动物营养学报  2015, Vol. 27 Issue (10): 3020-3025   PDF (1108 KB)    
黄曲霉毒素的生物毒性及其在奶畜体内转移规律
黄帅, 范彩云, 程建波     
安徽农业大学动物科技学院, 合肥 230036
摘要:黄曲霉毒素(AF)是一种真菌毒素,广泛存在于各种饲料原料中。黄曲霉毒素B1(AFB1)是毒性最强的一种AF,常污染奶畜饲料。在动物体内,AFB1氧化代谢成黄曲霉毒素M1(AFM1),AFM1可分泌到奶畜乳中。本文综述了AF的理化性质、有害生物学效应与机制、生物转化及其向奶畜乳、尿液、粪便和组织转移的规律。
关键词黄曲霉毒素     奶畜     转移规律    
Aflatoxins: Biological Toxicity and Transformation in Dairy Animals
HUANG Shuai, FAN Caiyun, CHENG Jianbo     
College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
Abstract: Aflatoxins (AF) is a mycotoxin and occur naturally in many feedstuffs.Aflatoxin B1 (AFB1), the most toxic compound of aflatoxins, and a common occurrence in dairy animal feeds.In animal body, aflatoxin M1 (AFM1) is oxidative metabolite of AFB1 and can carry over to dairy animal milk.In this paper, physical and chemical properties, adverse biological effects and mechanism, biological transformation of AF in milk, urine, feces and tissues in dairy animals were reviewed.
Key words: aflatoxins     dairy animals     transformation    

黄曲霉毒素(aflatoxins,AF)是一种次生代谢物,主要是由曲霉属真菌和寄生真菌产生[1],发现于多种饲料原料中,如玉米、大麦、小麦、棉籽、花生及其副产品等。2014年,我国饲料普遍受到黄曲霉毒素B1(aflatoxin B1,AFB1)污染,检出率在80%以上,饲料原料中AFB1的超标率在0~38.89%[2]。天然产生的AF有4种,分别是AFB1、黄曲霉毒素B2(aflatoxin B2,AFB2)、黄曲霉毒素G1(aflatoxin G1,AFG1)和黄曲霉毒素G2(aflatoxin G2,AFG2)。AFB1是毒性最强的一种AF,已经证实AFB1对多种动物有致癌性、致畸性和潜在致突变性,这其中也包括人类[3],已被世界卫生组织的癌症研究机构列为(对人类)Ⅰ类致癌物[4]。奶畜摄入AFB1后,代谢成羟基化代谢物——黄曲霉毒素M1(aflatoxin M1,AFM1)。AFM1是致癌性物质,毒性比AFB1[5],主要存在于蛋白质组分中,可通过乳汁分泌[6],因而常污染乳及乳制品。2011年,蒙牛乳业(眉山)有限公司生产的一个批次产品因奶牛食入霉变饲料被检出AFM1超标近140%[7],引起了社会的广泛关注。为了为生产中控制AFB1和AMF1污染提供参考,本文将对AF及其在奶畜体内的转移规律进行综述。

1 AF的理化性质、生物学效应及其机制 1.1 AF的理化性质

AF是化学结构相近的一组二呋喃香豆素衍生物,基本结构都含有1个二呋喃环和1个氧化杂萘邻酮(俗称香豆素)。在薄层色谱板的紫外线下,AFB1、AFB2发蓝色荧光,AFG1、AFG2发绿色荧光。AFB1纯品为无色结晶,溶于甲醇、乙腈、氯仿等有机溶剂,不溶于水。AFB1十分耐热,分解温度为268 ℃,且结构稳定,加入强酸或强碱才能将其破坏,紫外线对低浓度AFB1也有一定的破坏性。AFM1是AFB1羟基化衍生成的代谢物,溶于甲醇、乙腈等有机溶剂和水。AFM1结构稳定、耐高温,加热处理对其破坏很小,巴氏杀菌不能将其消灭,只有在熔点温度下才发生分解[8]

1.2 AF的有害生物学效应及其机制

AF的生物学效应分为毒性、致癌性、致突变性及致畸性。AFB1和AFM1都是剧毒物和肝脏致癌物[9],AFB1可导致动物急性或慢性中毒。AF的半数致死量(LD50)为0.249 mg/kg,其毒性是氰化钾的10倍、砒霜的68倍[10]。AFB1经微粒体混合功能氧化酶系统生成活性代谢物——AFB1-外-8,9-环氧化物(AFB1-exo-8,9-epoxide,AFBO),该环氧化物与DNA、RNA、蛋白质结合生成AF加合物,导致多种生物大分子失去功能,引起动物AF急性或慢性中毒[11]。哺乳动物急性AF中毒症状包括:食欲不振、嗜睡、共济失调、表面皮肤粗糙、苍白、肝脏肿大。慢性AF中毒症状有:料重比下降、产奶量降低、黄疸、食欲不振[12]。AF能降低畜禽对疾病的抵抗力,干扰疫苗产生的免疫反应[13]。Guthrie等[14]研究表明,农场饲喂的泌乳奶牛摄入120 μg/kg的AF后,生殖率降低。饲粮AF含量超过100 μg/kg会影响牛群的生产性能和健康[15, 16]。AFB1可引起严重的肝脏损伤,包括出血性坏死、脂肪肝、胆管增生[17];还会引发肝炎、肝硬化等疾病[11],甚至引发肝癌[18]

AF的毒性机制主要是AF在体内代谢形成AFBO后,AFBO可与动物体内多种物质结合,导致AFB1产生毒性、致癌性、致畸性以及致突变性。例如,AFBO与DNA的嘌呤残基共价结合形成AFB1-DNA加合物,诱导抑癌基因p53第249位密码子第3个碱基发生置换(G ∶ C→T ∶ A),致使p53突变,导致机体癌症的发生[19]。研究表明,AFB1与DNA共价结合后,抑制DNA的甲基化及蛋白质的合成,改变基因的表达和分化,影响原始细胞的发育和胎儿的分化,从而产生致畸效应[20]

2 AF在体内的生物转化

AFB1吸收部位在肠道,主要代谢部位是肝脏。AFB1摄入后,经十二指肠吸收,未被吸收的AFB1通过粪便排出体外。动物体代谢和转移吸收的AFB1主要包括2个阶段。第1阶段是Ⅰ相代谢酶,主要是肝脏的细胞色素氧化酶P450系统,通过环氧化、水合、羟基化和O-脱甲基化反应主要产生AFBO、黄曲霉毒素2a(aflatoxin M2a,AFM2a)、黄曲霉毒素Q1(aflatoxin Q1,AFQ1)、黄曲霉毒素P1(aflatoxin P1,AFP1)、AFM1和黄曲霉毒醇[21, 22]。AFB2a、AFP1、AFQ1、AFM1可通过尿液排泄[21],哺乳动物也可通过乳汁排泄AFM1[23, 24]。黄曲霉毒醇可由细胞质还原酶系统还原为AFB1[25]。AFBO与7N-鸟嘌呤反应生成致突变的AFB1-DNA加合物,该加合物不稳定,脱嘌呤后通过尿液排泄[21]。第2阶段是Ⅱ相代谢酶系统,主要是谷胱甘肽-S-转移酶催化AFBO与谷胱甘肽结合产生AF-谷胱甘肽,AF-谷胱甘肽在肝肾经一系列反应以疏基尿酸(黄曲霉-N-乙酰半胱氨酸)的形式通过尿液排泄[26, 27]

3 AF在奶畜体内的转移规律 3.1 AFB1向奶畜乳中的转移规律

奶畜摄入AFB1,经肝脏代谢为AFM1,AFM1排泄到乳中的速度很快,清除速度也很快。研究表明,奶山羊摄入AFB1 1 h后,乳中就检测到了AFM1[28],说明AFM1排泄到乳中的速度很快。Polan等[29]研究发现,饲喂250和1 250 μg/kg AFB1的泌乳牛,第4天至第14天,乳中AFM1浓度持续增加,停喂2 d后,奶中就检测不到AFM1。奶山羊摄入2 mg/头纯AFB1,6 h的奶样检测到了AFM1,停止饲喂4 d后,奶中未检测到AFM1[3];摄入78 mg/头混合AF(AFB1,36%;AFG1,52%;AFB2,3%;AFG2,2%)的绵羊,停止饲喂6 d后,奶中不含AFM1[30];这2个研究表明,奶中AFM1的清除速度很快,奶畜摄入的AFB1剂量越低,奶中AFM1的清除速度越快。

研究表明,AFM1在乳汁中的转移率为0.1%~6%[31]。Battacone等[28]研究发现,84 h内奶山羊AFM1排泄总量占AFB1给量(0.8 mg)的0.17%。Mazzette等[32]喂0.8 mg/头纯AFB1给泌乳中期萨能奶山羊,72 h内,奶中平均排泄的AFM1占AFB1摄入量的0.26%。Patterson等[33]报道,摄入约10 μg/kg AFB1的泌乳牛,奶中出现的AFM1约占AFB1摄入量的2.2%。Veldman等[34]发现,高产奶牛AFM1的转化率高达6.2%。这些研究也表明,乳汁并不是奶畜排泄AFB1的主要途径。

影响乳中AFM1浓度及AFM1转化率的因素有很多,如AFB1摄入量、物种差异[3]、个体变化[32, 35],乳房腺泡细胞膜健康[36]、饲粮精料的比例、饲料产地、饲料原料的收割时间及饲喂方式等[37, 38, 39]。Battacone等[3]对4头泌乳早期母羊(试验1)和16头泌乳中期母羊(试验2)进行独立试验,分别饲喂单一剂量纯AFB1(2 mg/头)和不同浓度的纯AFB1[32、64、128 μg/(头·d)]14 d,AFB1转化为奶中AFM1的平均转化率分别为0.032%(个体差异大,SD=0.017%)和0.112%;试验1因为AFB1只饲喂了1次,没有在体内形成累积效应,所以转化率比较低;该研究同时表明AFB1饲喂时间越长,AFM1的转化率越高。有研究表明,分泌到牛奶中的AFM1浓度与AFB1摄入量呈正比[40, 41]。对奶山羊的研究也发现,AFB1剂量与乳中AFM1浓度呈正比[3, 42]

此外,不同泌乳阶段之间AFM1的转化率也存在着巨大差异,AFM1的转化率与奶畜的产奶量呈正相关。研究发现,高产、高体细胞组奶牛[产奶量>30 kg/(头·d),体细胞数>350 000]AFM1的转化率为2.32%;高产、低体细胞组AFM1的转化率为2.7%;低产、高体细胞组AFM1的转化率为1.48%;低产、低体细胞组AFM1转化率为1.29%;说明产奶量越高,AFM1的转化率越高[43]。Britzi等[44]发现泌乳中期和泌乳后期奶牛AMF1的平均转化率分别是5.8%和2.5%,说明泌乳中期AFM1转化率高于泌乳后期;并建立了转化率和产奶量之间的回归方程:转化率=0.515 4e0.052 1×产奶量(r2=0.622 4)。

3.2 AFB1向奶畜尿液的转移规律

动物摄入AFB1后,尿液排出的毒素有2种,分别是AFB1和AFM1,而AFM1是排泄到尿液中主要的AF[45]。Helferich等[46]研究发现,口服[14C]-AFB1时,尿液发现的放射物质总量占摄入量的30.3%,说明尿液不是排泄AF的主要途径。Fernandez等[47]给24头奶山羊饲喂2.5 mg/(kg·d)AF饲粮21 d,发现尿液AFM1浓度高于AFB1,表明排泄到尿液中的AF主要是AFM1,而不是AFB1

3.3 AFB1向奶畜粪便转移的规律

粪便是排泄AFB1的主要途径[46],且主要以AFB1的形式排出[45]。有研究报道指出,AFB1是出现在粪便中含量最高的AF,所有样品AFB1浓度均高于AFM1[40],表明粪便可排泄AFB1和AFM1,但AFB1是主要形式。泌乳奶山羊口服[14C]-AFB1时,粪便AFB1的排泄率是52%[46],说明粪便是排泄AFB1的主要途径。

3.4 AFB1向奶畜体组织转移的规律

AFB1在奶畜体内转移过程中,也会向奶畜体组织转移少量毒素,肾脏大于肝脏,且肾脏AFM1浓度高于AFB1。Polan等[29]研究发现,96 h后,粪尿和奶中放射性标记的氚(3H)的总含量占[3H]-AFB1剂量的15%以下,因此他们推测,其他的3H还残留于组织中。研究表明,AFM1和AFB1存在于肝肾组织和奶中,肾脏AFM1浓度高于AFB1[48, 49]。Helferich等[46]给泌乳奶山羊口服[14C]-AFB1,90%以上的放射性物质与肝脏大分子结合,肝脏的放射性物质含量高于其他组织,占饲喂量的4.9%;肾脏占0.11%;心脏、脾和肺的含量不足0.1%;肌肉的含量占饲喂量的0.48%;脂肪未检测到放射性物质;表明AFM1主要残留在肝肾组织中,其他组织中AFM1含量低于肝肾。Shreeve等[50]意外发现所有牛的肾脏都出现了AFM1,且肾中AFM1的浓度显著高于肝脏,占饲料AFB1浓度的0.75%,说明AFM1主要残留于肾脏中。Stubblefield等[45]报道,6月龄的荷斯坦阉牛连续5 d口服0.33 mg/(kg·d)部分纯化的AF后,所有组织都含AFM1,肾脏AFM1浓度最高且比AFB1高出3.6倍;连续3 d口服0.35 mg/(kg·d)纯AFB1的荷斯坦奶牛,除了胸腺,在牛的所有组织样中都发现了AFM1和AFB1;肾、肝和乳腺AFM1浓度最高,肾脏AFM1水平比AFB1高40倍,结果表明肾脏残留的AF主要是AFM1,AFB1的纯化程度越高,肾脏AFM1的残留量越大。

4 AFB1和AFM1污染的控制

控制AFB1和AFM1污染的方式包括有预防AFB1的产生以及脱去AF污染饲料中的AFB1 2种。常用的脱毒方法有3种,分别是物理、化学和生物学方法,其中效果最好的当属饲料中添加霉菌毒素吸附剂。霉菌毒素吸附剂具有体外吸附和体内抑制霉菌毒素的能力,效果好,安全性高,原料基质能保持原有的营养水平和风味,是目前最常用的脱毒法。不同霉菌毒素吸附剂对AFB1吸附效果不同,企业或养殖户可根据自身情况选择安全、高效的霉菌毒素吸附剂,有效控制AFB1污染。

5 小 结

尽管学者们对AF在动物体内转移转化规律做了大量的科学研究,但还有很多问题有待解决:1)几种或多种霉菌毒素联合对动物的作用效果和作用机制的确定;2)AF暴露的分子标记物的找寻;3)AF与瘤胃微生物之间的相互作用以及作用机制尚不明确。近年来,分子生物学技术的高速发展和新的研究方法的出现,奶畜AF的研究必将有新的突破。

参考文献
[1]SAMAPUNDO S,DEVLIEGHERE F,GEERAERD A,et al.Modelling of the individual and combined effects of water activity and temperature on the radial growth of Aspergillus flavus and A. parasiticus on corn[J]. Food Microbiology,2007,24(5):517-529. (1)
[2]刘凤芝,孙合美,廉新慧,等.2014年饲料及饲料原料中黄曲霉毒素B1污染状况的分析[J]. 广东饲料,2015,24(3):45-46. (1)
[3]BATTACONE G,NUDDA A,CANNAS A,et al.Excretion of aflatoxin M1 in milk of dairy ewes treated with different doses of aflatoxin B1[J]. Journal of Dairy Science,2003,86(8):2667-2675. (5)
[4]IARC.Some traditional herbal medicines,some mycotoxins,naphthalene and styrene[M]. Geneva:IARC Press,2002,82:9-11. (1)
[5]程广龙,杨永新,赵辉玲,等.黄曲霉毒素对奶牛生产的危害及其控制措施[J]. 中国草食动物科学,2012(3):79-81. (1)
[6]KOUROUSEKOS G D,THEODOSIADOU E,BELIBASAKI S,et al.Effects of aflatoxin B1 administration on Greek indigenous goats' milk[J]. International Dairy Journal,2012,24(2):123-129. (1)
[7]标准生活编辑部.蒙牛黄曲霉毒素再掀乳业风波[J]. 标准生活,2012(1):48-51. (1)
[8]黄禄华,胡昌金,唐臣学,等.黄曲霉毒素对奶牛的危害及控制措施[J]. 畜禽业,2013(10):26-28. (1)
[9]VAN EIJKEREN J C H,BAKKER M I,ZEILMAKER M J.A simple steady-state model for carry-over of aflatoxins from feed to cow's milk[J]. Food Additives and Contaminants,2006,23(8):833-838. (1)
[10]劳文艳,林素珍.黄曲霉毒素对食品的污染及危害[J]. 北京联合大学学报:自然科学版,2011,25(1):64-69. (1)
[11]MISHRA H N,DAS C.A review on biological control and metabolism of aflatoxin[J]. Critical Reviews in Food Science and Nutrition,2003,43(3):245-264. (2)
[12]NIBBELINK S K.Aflatoxicosis in food animals:a clinical review[J]. Iowa State University Veterinarian,1986,48(1):6. (1)
[13]DIEKMAN M A,GREEN M L.Mycotoxins and reproduction in domestic livestock[J]. Journal of Animal Science,1992,70(5):1615-1627. (1)
[14]GUTHRIE L D,BEDELL D M.Effects of aflatoxin in corn on production and reproduction in dairy cattle[J]. Proceedings Annual Meeting of the United States Animal Health Association,1979,83(83):202-204. (1)
[15]PATTERSON D S,ANDERSON P H.Recent aflatoxin feeding experiments in cattle[J]. Veterinary Record,1982,110(3):60. (1)
[16]MASRI M S,GARCIA V C,PAGE J R.The aflatoxin M content of milk from cows fed known amounts of aflatoxin[J]. Veterinary Record,1969,84(6):146-147. (1)
[17]DO J H,CHOI D K.Aflatoxins:detection,toxicity,and biosynthesis[J]. Biotechnology and Bioprocess Engineering,2007,12(6):585-593. (1)
[18]SCHOLL P F,GROOPMA N D.Long-term stability of human aflatoxin B1 albumin adducts assessed by isotope dilution mass spectrometry and high-performance liquid chromatography-fluorescence[J]. Cancer Epidemiology,Biomarkers & Prevention,2008,17(6):1436-1439. (1)
[19]庄振宏,张峰,李燕云,等.黄曲霉毒素致癌机理的研究进展[J]. 湖北农业科学,2011,50(8):1522-1525. (1)
[20]冯建蕾.黄曲霉毒素的危害和防治[J]. 中国畜牧兽医,2005,32(12):G5-G7. (1)
[21]ZHANG B C,ZHU Y R,WANG J B,et al.Oltipraz chemoprevention trial in Qidong,Jiangsu Province,People's Republic of China[J]. Journal of Cellular Biochemistry,1997,67(28S):166-173. (2)
[22]WU Q H,JEZKOVA A,YUAN Z H,et al.Biological degradation of aflatoxins[J]. Drug Metabolism Reviews,2009,41(1):1-7. (1)
[23]GVRBAY A,SABUNCUOĞ LU S A,GIRGIN G,et al.Exposure of newborns to aflatoxin M1 and B1 from mothers' breast milk in Ankara,Turkey[J]. Food and Chemical Toxicology,2009,48(1):314-319. (1)
[24]FALLA A A,JAFARI T,FALLAH A,et al.Determination of aflatoxin M1 levels in Iranian white and cream cheese[J]. Food and Chemical Toxicology,2009,47(8):1872-1875. (1)
[25]DOHNAL V,WU Q H,KUČ A K.Metabolism of aflatoxins:key enzymes and interindividual as well as interspecies differences[J]. Archives of Toxicology,2014,88(9):1635-1644. (1)
[26]GROSS-STEINMEYER K,EATON D L.Dietary modulation of the biotransformation and genotoxicity of aflatoxin B1[J]. Toxicology,2012,299(2/3):69-79. (1)
[27]MURPHY P A,HENDRICH S,LANDGREN C,et al.Food mycotoxins:an update[J]. Journal of Food Science,2006,71(5):R51-R65. (1)
[28]BATTACONE G,NUDDA A,RASSU S P G,et al.Excretion pattern of aflatoxin M1 in milk of goats fed a single dose of aflatoxin B1[J]. Journal of Dairy Science,2012,95(5):2656-2661. (2)
[29]POLAN C E,HAYES J R,CAMPBELL T C.Consumption and fate of aflatoxin B1 by lactating cows[J]. Journal of Agricultural and Food Chemistry,1974,22(4):635-638. (2)
[30]NABNEY J,BURBAGE M B,ALLCROFT R,et al.Metabolism of aflatoxin in sheep:excretion pattern in the lactating ewe[J]. Food and Cosmetics Toxicology,1967,5:11-17. (1)
[31]COFFEY R,CUMMINS E,WARD S.Exposure assessment of mycotoxins in dairy milk[J]. Food Control,2009,20(3):239-249. (1)
[32]MAZZETTE A,DECANDIA M,ACCIARO M,et al.Excretion of aflatoxin M1 in milk of goats fed diet contaminated by aflatoxin B1[J]. Italian Journal of Animal Science,2010,8(2S):631-633. (2)
[33]PATTERSON D S P,GLANCY E M,ROBERTS B A.The 'carry over' of aflatoxin M1 into the milk of cows fed rations containing a low concentration of aflatoxin B1[J]. Food Cosmetics Toxicology,1980,18(1):35-37. (1)
[34]VELDMAN A,MEIJS J A C,BORGGREVE G J,et al.Carry-over of aflatoxin from cows' food to milk[J]. Animal Production,1992,55(2):163-168. (1)
[35]VAN EGMOND H P.Aflatoxin M1:occurrence,toxicity,regulation[M]//VAN EGMOND H P.Mycotoxins in dairy products.London:Elsevier Applied Science,1989:11-55. (1)
[36]LAFONT P,SARFATI J,JACQUET J,et al.Influences de facteurs pathologiques et nutritionnels sur l'elimination de l'aflatoxine par la memelle chez la vache[J]. Microbiologie Aliments Nutrition,1983,1:293-300. (1)
[37]MONTAGNA M T,NAPOLI C,DE GIGLIO O D,et al.Occurrence of aflatoxin M1 in dairy products in Southern Italy[J]. International Journal of Molecular Sciences,2008,9(12):2614-2621. (1)
[38]MOTTAWEE M M,BAUER J,MCMAHON D J.Survey of aflatoxin M1 in cow,goat,buffalo and camel milks in Ismailia-Egypt[J]. Bulletin of Environmental Contamination and Toxicology,2009,83(5):766-769. (1)
[39]RAHIMI E,BONYADIAN M,RAFEI M,et al.Occurrence of aflatoxin M1 in raw milk of five dairy species in Ahvaz,Iran[J]. Food and Chemical Toxicology,2010,48(1):129-131. (1)
[40]ALLOCROFT R,ROBERTS B A,LLOYD M K.Excretion of aflatoxin in a lactating cow[J]. Food and Cosmetics Toxicology,1968,6(5):619-625. (2)
[41]齐琪.黄曲霉毒素B1对荷斯坦奶牛乳中黄曲霉毒素M1含量、生产性能及血液生化指标的影响[D]. 硕士学位论文.泰安:山东农业大学,2012. (1)
[42]BATTACONE G,NUDDA A,PALOMBA M,et al.Transfer of aflatoxin B1 from feed to milk and from milk to curd and whey in dairy sheep fed artificially contaminated concentrates[J]. Journal of Dairy Science,2005,88(9):3063-3069. (1)
[43]MASOERO F,GALLO A,MOSCHINI M,et al.Carryover of aflatoxin from feed to milk in dairy cows with low or high somatic cell counts[J]. Animal,2007,1(9):1344-1350. (1)
[44]BRITZI M,FRIEDMAN S,MIRON J,et al.Carry-over of aflatoxin B1 to aflatoxin M1 in high yielding Israeli cows in mid and late-lactation[J]. Toxins,2013,5(1):173-183. (1)
[45]STUBBLEFIELD R D,PIER A C,RICHARD J L,et al.Fate of aflatoxins in tissues,fluids and excrements from cows dosed orally with aflatoxin B1[J]. American Journal of Veterinary Research,1983,44(9):1750-1752. (3)
[46]HELFERICH W G,BALDWIN R L,HSIEH D P.[14C]-aflatoxin B1 metabolism in lactating goats and rats[J]. Journal of Animal Science,1986,62(3):697-705. (4)
[47]FERNÁDEZ A,BELÍO R,RAMOS J J,et al.Aflatoxins and their metabolites in the tissues,faeces and urine from lambs feeding on an aflatoxin-contaminated diet[J]. Journal of the Science of Food and Agriculture,1997,74(2):161-168. (1)
[48]PATTERSON D S P,SHREEVE B J,ROBERTS B A.Mycotoxin residues in body fluids and tissues of food-producing animals[J]. Zentralblatt fur Bakteriologie,Parasitenkunde,Infektionskrankheiten und Hygiene,1980(8S):320-328. (1)
[49]PATTERSON D S,SHREEVE B J,ROBERTS B A,et al.Effect on calves of barley naturally contaminated with ochratoxin A and groundnut meal contaminated with low concentrations of aflatoxin B1[J]. Research in Veterinary Science,1981,31(2):213-218. (1)
[50]SHREEVE B J,PATTERSON D S P,ROBERTS B A.The 'carry-over' of aflatoxin,ochratoxin and zearalenone from naturally contaminated feed to tissues,urine and milk of dairy cows[J]. Food and Cosmetics Toxicology,1979,17(2):151-152. (1)