J]. Current Opinion in Cell Biology,2015,33:1-7. (![]() |
[11] | WOODS A,JOHNSTONE S R,DICKERSON K,et al.LKB1 is the upstream kinase in the AMP-activated protein kinase cascade[J]. Current Biology,2003,13(22):2004-2008. (![]() |
[12] | HAWLEY S A,DAVID A P,MUSTARD K J,et al.Calmodulin-dependent protein kinase kinase-β is an alternative upstream kinase for AMP-activated protein kinase[J]. Cell Metabolism,2005,2(1):9-19. (![]() |
[13] | HURLEY R L,ANDERSON K A,FRANZONE J M,et al.The Ca2+/calmodulin-dependent protein kinase kinases are AMP-activated protein kinase kinases[J]. Journal of Biological Chemistry,2005,280(32):29060-29066. (![]() |
[14] | WOODS A,DICKERSON K,HEATH R,et al.Ca2+/calmodulin-dependent protein kinase kinase-β acts upstream of AMP-activated protein kinase in mammalian cells[J]. Cell Metabolism,2005,2(1):21-33. (![]() |
[15] | HAWLEY S A,BOUDEAU J,REID J L,et al.Complexes between the LKB1 tumor suppressor,STRAD alpha/beta and MO25 alpha/beta are upstream kinases in the AMP-activated protein kinase cascade[J]. Journal of Biology,2003,2(4):28. (![]() |
[16] | LIZCANO J M,GÖRANSSON O,TOTH R,et al.LKB1 is a master kinase that activates 13 kinases of the AMPK subfamily,including MARK/PAR-1[J]. The EMBO Journal,2004,23(4):833-843. (![]() |
[17] | JALEEL M,MCBRIDE A,LIZCANO J M,et al.Identification of the sucrose non-fermenting related kinase SNRK,as a novel LKB1 substrate[J]. FEBS Letters,2005,579(6):1417-1423. (![]() |
[18] | SHAW R J.LKB1 and AMP-activated protein kinase control of mTOR signalling and growth[J]. Acta Physiologica,2009,196(1):65-80. (![]() |
[19] | XU J,JIAN J,YAN X H.Cross-talk between AMPK and mTOR in regulating energy balance[J]. Critical Reviews in Food Science and Nutrition,2012,52(5):373-381. (![]() |
[20] | LONG X M,LIN Y S,ORTIZ-VEGA S,et al.Rheb binds and regulates the mTOR kinase[J]. Current Biology,2005,15(8):702-713. (![]() |
[21] | KIM E.Mechanisms of amino acid sensing in mTOR signaling pathway[J]. Nutrition Research and Practice,2009,3(1):64-71. (![]() |
[22] | PROUD C G.mTOR-mediated regulation of translation factors by amino acids[J]. Biochemical and Biophysical Research Communications,2004,313(2):429-436. (![]() |
[23] | 赵柯.奶牛乳腺上皮细胞葡萄糖摄取的调控及其对乳成分合成的影响研究[D]. 博士学位论文.杭州:浙江大学,2011. (![]() |
[24] | CARLING D,MAYER F V,SANDERS M J,et al.AMP-activated protein kinase:nature's energy sensor[J]. Nature Chemical Biology,2011,7(8):512-518. (![]() |
[25] | HARDIE D G,CARLING D,GAMBLIN S J.AMP-activated protein kinase:also regulated by ADP?[J]. Trends in Biochemical Sciences,2011,36(9):470-477. (![]() |
[26] | OAKHILL J S,SCOTT J W,KEMP B E.AMPK functions as an adenylate charge-regulated protein kinase[J]. Trends in Endocrinology & Metabolism,2012,23(3):125-132. (![]() |
[27] | XIAO B,SANDERS M J,CARMENA D,et al.Structural basis of AMPK regulation by small molecule activators[J]. Nature Communications,2013,4:3017. (![]() |
[28] | GOWANS G J,HAWLEY S A,ROSS F A,et al.AMP is a true physiological regulator of AMP-activated protein kinase by both allosteric activation and enhancing net phosphorylation[J]. Cell Metabolism,2013,18(4):556-566. (![]() |
[29] | GWINN D M,SHACKELFORD D B,EGAN D F,et al.AMPK phosphorylation of raptor mediates a metabolic checkpoint[J]. Molecular Cell,2008,30(2):214-226. (![]() |
[30] | HARDIE D G.AMPK-sensing energy while talking to other signaling pathways[J]. Cell Metabolism,2014,20(6):939-952. (![]() |
[31] | TOERIEN C A,TROUT D R,CANT J P.Nutritional stimulation of milk protein yield of cows is associated with changes in phosphorylation of mammary eukaryotic initiation factor 2 and ribosomal S6 kinase 1[J]. Journal of Nutrition,2010,140(2):285-292. (![]() |
[32] | RIUS A G,APPUHAMY J A D R N,CYRIAC J,et al.Regulation of protein synthesis in mammary glands of lactating dairy cows by starch and amino acids[J]. Journal of Dairy Science,2010,93(7):3114-3127. (![]() |
[33] | BURGOS S A,DAI M,CANT J P.Nutrient availability and lactogenic hormones regulate mammary protein synthesis through the mammalian target of rapamycin signaling pathway[J]. Journal of Dairy Science,2010,93(1):153-161. (![]() |
[34] | BURGOS S A,KIM J J M,DAI M,et al.Energy depletion of bovine mammary epithelial cells activates AMPK and suppresses protein synthesis through inhibition of mTORC1 signaling[J]. Hormone and Metabolic Research,2013,45(3):183-189. (![]() |
[35] | APPUHAMY J A D R N,NAYANANJALIE W A,HANIGAN M D,et al.Effects of AMP-activated protein kinase (AMPK) signaling and essential amino acids on mammalian target of rapamycin (mTOR) signaling and protein synthesis rates in mammary cells[J]. Journal of Dairy Science,2014,97(1):419-429. (![]() |
[36] | LAPIERRE H,BLOUIN J P,BERNIER J F,et al.Effect of supply of metabolizable protein on whole body and splanchnic leucine metabolism in lactating dairy cows[J]. Journal of Dairy Science,2002,85(10):2631-2641. (![]() |
[37] | APPUHAMY J A D R N,KNOEBEL N A,NAYANANJALIE W A D,et al.Isoleucine and leucine independently Regulate mTOR signaling and protein synthesis in MAC-T cells and bovine mammary tissue slices[J]. Journal of Nutrition,2012,142(3):484-491. (![]() |
[38] | 高海娜,郑楠,胡菡,等.必需氨基酸通过哺乳动物雷帕霉素靶蛋白信号通路调控乳蛋白合成的研究进展[J]. 动物营养学报,2014,26(9):2451-2456. (![]() |
[39] | BEQUETTE B J,HANIGAN M D,CALDER A G.Amino acid exchange by the mammary gland of lactating goats when histidine limits milk production[J]. Journal of Dairy Science,2000,83(4):765-775. (![]() |
[40] | TOKUNAGE C,YOSHINO K,YOUEZAWA K.mTOR integrates amino acid- and energy-sensing pathways[J]. Biochemical and Biophysical Research Communications,2004,313(2):443-446. (![]() |
[41] | AVRUCH J,LONG X M,ORTIZ-VEGA S,et al.Amino acid regulation of TOR complex 1[J]. American Journal of Physiology Endocrinology and Metabolism,2009,296(4):E592-E602. (![]() |
[42] | RADIMERSKI T,MONTAGNE J,HEMMINGS-MIESZCZAK M,et al.Lethality of Drosophila lacking TSC tumor suppressor function rescued by reducing dS6K signaling[J]. Genes & Development,2002,16(20):2627-2632. (![]() |
[43] | KIM S G,BUEL G R,BLENIS J.Nutrient regulation of the mTOR complex 1 signaling pathway[J]. Molecules and Cell,2013,35(6):463-473. (![]() |
[44] | KILBERG M S,SHAN J X,SU N.ATF4-dependent transcription mediates signaling of amino acid limitation[J]. Trends in Endocrinology & Metabolism,2009,20(9):436-443. (![]() |
[45] | APPUHAMY J A D R N,BELL A L,NAYANANJALIE W A D N,et al.Essential amino acids regulate both initiation and elongation of mRNA translation independent of insulin in MAC-T cells and bovine mammary tissue slices[J]. Journal of Nutrition,2011,141(6):1209-1215. (![]() |
[46] | KIMBALL S R,JEFFERSON L S.Signaling pathways and molecular mechanisms through which branched-chain amino acids mediate translational control of protein synthesis[J]. The Journal of Nutrition,2006,136(1):227S-231S. (![]() |
[47] | STIPANUK M H.Leucine and protein synthesis:mTOR and beyond[J]. Nutrition Reviews,2007,65(3):122-129. (![]() |
[48] | 邓会玲,刘国华,刘宁.氨基酸介导的TOR信号传导通路研究进展[J]. 动物营养学 报,2011,23(4):529-535. (![]() |
[49] | DRUMMOND M J,RASMUSSEN B B.Leucine enriched nutrients and the regulation of mammalian target of rapamycin signalling and human skeletal muscle protein synthesis[J].Current Opinion in Clinical Nutrition and Metabolic Care,2008,11(3):222-226.(![]() |
[50] | PRIZANT R L,BARASH I.Negative effects of the amino acids Lys,His,and Thr on S6K1 phosphorylation in mammary epithelial cells[J]. target="_blank"Journal of Cellular Biochemistry,2008,105(4):1038-1047.(![]() |
[51] | 李喜艳.奶牛乳腺上皮细胞中赖氨酸蛋氨酸配比模式对酪蛋白合成的影响及机理研究[D].硕士学位论文.北京:中国农业科学院,2011:1-32.(![]() |
[52] | ARRIOLA APELO S I,SINGER L M,LIN X Y,et al.Isoleucine,leucine,methionine,and threonine effects on mammalian target of rapamycin signaling in mammary tissue[J].Journal of Dairy Science.2014,97(2):1047-1056.(![]() |
[53] | SAFAYI S,NIELSEN M O.Intravenous supplementation of acetate,glucose or essential amino acids to an energy and protein deficient diet in lactating dairy goats:effects on milk production and mammary nutrient extraction[J].Small Ruminant Research,2013,112(1/2/3):162-173.(![]() |