2. 中国农业科学院与世界农用林业中心农用林业与可持续畜牧业联合实验室, 北京 100193;
3. 东北农业大学食品安全与营养协同创新中心, 哈尔滨 150030
2. Joint Laboratory on Agroforestry and Sustainable Animal Husbandry, CAAS-ICRAF, Beijing 100193, China;
3. Synergetic Innovation Center of Food Safety and Nutrition, Northeast Agricultural University, Harbin 150030, China
乳蛋白的含量是构成牛奶重要营养品质的主要物质基础之一。大量研究表明,乳成分(乳脂肪、乳蛋白和乳糖)的合成是基因、环境、内分泌激素等因素综合作用的结果,其中乳脂肪的含量和组成最容易受饲粮营养的影响,而乳蛋白的含量和组成相对比较稳定[1, 2]。热应激是影响乳蛋白合成重要环境因素。近期的研究表明,牛奶的合成对于高热环境非常敏感[3],热应激不仅会影响奶牛泌乳性能、牛奶品质和奶牛健康,降低产奶量和乳蛋白含量,同时增加了生产成本[4, 5, 6, 7, 8, 9]。
目前各国奶业科研人员研究已经建立了关于缓解奶牛热应激的各类控制技术。我国学者在调查分析我国不同地区奶牛热应激类型的基础上[10, 11],系统研究了热应激环境下奶牛瘤胃发酵、气血酸碱平衡、机体能量平衡、乳腺功能变化,确立了通过饲粮饱和脂肪酸、过瘤胃淀粉、阴阳离子平衡和有机微量元素为核心缓解奶牛热应激的营养调控技术途径[12, 13, 14, 15, 16],开发了《牧场缓解热应激自动控制系统》软件,对降低奶牛热应激带来的损失起到了一定的作用,在热应激奶牛营养代谢理论及其缓解技术方面取得了新进展。目前国际上对于有关热应激对奶牛乳蛋白含量及产量的研究结果不相一致,Bernabucci等[17]的研究结果显示,在夏季热应激条件下,奶牛合成乳酪蛋白的含量降低进而导致乳蛋白含量降低,但通过环控仓设定热应激环境的研究结果显示,乳蛋白含量不受热应激影响,但由于热应激导致乳产量下降,使得乳蛋白的产量下降[8, 18, 19, 20, 21],因此,本文从热应激引起奶牛内分泌激素变化导致营养重分配的基因网络、乳蛋白合成的应答与转录调控机制改变层面,综述了其对奶牛乳腺酪蛋白合成的影响,为进一步研究热应激对乳蛋白合成影响机制的研究提供研究思路。
1 热应激奶牛通过内分泌激素变化引起营养重分配改变而影响乳腺蛋白质的合成 1.1 营养和内分泌是调控乳蛋白合成的重要因素酪蛋白占乳蛋白含量的80%,其中90%以上是在乳腺中由氨基酸(AA)从头合成。在过去40多年关于消化道层次和组织代谢层次研究证明,进入乳腺的AA水平是制约乳蛋白合成的主要营养制约因素,其中赖氨酸(Lys)和蛋氨酸(Met)是乳蛋白合成的限制性氨基酸[2, 22, 23, 24, 25],但近期的一些研究表明,饲粮能量水平在调控乳蛋白的合成能力方面比AA更敏感[26]。调控奶牛饲粮能量水平不仅能为乳蛋白合成提供能量物质[三磷酸腺苷(ATP)、三磷酸鸟苷(GTP)、烟酰胺腺嘌呤二核苷酸(NADH)和还原型烟酰胺腺嘌呤二核苷酸磷酸(NADPH)],同时通过增加胰岛素的分泌还可促进乳蛋白的合成[27, 28, 29]。内分泌一方面可以通过改变乳腺的血流量和氨基酸的转运能力来影响乳腺对氨基酸的吸收和利用[30],另一方面可以通过其受体激活调控乳蛋白生成的信号转导通路,完成对乳蛋白合成的调控[31]。经证实,促乳素、生长激素、甲状腺激素、糖皮质激素等在乳蛋白合成发中挥直接作用,而胰岛素发挥间接作用[32]。催乳素通过与靶细胞膜表面的催乳素受体结合,启动Janus激酶2(JAK2)/信号转导和转录活化蛋白5(STAT5)信号转导途径,最终激活反式作用因子STAT5,使其作用于乳蛋白基因启动子区的靶序列,启动或增强以乳蛋白基因启动子为作用元件的靶基因表达。生长激素可提高乳蛋白的合成,改善乳腺组织氨基酸的利用[33],对乳蛋白合成的调控点主要是在转录和转录后[34]。糖皮质激素在体内能够影响乳腺的功能,β-酪蛋白基因转录水平的表达主要通过催乳素和糖皮质激素的调节[35, 36]。尽管胰岛素对乳蛋白的调节并未受到重视,但是近期的研究表明,胰岛素不仅参与乳蛋白基因表达,而且在转录、转录后调控和AA摄取与利用方面对乳蛋白合成发挥重要调节作用[29, 37]。
1.2 营养和内分泌参与调控乳蛋白合成的基因网络乳蛋白合成调控是一个协同过程,涉及AA的水平、胰岛素水平、葡萄糖水平及下游各信号转导途径,这些因素之间的网络关系对于乳蛋白的合成发挥关键作用。已经证实很多信号通路在调控乳生成过程中发挥作用[38, 39, 40]。随着牛全基因组测序工作的完成和营养基因组学在畜禽营养生理研究中的不断应用,在mRNA或蛋白质水平上研究与乳蛋白合成相关的功能基因表达和基因调控网络研究结果陆续得以报道[41]。营养素(如AA)可通过整合应激反应(ISR)和雷帕霉素靶点(mTOR)参与调节乳蛋白基因的表达和蛋白质的翻译[42]。目前,Bionaz等[43]利用活体取样,验证了在AA转运、葡萄糖转运、胰岛素通路、mTOR途径、JAK2/STAT5信号通路和蛋白合成基因相关的44个基因的表达,初步构建了奶牛泌乳期乳蛋白合成基因网络,暗示了AA的摄取、葡萄糖的转运以及胰岛素信号通过mTOR途径对酪蛋白合成的重要性。但是热应激这一环境因素具体通过何种信号转导通路上调或下调某些基因的表达,而这些基因表达的变化最终又如何影响乳蛋白的合成仍不清晰。
1.3 热应激改变奶牛营养分配与内分泌平衡泌乳早期奶牛因营养摄入不足,生长激素增加,抑制了胰岛素介导的脂肪合成和葡萄糖利用,促进脂肪组织释放非酯化脂肪酸(NEFA),增加了饲粮和体组织来源的养分向乳腺组织分配[44];同时降低胰岛素的敏感性伴随着血液胰岛素水平的降低,从而使脂肪组织分解和NEFA的动员[45, 46, 47],奶牛处于能量负平衡状态。普遍认为,热应激条件下,因奶牛干物质采食量不足导致奶牛处于能量负平衡而引起牛奶合成降低[7, 48, 49, 50],改变了奶牛体内参与养分合成与分解代谢的激素水平[3, 51, 52],激活相应的细胞信号转导通路,引起乳蛋白合成相关基因的表达,从而调控乳蛋白合成代谢。但近期的研究表明,热应激奶牛干物质采食量下降仅能解释牛奶合成降低的35%~50%[8, 18, 21]。近期的研究提示,与泌乳早期不同,奶牛在热激条件下却增高了胰岛素水平[52]。奶牛在正常生产条件下,机体胰岛素水平升高会增加乳蛋白的含量,但是目前关于热应激条件下胰岛素水平升高与乳蛋白含量降低之间的矛盾仍没有得到科学的解释,是否与热应激条件下乳蛋白合成所需前体物质的重分配改变有直接关系尚需进一步研究探明。
2 热应激条件下奶牛乳腺酪蛋白合成的应答与转录调控机制 2.1 热应激影响乳腺上皮细胞的合成能力乳的质量取决于乳腺上皮细胞的数量和分泌能力,而这些因素会受到不同的环境和管理措施的影响[53]。利用表达谱芯片分析热应激诱导的奶牛乳腺上皮细胞应激响应,发现热应激会下调参与乳腺上皮细胞生物合成、代谢和形态相关基因表达[51, 54]。研究证明,奶牛乳腺上皮细胞在高温42 ℃处理的初期(3 h),乳腺上皮细胞产生了快速应答,细胞凋亡数量增加,凋亡标志性基因B淋巴细胞瘤-2(Bcl-2)显著上调,而促凋亡基因Bax表达显著下调,热休克因子(hsf)1、hsf27、hsf70和hsf90 mRNA转录水平显著上调;随应激时间的延长(5~24 h),细胞产生热耐受[55, 56];而在整个高温条件下,不同程度抑制了αs1-酪蛋白和β酪蛋白基因表达,以及嗜乳脂蛋白(BTN)基因的表达[56]。当奶牛机体代谢异常时不仅牛奶品质降低,而且会影响乳腺细胞合成乳成分的正常功能,甚至引起细胞发生“重编程”[57],但目前关于热应激影响乳腺上皮细胞酪蛋白合成的应答机制仍不清楚。
2.2 表观遗传修饰的改变影响乳蛋白的生成表观遗传学是指由于DNA或其周围染色体化学修饰改变而非DNA序列变化所造成的基因组功能改变。DNA甲基化是最广泛研究的表观调节因素[58]。奶牛生产环境和不同的饲养管理措施均能诱导乳蛋白合成基因DNA甲基化从而影响乳蛋白的生成。啮齿类动物研究表明,泌乳过程中αs1-酪蛋白、κ-酪蛋白、β-酪蛋白和γ-酪蛋白基因均能发生甲基化[59, 60, 61]。已经有多项针对不同生理时期和疾病发生时奶牛乳腺中酪蛋白基因的甲基化和表达情况的研究,结果表明奶牛αs1-酪蛋白基因在泌乳期低甲基化[60],Vanselow等[62]更深一步证实STAT5结合泌乳增强子附近DNA甲基化和染色体结构存在关联,主要发生在αs1-酪蛋白编码基因的大概10 kb位置,该区域的DNA处于低甲基化状态。而当奶牛乳腺受到感染时,αs1-酪蛋白基因甲基化水平也会发生改变,甲基化水平提高31%~45%[63]。当奶牛受大肠杆菌或链球菌感染发生乳房炎时,αs1-酪蛋白基因甲基化发生在转录激活子和增强子区域,这一区域的甲基化程度与αs1-酪蛋白mRNA和蛋白质水平呈负相关,与正常健康奶牛相比,关闭了αs1-酪蛋白基因的合成,使mRNA水平和乳蛋白含量降低[62, 64]。另有研究表明,奶牛挤奶后24~36 h,催乳素/STAT5信号通路基因和乳蛋白基因表达均发生了甲基化[65, 66]。虽然至今没有关于酪蛋白基因是否对热应激产生应答而发生甲基化,但是甲基化这一最普遍的表观遗传修饰,可能会在奶牛泌乳过程中发挥作用。
2.3 miRNA对乳成分的合成发挥重要的调控作用研究证实,miRNA主要是通过与脂类代谢相关基因靶位点的结合参与调节脂类代谢[67, 68],而关于miRNA调节乳蛋白的研究鲜有报道。已有的研究证据表明miRNA能够通过靶向激素受体或编码乳成分的基因,参与乳蛋白生成的调控,例如bta-miR-15a抑制奶牛乳腺上皮中酪蛋白的表达,同时抑制乳腺上皮细胞的活力和生长激素受体(GHR)mRNA和蛋白质的表达[69],而miR-126-3p能够直接以孕酮受体(PGR)为靶基因,影响乳腺上皮细胞的增殖、β-酪蛋白的生成从而在小鼠乳腺发育和泌乳过程中发挥重要作用[70]。小鼠体内的研究证实,热应激能够改变miRNA的表达,使小肠mRNA和miRNA的表达均受到显著影响[71];热应激不仅能够诱导miRNA的表达变化,生成新的内源性miRNA[72],而且对细胞应激应答过程发挥作用[73],但目前还没有针对奶牛的相关研究。随着RNA测序(RNA-seq)技术的在转录调控研究中的不断应用,将为揭示热应激条件下miRNA的表达和可能的调控途径提供依据。
3 小 结乳蛋白的合成是基因、营养和环境共同作用的结果。奶牛在热应激条件下通过降低干物质采食量和驱动机体内分泌激素的平衡以适应热应激状态。但乳蛋白合成的基因调控网络研究刚刚起步,乳蛋白合成对各种激素和中间代谢产物的信号转导途径、关键调控因子及其相互作用模式仍不了解,尤其针对热应激条件下奶牛泌乳的转录调控机制尚属空白。因此,根据生产实践中奶牛热应激条件建立奶牛热应激模型,通过分析血液代谢产物、激素和牛奶成分,结合实时定量PCR、RNA-seq和DNA甲基化分析等方法,在筛选获得差异表达mRNA、miRNA以及验证以关键信号分子为靶基因相关miRNA作用的基础上,构建奶牛乳腺应答热应激的酪蛋白合成关键基因调控网络,进一步探索热应激条件下乳蛋白合成的表观遗传调控机制,将会为缓解奶牛热应激和提高奶牛合成乳蛋白的效率提供新的研究思路和方法。
[1] | 卜登攀, 王加启.日粮不饱和脂肪酸对乳脂CLA合成的影响研究进展[J]. 中国农学通报, 2006, 22(4):15-21. (![]() |
[2] | JENKINS T C, MCGUIRE M A.Major advances in nutrition:impact on milk composition[J]. Journal of Dairy Science, 2006, 89(4):1302-1310. (![]() |
[3] | BERNABUCCI U, LACETERA N, BAUMGARD L H, et al.Metabolic and hormonal acclimation to heat stress in domesticated ruminants[J]. Animal, 2010, 4(7):1167-1183. (![]() |
[4] | BERNABUCCI U, CALAMARI L.Effects of heat stress on bovine milk yield and composition[J]. Zootech Nutrition of Animal, 1998, 24:247-258. (![]() |
[5] | CALAMARI L, MARIANI P.Effects of the hot environment conditions on the main milk cheesemaking properties[J]. Zootech Nutrition of Animal, 1998, 24:259-271. (![]() |
[6] | GAUGHAN J B, MADER T L, HOLT S M, et al.A new heat load index for feedlot cattle[J]. Journal of Animal Science, 2008, 86(1):226-234. (![]() |
[7] | WEST J W.Effects of heat-stress on production in dairy cattle[J]. Journal of Dairy Science, 2003, 86(6):2131-2144. (![]() |
[8] | RHOADS M L, RHOADS R P, VANBAALE M J, et al.Effects of heat stress and plane of nutrition on lactating Holstein cows:Ⅰ.Production, metabolism, and aspects of circulating somatotropin[J]. Journal of Dairy Science, 2009, 92(5):1986-1997. (![]() |
[9] | SHWARTZ G, RHOADS M L, VANBAALE M J, et al.Effects of a supplemental yeast culture on heat stressed lactating Holstein cows[J]. Journal of Dairy Science, 2009, 92(3):935-942. (![]() |
[10] | 王建平, 王加启, 卜登攀, 等.上海地区季节变化对奶牛产奶性能影响的研究[J]. 中国畜牧兽医, 2005, 35(8):70-73. (![]() |
[11] | 刘光磊, 王加启, 刘文忠, 等.全国不同地区奶牛热应激和冷应激规律研究——""健能赢""规律研究[J]. 中国奶牛, 2009, 8:66-69. (![]() |
[12] | 禹爱兵, 王加启, 赵国琦, 等.铬对泌乳期奶牛的生产性能和主要生理指标的影响[J]. 畜牧兽医文摘, 2006, 37(8):774-778. (![]() |
[13] | 贾磊, 王加启, 卜登攀, 等.日粮阴阳离子差对泌乳前期热应激奶牛血液酸碱平衡和生产性能的影响[J]. 动物营养学报, 2007, 19(6):663-670. (![]() |
[14] | BU D P, JIA L, WANG J Q, et al.Effect of dietary cation-anion difference on performance and blood acid-base balance of early-lactating dairy cows under heat stress[J]. Journal of Animal Science, 2008, 86(Suppl.):1. (![]() |
[15] | WANG J P, BU D P, WANG J Q, et al.Effect of saturated fatty acid supplementation on production and metabolism indices in heat-stressed mid-lactation dairy cows[J]. Journal of Dairy Science, 2010, 93(9):4121-4127. (![]() |
[16] | 王建平, 王加启, 卜登攀, 等.热应激对奶牛瘤胃纤维分解菌的影响[J]. 农业生物技术学报, 2010, 18(2):302-307. (![]() |
[17] | BERNABUCCI U, LACETERA N, RONCHI B, et al.Effects of the hot season on milk protein fractions in Holstein cows[J]. Animal Research, 2002, 51:25-33. (![]() |
[18] | BAUMGARD L H, WHEELOCK J B, SANDERS S R, et al.Postabsorptive carbohydrate adaptations to heat stress and monensin supplementation in lactating Holstein cows[J]. Journal of Dairy Science, 2011, 94(11):5620-5633. (![]() |
[19] | RHOADS R P, LA NOCE A J, WHEELOCK J B, et al.Short communication:Alterations in expression of gluconeogenic genes during heat stress and exogenous bovine somatotropin administration[J]. Journal of Dairy Science, 2011, 94(4):1917-1921. (![]() |
[20] | O'BRIEN M D, RHOADS R P, SANDERS S R, et al.Metabolic adaptations to heat stress in growing cattle[J]. Domestic Animal Endocrinology, 2010, 38(2):86-94. (![]() |
[21] | WHEELOCK J B, RHOADS R P, VANBAALE M J, et al. Effects of heat stress on energetic metabolism in lactating Holstein cows[J]. Journal of Dairy Science, 2010, 93(2):644-655. (![]() |
[22] | MILLER P M, STOCKDELL R, NEMETH L, et al.Initial steps taken by nine primary care practices to implement alcohol screening guidelines with hypertensive patients:the AA-TRIP project[J]. Substance Abuse, 2006, 27(1-2):61-70. (![]() |
[23] | NAN X M, BU D P, LI X Y, et al.Ratio of lysine to methionine alters expression of genes involved in milk protein transcription and translation and mTOR phosphorylation in bovine mammary cells[J]. Physiological Genomics, 2014, 46(7):268-275. (![]() |
[24] | BAUMRUCKER C R.Amino acid transport systems in bovine mammary tissue[J]. Journal of Dairy Science, 1985, 68(9):2436-2451. (![]() |
[25] | HANIGAN M D, CROMPTON L A, BEQUETTE B J, et al.Modelling mammary metabolism in the dairy cow to predict milk constituent yield, with emphasis on amino acid metabolism and milk protein production:model evaluation[J]. Journal of Theoretical Biology, 2002, 217(3):311-330. (![]() |
[26] | RIUS A G, MCGILLIARD M L, UMBERGER C A, et al.Interactions of energy and predicted metabolizable protein in determining nitrogen efficiency in the lactating dairy cow[J]. Journal of Dairy Science, 2010, 93(5):2034-2043. (![]() |
[27] | BIONAZ M, LOOR J J.Gene networks driving bovine mammary protein synthesis during the lactation cycle[J]. Bioinform Biological Insights, 2011, 5:83-98. (![]() |
[28] | BURGOS S A, DAI M, CANT J P.Nutrient availability and lactogenic hormones regulate mammary protein synthesis through the mammalian target of rapamycin signaling pathway[J]. Journal of Dairy Science, 2010, 93(1):153-161. (![]() |
[29] | MENZIES K K, LEFÈVRE C, MACMILLAN K L, et al.Insulin regulates milk protein synthesis at multiple levels in the bovine mammary gland[J]. Functional & Integrative Genomics, 2009, 9(2):197-217. (![]() |
[30] | HANIGAN M D, CANT J P, WEAKLEY D C, et al.An evaluation of postabsorptive protein and amino acid metabolism in the lactating dairy cow[J]. Journal of Dairy Science, 1998, 81(12):3385-3401. (![]() |
[31] | BREMMERS S A.Quality guideline precedes legislation[J]. Tijdschr Diergeneeskd, 1996, 121(9):280. (![]() |
[32] | NEVILLE M C, MCFADDEN T B, FORSYTH I.Hormonal regulation of mammary differentiation and milk secretion[J]. Journal of Mammary Gland Biology and Neoplasia, 2002, 7(1):49-66. (![]() |
[33] | BREMMER D R, OVERTON T R, CLARK J H.Production and composition of milk from Jersey cows administered bovine somatotropin and fed ruminally protected amino acids[J]. Journal of Dairy Science, 1997, 80(7):1374-1380. (![]() |
[34] | LESCOAT P, SAUVANT D, DANFAER A.Quantitative aspects of protein fractional synthesis rates in ruminants[J]. Reproduction Nutrition Development, 1997, 37(5):493-515. (![]() |
[35] | CHANAT E, AUJEAN E, BALTEANU A, et al.Nuclear organization and expression of milk protein genes[J]. Journal de la Socieye de Bioiogie, 2006, 200(2):181-192. (![]() |
[36] | WINTERMANTEL T M, BOCK D, FLEIG V, et al.The epithelial glucocorticoid receptor is required for the normal timing of cell proliferation during mammary lobuloalveolar development but is dispensable for milk production[J]. Molecular Endocrinology, 2005, 19(2):340-349. (![]() |
[37] | MENZIES K K, LEE H J, LEFÈVRE C, et al.Insulin, a key regulator of hormone responsive milk protein synthesis during lactogenesis in murine mammary explants[J]. Functional & Integrative Genomics, 2010, 10(1):87-95. (![]() |
[38] | FEUERMANN Y, SHAMAY A, MABJEESH S J.Leptin up-regulates the lactogenic effect of prolactin in the bovine mammary gland in vitro[J]. Journal of Dairy Science, 2008, 91(11):4183-4189. (![]() |
[39] | SUCHYTA S P, SIPKOVSKY S, HALGREN R G, et al.Bovine mammary gene expression profiling using a cDNA microarray enhanced for mammary-specific transcripts[J]. Physiological Genomics, 2004, 16(1):8-18. (![]() |
[40] | O'CONNOR D L, KHAN S, WEISHUHN K, et al.Growth and nutrient intakes of human milk- fed preterm infants provided with extra energy and nutrients after hospital discharge[J]. Pediatrics, 2008, 121(4):766-776. (![]() |
[41] | 陈杰, 朱祖康, 陆天水.营养基因组学(Nutrigenomics)——畜禽营养生理研究前沿[J]. 畜牧与兽医, 2006, 38:13-15. (![]() |
[42] | TOERIEN C A, TROUT D R, CANT J P.Nutritional stimulation of milk protein yield of cows is associated with changes in phosphorylation of mammary eukaryotic initiation factor 2 and ribosomal s6 kinase 1[J]. Journal of Nutrition, 2010, 140(2):285-292. (![]() |
[43] | BIONAZ M, PERIASAMY K, RODRIGUEZ-ZAS S L, et al.A novel dynamic impact approach (DIA) for functional analysis of time-course omics studies:validation using the bovine mammary transcriptome[J]. PLoS One, 2012, 7(3):e32455. (![]() |
[44] | JANDAL J M.Comparative aspects of goat and sheep milk[J]. Small Ruminant Research.1996, 22(2), 177-185. (![]() |
[45] | KUMAR S, CLARKE A R, HOOPER M L, et al.Milk composition and lactation of beta-casein-deficient mice[J]. Proceedings of the National Academy of Sciences, 1994, 91(13):6138-6142. (![]() |
[46] | GREEN S W, RENFREE M B.Changes in the milk proteins during lactation in the tammar wallaby, Macropus eugenii[J]. Australia Journal of Biological Science, 1982, 35(2):145-152. (![]() |
[47] | HORNE D S, ANEMA S, ZHU X, et al.A lactational study of the composition and integrity of casein micelles from the milk of the tammar wallaby (Macropus eugenii)[J]. Archives of Biochemistry and Biophysics, 2007, 467(1):107-118. (![]() |
[48] | FUQUAY J W.Heat stress as it affects animal production[J]. Journal of Animal Science, 1981, 52(1):164-174. (![]() |
[49] | SILANIKOVE N, SHAMAY A, SHINDER D, et al.Stress down regulates milk yield in cows by plasmin induced β-casein product that blocks K+ channels on the apical membranes[J]. Life Science, 2000, 67(18):2201-2212. (![]() |
[50] | DESHAZER J A,HAHN G L,XIN H.Basic principles of the thermal environment and livestock energetics[M]//DESHAZER J A.Asabe Monograph Livestock Energetics and Thermal Environment Management.St.Joseph,MI:ASABE.2009,1-35(![]() |
[51] | COLLIER S R, COLLINS E, KANALEY J A.Oral arginine attenuates the growth hormone response to resistance exercise[J]. Journal of Applied Physiology, 2006, 101(3):848-852. (![]() |
[52] | BAUMGARD L H, RHOADS R P.Ruminant nutrition symposium:ruminant production and metabolic responses to heat stress[J]. Journal of Animal Science, 2011, 90(6):1855-1865. (![]() |
[53] | SINGH K, ERDMAN R A, SWANSON K M, et al.Epigenetic regulation of milk production in dairy cows[J]. Journal of Mammary Gland Biology and Neoplasia, 2010, 15(1):101-112. (![]() |
[54] | COLLIER R J, COLLIER J L, RHOADS R P, et al.Invited review:genes involved in the bovine heat stress response[J]. Journal of Dairy Science, 2008, 91(2):445-454. (![]() |
[55] | 周振峰, 崔瑞莲, 王加启, 等.热应激对体外培养奶牛乳腺上皮细胞生长、凋亡及其热休克蛋白mRNA转录的影响[J]. 畜牧兽医学报, 2010, 41(5):600-607. (![]() |
[56] | 胡菡, 王加启, 李发弟, 等.高温诱导体外培养奶牛乳腺上皮细胞的应激响应[J]. 农业生物技术学报, 2011, 19(2):287-293. (![]() |
[57] | VELS L, RØNTVED C M, BJERRING M, et al.Cytokine and acute phase protein gene expression in repeated liver biopsies of dairy cows with a lipopolysaccharide-induced mastitis[J]. Journal of Dairy Science, 2009, 92(3):922-934. (![]() |
[58] | JAENISCH R, BIRD A.Epigenetic regulation of gene expression:how the genome integrates intrinsic and environmental signals[J]. Nature Genetics, 2003, 33:245-254. (![]() |
[59] | JOHNSON M L, LEVY J, SUPOWIT S C, et al.Tissue- and cell-specific casein gene expression.Ⅱ.Relationship to site-specific DNA methylation[J]. Journal of Biological Chemistry, 1983, 258:10805-10811. (![]() |
[60] | PLATENBURG G J, VOLLEBREGT E J, KARATZAS C N, et al.Mammary gland-specific hypomethylation of Hpa Ⅱ sites flanking the bovine alpha αS1-casein gene[J]. Transgenic Research, 1996, 5(6):421-431. (![]() |
[61] | THOMPSON M D, NAKHASI H L.Methylation and expression of rat kappa-casein gene in normal and neoplastic rat mammary gland[J]. Cancer Research, 1985, 45(3):1291-1295. (![]() |
[62] | VANSELOW J, YANG W, HERRMANN J, et al.DNA-remethylation around a STAT5-binding enhancer in the αS1-casein promoter is associated with abrupt shutdown of αS1-casein synthesis during acute mastitis[J]. Journal of Molecular Endocrinology, 2006, 37(3):463-477. (![]() |
[63] | MOLENAAR A,BIET J,SEYFERT H M,et al.Compaction of the alpha-S1-casein and opening of a defensin promotor occurs during infection and in forced involution of the bovine mammary gland[C]//7th international symposium on milk genomics and human health.Davis:[s.n.],2010. (![]() |
[64] | SWANSON K M, STELWAGEN K, DOBSON J, et al.Transcriptome profiling of Streptococcus uberis-induced mastitis reveals fundamental differences between immune gene expression in the mammary gland and in a primary cell culture model[J]. Journal of Dairy Science, 2009, 92(1):117-129. (![]() |
[65] | SINGH K, DAVIS S R, DOBSON J M, et al.cDNA microarray analysis reveals that antioxidant and immune genes are up-regulated during involution of the bovine mammary gland[J]. Journal of dairy science, 2008, 91(6):2236-2246. (![]() |
[66] | SINGH K, SWANSON K, COULDREY C, et al.DNA Methylation events associated with the suppression of milk protein gene expression during involution of the bovine mammary gland[J]. Proceedings of the New Zealand Society of Animal Production, 2009, 69:57-59. (![]() |
[67] | CHEUNG O, PURI P, EICKEN C, et al.Nonalcoholic steatohepatitis is associated with altered hepatic MicroRNA expression[J]. Hepatology, 2008, 48(6):1810-1820. (![]() |
[68] | ESAU C, DAVIS S, MURRAY S F, et al.miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting[J]. Cell Metabolism, 2006, 3(2):87-98. (![]() |
[69] | LI H M, WANG C M, LI Q Z, et al.MiR-15a decreases bovine mammary epithelial cell viability and lactation and regulates growth hormone receptor expression[J]. Molecules, 2012, 17(10):12037-12048. (![]() |
[70] | CUI W, LI Q Z, FENG L, et al.MiR-126-3p regulates progesterone receptors and involves development and lactation of mouse mammary gland[J]. Molecular and Cellular Biochemistry, 2011, 355(1-2):17-25. (![]() |
[71] | YU J, LIU F H, YIN P, et al.Integrating miRNA and mRNA expression profiles in response to heat stress-induced injury in rat small intestine[J]. Functional & Integrative Genomics, 2011, 11(2):203-213 (![]() |
[72] | YIN C, WANG X Y, KUKREJA R C.Endogenous microRNAs induced by heat-shock reduce myocardial infarction following ischemia-reperfusion in mice[J]. FEBS Letters, 2008, 582(30):4137-4142. (![]() |
[73] | WILMINK G J, ROTH C L, IBEY B L, et al.Identification of microRNAs associated with hyperthermia-induced cellular stress response[J]. Cell Stress and Chaperones, 2010, 15(6):1027-1038." (![]() |