动物营养学报  2015, Vol. 27 Issue (9): 2841-2848   PDF (1072 KBKB)    
纤维分解酶与异丁酸对犊牛瘤胃液酶活力和纤维分解菌菌群的影响
许倩倩, 侯明, 王聪 , 刘强, 张延利, 裴彩霞, 王永新, 郭刚, 霍文婕    
山西农业大学动物科技学院, 太谷 030801
摘要: 为研究饲粮补充纤维分解酶与异丁酸及其混合物对断奶前后犊牛瘤胃液酶活力和纤维分解菌菌群的影响,试验选取30日龄体重[(48.5±0.3) kg]近似、发育正常的荷斯坦犊牛36头,随机分为4组,60日龄断奶,对照组哺乳/饲喂犊牛料+苜蓿干草,纤维分解酶组(FE组)、异丁酸组(IB组)和复配组(IBFE组)分别补饲纤维分解酶1.83 g/d(包含滤纸酶活力160 U和木聚糖酶酶活力4 000 U)、异丁酸(99%)6 g/d和二者混合物,并于45、90日龄在晨饲前采集瘤胃液,测定瘤胃发酵指标、酶活力和纤维分解菌的量。结果表明:45和90日龄与对照组相比,试验组总挥发性脂肪酸、丙酸、乙酸浓度显著提高(P<0.05);IB和IBFE组氨态氮浓度显著降低(P<0.05);FE、IB及IBFE 3组均显著增加犊牛瘤胃液羧甲基纤维素酶、滤纸酶、纤维二糖酶及木聚糖酶的活力(P<0.05),IBFE较其他组增幅最大;FE、IB及IBFE 3组均显著提高了犊牛瘤胃液产琥珀酸丝状杆菌、白色瘤胃球菌、黄色瘤胃球菌及溶纤维丁酸弧菌的量(P<0.05),IBFE组增幅最大。综合以上结果分析,6 g/d异丁酸与1.83 g/d纤维分解酶对瘤胃发酵有促进作用,二者混合添加效果更好。
关键词: 纤维分解酶     异丁酸     瘤胃发酵     酶活力     纤维分解菌    
Effects of Fibrolytic Enzymes and Isobutyrate on Enzyme Activities and Cellulolytic Bacteria Flora in Rumen Fluid in Calves
XU Qianqian, HOU Ming, WANG Cong , LIU Qiang, ZHANG Yanli, PEI Caixia, WANG Yongxin, GUO Gang, HUO Wenjie    
College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China
Abstract: The objective of this study was to evaluate the effects of dietary fibrolytic enzymes and isobutyrate supplementation on enzyme activities and cellulolytic bacteria flora in pre- and post-weaning calves. Thirty-six healthy Holstein male calves with 30 days of age and similar body weight [(48.5±0.3) kg] were selected and allocated randomly to four groups. All calves were weaned at 60 days of age. Calves in control group were fed milk/diet for calves+dried alfalfa hay, and those in experimental groups were supplemented with fibrolytic enzymes (160 U filter paper enzyme and 4 000 U xylanase, 1.83 g/d, FE group), isobutyrate (99%, 6 g/d, IB group) and their mixture (IBFE group), respectively. Rumen fluid was collected in the morning before feeding at 45 and 90 days of age for determining rumen fermentation indices, enzyme activities and cellulolytic bacteria amount. The results showed that at 45 and 90 days of age, compared with control group, the concentrations of total volatile fatty acid, propionic acid and acetic acid in experimental groups were significantly increased (P<0.05); the concentration of ammonia nitrogen in IB and IBFE groups was significantly reduced (P<0.05); the activities of carboxymethyl cellulase, xylanase, filter paper enzyme and cellobiase in experimental groups were significantly increased (P<0.05), and the increasing extends were the highest in IBFE group; the amount of F. Succinogenes, R. albus, R. flavefaciens and B. fibrisolvens in experimental groups was significantly increased (P<0.05), and the increasing extend was the highest in IBFE group. Base on above results, 6 g/d isobutyric acid and 1.83 g/d fibrolytic enzymes have promoting effects on rumen fermentation, and the better is their combination.
Key words: fibrolytic enzyme     isobutyrate     rumen fermentation     enzyme activity     cellulolytic bacteria    

犊牛瘤胃发育及功能的完善对犊牛的健康和生产性能有重要的作用[1]。在瘤胃发酵中适当补充挥发性脂肪酸(VFA)对瘤胃发酵有至关重要的影响,不仅为上皮组织和肌肉收缩提供能量,而且直接影响薄壁细胞的增殖和分化。研究表明丁酸、乙酸和丙酸在一定程度上对瘤胃发酵有化学刺激作用[2, 3]。与丁酸和丙酸一样,支链挥发性脂肪酸(BCVFA)包括异丁酸、异戊酸和2-甲基丁酸都是瘤胃发酵的产物。体外试验发现补充BCVFA能够增强纤维素的发酵[4]和干物质的消化。体内试验研究结果显示BCVFA可以改善瘤胃发育[5, 6, 7]、瘤胃微生物酶的活力[8, 9]、纤维分解菌的数量[10]与养分的消化[11]。同时,近年来人们对纤维分解酶研究增多,通过体外[12]、半体外[13]和体内试验[14]得知添加纤维分解酶通过提高纤维素的分解率,进而改善饲料效率、泌乳期奶牛的产奶量[15]和肉牛的平均日增重[14]。据了解,关于犊牛饲粮中同时添加纤维分解酶与异丁酸对犊牛瘤胃发酵的研究较少。因此,本试验旨在研究纤维分解酶、异丁酸及其混合物对断奶前后犊牛瘤胃发酵指标、酶活力和纤维分解菌数量的影响,为进一步研究犊牛断奶前后胃肠道发育奠定理论基础。

1 材料与方法 1.1 试验犊牛选择与分组

选取30日龄体重[(48.5±0.3) kg]近似、发育正常和体况良好的荷斯坦哺乳公犊36头,随机分为4组,每组9头。对照组饲喂基础饲粮,纤维分解酶组(FE组)、异丁酸组(IB组)和复配组(IBFE组)分别在基础饲粮中添加1.83 g/d纤维分解酶(山东思诺拜特生物科技有限公司,包含滤纸酶酶活力160 U和木聚糖酶酶活力4 000 U)、6 g/d异丁酸(99%)和1.83 g/d纤维分解酶与6 g/d异丁酸的混合物。犊牛于60日龄断奶,断奶后以苜蓿和混合精料(精粗比40 ∶ 60)为基础饲粮。分别于断奶前15天(45日龄)和断奶后30天(90日龄)从各组随机抽取4头,晨饲前进行采样。

1.2 试验饲粮及饲养管理

断奶前的犊牛采取单栏饲养,每日07:00、12:00和18:00饲喂,每次饲喂2 kg奶,纤维分解酶与异丁酸添加于奶中饲喂,自由饮水。断奶后的犊牛以苜蓿干草和犊牛料(熟玉米65%,发酵豆粕32%,矿维3%)为基础饲粮,每日07:00、12:00和:18:00饲喂精料1.0 kg,苜蓿干草1.5 kg,先精后粗,纤维分解酶与异丁酸添加于精料中饲喂,自由饮水。奶、犊牛料和苜蓿干草的营养水平见表1。

表 1 奶、犊牛料和苜蓿干草的营养水平(风干基础) Table 1 Nutrient levels of milk,concentrate of calves and alfalfa hay (air-dry basis)
1.3 样品的采集、处理与测定 1.3.1 样品采集

分别从45和90日龄各组随机抽取4头犊牛,于晨饲前利用负压装置及胃管采集瘤胃液[16],4层纱布过滤,-20 ℃保存。

1.3.2 瘤胃液pH、氨态氮(NH3-N)和VFA浓度的 测定

取瘤胃液解冻,用PHS-2C型酸度计测定瘤胃液pH,用靛酚比色法[17]测定NH3-N浓度。采用气相色谱仪测定VFA浓度,取瘤胃液5 mL,加入1 mL 25%偏磷酸溶液,混合均匀,冰水浴30 min,10 000×g离心10 min,取上清液,用GC-102-AF气相色谱仪测定VFA浓度,色谱柱为φ4(外)×2 m玻璃柱,固定相PEG-20M,涂布浓度为3%,载体为Chromsorb WAW DMCS;色谱柱温160 ℃,气化室温度200 ℃;空气压力0.12 MPa,氢气压力0.06 MPa,氮气压力0.08 MPa;氮气(载气)流速30 mL/min,氢气流速60 mL/min,空气流速360 mL/min;灵敏度10-10,衰减16;进样量1 μL。采用外标法定量分析测定VFA的浓度。

1.3.3 瘤胃液纤维分解酶活力的测定

瘤胃液滤纸酶、羧甲基纤维素酶、木聚糖、纤维二糖酶、淀粉酶和蛋白酶的活力按照Agarwal等[18]的方法进行测定。滤纸酶活力定义为1 g酶水解反应中每分钟生成1 μmol葡萄糖的酶量。羧甲基纤维素酶活力定义为一定条件下每分钟从1 g羧甲基纤维素钠中降解1 μmol还原糖所需的酶量。木聚糖酶活力定义为一定条件下每分钟催化分解1 g木聚糖产生1 μmol木糖所需的酶量。纤维二糖酶活力定义为1 g酶水解反应中每分钟生成1 μmol还原糖所需的酶量。淀粉酶活力定义为每分钟水解1 mL淀粉生成1 μmol还原糖所需的酶量。蛋白酶活力定义为1 mL液体酶一定条件下每分钟水解酪素产生1 μg酪氨酸所需的酶量。

1.3.4 瘤胃液纤维分解菌定量分析

采用珠磨-溴化十六烷三甲基铵(CTAB)法提取瘤胃微生物DNA[19],由BeckmanDU-7500分光光度计在260 nm下测定DNA浓度。在GenBank上查找产琥珀酸丝状杆菌(F. succinogenes)、黄色瘤胃球菌(R. flavefaciens)、白色瘤胃球菌(R. albus)和溶纤维丁酸弧菌(B. fibrisolvens)的16S rDNA序列,利用Primer Premier 5.0 软件设计引物,交由北京六合华大基因科技股份 有限公司合成,引物序列信息见表2。采用Chromo 4TM型荧光定量PCR仪进行定量分析。PCR反应体系20 μL:10 μL SYBR Premix TaqTM Ⅱ,0.8 μL PCR Forward Primer,0.8 μL PCR Reverse Primer,0.4 μL ROX Reference Dye(50×),2.0 μL DNA模板,6.0 μL dH2O。反应条件:95 ℃,3 min;95 ℃,30 s;60 ℃,34 s;95 ℃,45个循环,15 s;60 ℃,1 min;95 ℃,15 s。随后以0.1 ℃/s变化速度从65 ℃升至95 ℃,每隔3 s记录1次荧光值,获得循环阈值(CT)。

表 2 引物序列信息 Table 2 Primer sequence information
1.4 数据处理与分析

试验数据采用SPSS 17.0统计软件中的ANOVA程序进行方差分析和Duncan氏法多重比较。

2 结果与分析 2.1 纤维分解酶和异丁酸对犊牛瘤胃发酵指标的影响

由表3可知,与对照组相比,45和90日龄IB及IBFE组瘤胃液pH和NH3-N浓度及丙酸/总挥发性脂肪酸均显著降低(P<0.05),试验组TVFA、乙酸、丙酸浓度及乙酸/总挥发性脂肪酸均显著提高(P<0.05)。IBFE较其他组显著降低了NH3-N浓度(P<0.05),显著提高了TVFA、乙酸、异丁酸浓度及乙酸/丙酸(P<0.05)。45日龄犊牛瘤胃液pH及丙酸/总挥发性脂肪酸显著高于90日龄(P<0.05),而瘤胃液TVFA、乙酸、丙酸浓度,乙酸/总挥发性脂肪酸,乙酸/丙酸及NH3-N浓度均显著低于90日龄(P<0.05)。

表 3 纤维分解酶和异丁酸对犊牛瘤胃发酵指标的影响 Table 3 Effects of fibrolytic enzymes and isobutyrate on ruminal fermentation indices in calves
2.2 纤维分解酶和异丁酸对犊牛瘤胃液纤维分解酶活力的影响

由表4可知,与对照组相比,45和90日龄FE、IB及IBFE 3组均显著增加犊牛瘤胃液羧甲基纤维素酶、滤纸酶、纤维二糖酶及木聚糖酶的活力(P<0.05),IBFE较其他组增幅最大。45日龄犊牛瘤胃液羧甲基纤维素酶、滤纸酶酶、纤维二糖酶、蛋白酶、淀粉酶及木聚糖酶的活力显著低于90日龄(P<0.05);对照组与FE组断奶前犊牛瘤胃液果胶酶活力显著高于断奶后(P<0.05)。

表 4 纤维分解酶和异丁酸对犊牛瘤胃液纤维分解酶活力的影响 Table 4 Effects of fibrolytic enzymes and isobutyrate on ruminal fluid fibrolytic enzyme activities in calves
2.3 纤维分解酶和异丁酸对犊牛瘤胃液纤维分解菌量的影响

由表5可知,与对照组相比,45和90日龄FE、IB及IBFE 3组均显著提高了犊牛瘤胃液产琥珀酸丝状杆菌、白色瘤胃球菌、黄色瘤胃球菌及溶纤维丁酸弧菌的量(P<0.05),IBFE组增幅最大。45日龄犊牛瘤胃白色瘤胃球菌、黄色瘤胃球菌的量显著低于90日龄(P<0.05)。

表 5 纤维分解酶和异丁酸对犊牛瘤胃液纤维分解菌量的影响 Table 5 Effects of fibrolytic enzymes and isobutyrate on the amount of ruminal cellulolytic bacteria in calves
3 讨 论 3.1 纤维分解酶和异丁酸对犊牛瘤胃发酵指标的影响

犊牛饲料中添加异丁酸和纤维分解酶有效改善了瘤胃发酵,具体表现为乙酸/丙酸和TVFA浓度的增加。乙酸/丙酸的增加主要是由于在犊牛饲粮中添加纤维分解酶与异丁酸后乙酸/总挥发性脂肪酸迅速增加且乙酸/丙酸未增加或增加缓慢导致的。研究发现,饲料中添加纤维分解酶能够改善瘤胃发酵,增加TVFA和乙酸浓度,乙酸/丙酸也有所增长[10]。犊牛饲料中添加异丁酸增加瘤胃液乙酸的产量,这与早期饲喂试验的研究结果一致[20]。IB组瘤胃液pH和NH3-N浓度降低,TVFA浓度增加,这与Liu等[11]的研究结果一致,研究表明随着异丁酸添加量的增加TVFA浓度呈直线上升趋势。丁酸是刺激瘤胃发酵的主要影响因素[2, 3],试验中添加纤维分解酶刺激丁酸的产生进而刺激瘤胃的发育并刺激纤维分解菌的产生。纤维分解菌中的氮主要来源于NH3-N[21],FE、IB及IBFE 3组瘤胃液NH3-N浓度降低表明有更多的氮转变为微生物蛋白。体内外发酵试验表明随纤维素酶的增加NH3-N浓度减少,微生物蛋白质的合成增加[7, 11]

3.2 纤维分解酶和异丁酸对犊牛瘤胃液纤维分解酶活力的影响

在犊牛饲料中添加FE、IB及IBFE增强了羧甲基纤维素酶、纤维二糖酶、木聚糖酶和果胶酶的活力,同时微生物活力也有所增强。羧甲基纤维素酶、纤维二糖酶、木聚糖酶和果胶酶的活力的增强可归结于纤维分解酶添加后VFA浓度的增加。Liu等[9]研究发现在犊牛饲料中添加异戊酸导致羧甲基纤维素酶与木聚糖酶活力呈直线增长。添加纤维分解酶[22]或异丁酸[8]改善了瘤胃消化率与中性洗涤纤维、酸性洗涤纤维、半纤维素和纤维素的消化率,刺激了羧甲基纤维素酶、纤维二糖酶和木聚糖酶的产生,进而提高了酶的活力。IB组瘤胃液淀粉酶和蛋白酶的活力与对照组相比没有显著差异,这与Liu等[9]人的研究结果一致。FE与IBFE组瘤胃液淀粉酶和蛋白酶的活力与对照组相比也没有显著差异。断奶前犊牛果胶酶活力高于断奶后的原因有待进一步研究验证。

3.3 纤维分解酶和异丁酸对犊牛瘤胃液纤维分解菌量的影响

饲养试验中FE、IB及IBFE组瘤胃液中产琥珀酸珀丝状杆菌、白色瘤胃球菌、黄色瘤胃球菌和溶纤维丁酸弧菌的量增加,有研究表明添加纤维素酶后产琥珀酸丝状杆菌数量增加[10]。Liu等[9]研究发现随着肉牛饲料中异位酸添加量的增加瘤胃主要纤维分解菌呈直线增长。添加异丁酸或纤维分解菌提高了瘤胃干物质的消化率[22],IBFE组的主要纤维分解菌量比IB组和FE组高,可能是异丁酸与纤维分解酶复合使用效果更好。断奶后主要纤维分解菌数量高于断奶后,这可能是由于断奶前后饲喂物质的不同导致的[23],增加饲料纤维含量能够增加瘤胃液纤维分解菌与半纤维分解菌的活力[24]。然而,Nsereko等[25]研究指出在泌乳奶牛饲料中添加纤维分解酶增加了瘤胃内分解纤维素和半纤维素的细菌量,但是对纤维分解菌的量没有影响。Colombatto等[26]研究表明酶的增加会引起总活菌数的增加,但是对纤维分解菌数量没有影响。Mao等[10]研究发现添加纤维素酶对白色瘤胃液球菌和黄色瘤胃球菌的数量没有影响。这些研究结果不一致可能是因为添加酶的种类、动物的饲喂方式、酶的添加方法以及动物的生产水平不同导致的[27]

4 结 论

① 在断奶前后犊牛饲粮中添加FE、IB及IBFE能够增加瘤胃液的TVFA浓度并能转换瘤胃的发酵模式产生较多的乙酸。

② 瘤胃液NH3-N浓度随着FE、IB及IBFE的添加而降低。

③ 随着添加FE、IB及IBFE的添加瘤胃液微生物酶活力也得到增强。

④ FE、IB及IBFE的添加有效改善了瘤胃发酵和微生物酶活力,提高了纤维分解菌的量。

⑤ 添加FE、IB能够刺激瘤胃纤维分解菌,同时IB与FE在促进瘤胃液纤维分解菌增殖方面有协同作用。

参考文献
[1]BALDWIN R L,MCLEOD K R,KLOTZ J L,et al.Rumen development,intestinal growth and hepatic metabolism in the pre- and post-weaning ruminant[J]. Journal of Dairy Science,2004,87:E55-E65. (1)
[2]GÓRKA P,KOWALSKI Z M,PIETRZAK P,et al.Effect of method of delivery of sodium butyrate on rumen development in newborn calves[J]. Journal of Dairy Science,2011,94(11):5578-5588. (2)
[3]MENTSCHEL J,LEISER R,MVLLING C,et al.Butyric acid stimulates rumen mucosa development in the calf mainly by a reduction of apoptosis[J]. Archiv für Tierernaehrung,2001,55(2):85-102. (2)
[4]KONE P,MACHADO P F,COOK R M.Effect of the combination of monensin and isoacids on rumen fermentation in vitro[J]. Journal of Dairy Science,1989,72(10):2767-2771. (1)
[5]MISRA A K,THAKUR S S.Effects of dietary supplementation of sodium salt of isobutyric acid on ruminal fermentation and nutrient utilization in a wheat straw based low protein diet fed to crossbred cattle[J]. Asian-Australasian Journal of Animal Sciences,2001,14(4):479-484. (1)
[6]LIU Q,WANG C,HUANG Y X,et al.Effects of isobutyrate on rumen fermentation,urinary excretion of purine derivatives and digestibility in steers[J]. Archives of Animal Nutrition,2008,62(5):377-388. (1)
[7]WANG C,LIU Q,PEI C X,et al.Effects of 2-methylbutyrate on rumen fermentation,ruminal enzyme activities,urinary excretion of purine derivatives and feed digestibility in steers[J]. Livestock Science,2012,145(1/2/3):160-166. (2)
[8]YANG C M J.Response of forage fiber degradation by ruminal microorganisms to branched-chain volatile fatty acids,amino acids,and dipeptides[J]. Journal of Dairy Science,2002,85(5):1183-1190. (2)
[9]LIU Q,WANG C,PEI C X,et al.Effects of isovalerate supplementation on microbial status and rumen enzyme profile in steers fed on corn stover based diet[J]. Livestock Science,2014,161:60-68. (4)
[10]MAO H L,WU C H,WANG J K,et al.Synergistic effect of cellulase and xylanase on in vitro rumen fermentation and microbial population with rice straw as substrate[J]. Animal Nutrition and Feed Technology,2013,13:477-487. (4)
[11]LIU Q,WANG C,HUANG Y X,et al.Effects of isovalerate on ruminal fermentation,urinary excretion of purine derivatives and digestibility in steers[J]. Journal of Animal Physiology and Animal Nutrition,2009,93(6):716-725. (3)
[12]KRUEGER N A,ADESOGAN A T,STAPLES C R,et al.Effect of method of applying fibrolytic enzymes or ammonia to Bermudagrass hay on feed intake,digestion,and growth of beef steers[J]. Journal of Animal Science,2008,86(4):882-889. (1)
[13]LAMID M,PUSPANINGSIH N N T,MANGKOEDIHARDJO S.Addition of lignocellulolytic enzymes into rice straw improves in vitro rumen fermentation products[J]. Journal of Applied Environmental and Biological Sciences,2013,3(9):166-171. (1)
[14]ROMERO J J,ZARATE M A,QUEIROZ O C M,et al.Fibrolytic enzyme and ammonia application effects on the nutritive value,intake,and digestion kinetics of bermudagrass hay in beef cattle[J]. Journal of Animal Science,2013,91(9):4345-4356. (1)
[15]MOHAMED D E D A,BORHAMI B E,EL-SHZALY K A,et al.Effect of dietary supplementation with fibrolytic enzymes on the productive performance of early lactating dairy cows[J]. Journal of Agricultural Science,2013,5(6):146-155. (1)
[16]JACOBSON D R,LINDAHL I L,MCNEILL J J,et al.Feedlot bloat studies.Ⅱ.Physical factors involved in the etiology of frothy bloat[J]. Journal of Animal Science,1957,16:515-524. (1)
[17]CHANEY A L,MARBACH E P.Modified reagents for determination of urea and ammonia[J]. Clinical Chemistry,1962,8(2):130-132. (1)
[18]AGARWAL N,KAMRA D N,CHAUDHARY L C,et al.Microbial status and rumen enzyme profile of crossbred calves fed on different microbial feed additives[J]. Letters in Applied Microbiology,2002,34(5):329-336. (1)
[19]YU Z T,MORRISON M.Improved extraction of PCR-quality community DNA from digesta and fecal samples[J]. BioTechniques,2004,36(5):808-812. (1)
[20]QUISPE M E,BARRADAS H,COOK R M.Effects of isoacids,urea and sulfur on ruminal fermentation in sheep fed pineapple tops[J]. Small Ruminant Research,1991,6(1/2):49-54. (1)
[21]RUSSELL J B,O'CONNOR J D,FOX D G,et al.A net carbohydrate and protein system for evaluating cattle diets:Ⅰ.Ruminal fermentation[J]. Journal of Animal Science,1992,70(11):3551-3561. (1)
[22]SHOJAEIAN K,THAKUR S S.Effect of supplementing isobutyrate and fibrolytic enzymes on in vitro degradibility of alkali treated wheat straw[J]. Indian Journal of Animal Nutrition,2006,23(4):213-217. (2)
[23]LANE M A,BALDWIN R L,JESSE B W.Sheep rumen metabolic development in response to age and dietary treatments[J]. Journal of Animal Science,2000,78(7):1990-1996. (1)
[24]MICHELLAND R J,COMBES S,MONTEILS V,et al.Rapid adaptation of the bacterial community in the growing rabbit caecum after a change in dietary fibre supply[J]. Animal,2011,5(11):1761-1768. (1)
[25]NSEREKO V L,BEAUCHEMIN K A,MORGAVI D P,et al.Effect of a fibrolytic enzyme preparation from Trichoderma longibrachiatum on the rumen microbial population of dairy cows[J]. Canadian Journal of Microbiology,2002,48(1):14-20. (1)
[26]COLOMBATTO D,HERVÁS G,YANG W Z,et al.Effects of enzyme supplementation of a total mixed ration on microbial fermentation in continuous culture,maintained at high and low pH[J]. Journal of Animal Science,2003,81(10):2617-2627. (1)
[27]BEAUCHEMIN K A,COLOMBATTO D,MORGAVI D P,et al.Use of exogenous fibrolytic enzymes to improve feed utilization by ruminants[J]. Journal of Animal Science,2003,81(2S):E37-E47. (1)